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Abstract

Automatic neuroimaging processing tools provide convenient and systematic

methods for extracting features from brain magnetic resonance imaging scans. One

tool, FreeSurfer, provides an easy-to-use pipeline to extract cortical and subcortical

morphometric measures. There have been over 25 stable releases of FreeSurfer, with

different versions used across published works. The reliability and compatibility of

regional morphometric metrics derived from the most recent version releases have

yet to be empirically assessed. Here, we used test–retest data from three public data

sets to determine within-version reliability and between-version compatibility across

42 regional outputs from FreeSurfer versions 7.1, 6.0, and 5.3. Cortical thickness

from v7.1 was less compatible with that of older versions, particularly along the cin-

gulate gyrus, where the lowest version compatibility was observed (intraclass correla-

tion coefficient 0.37–0.61). Surface area of the temporal pole, frontal pole, and

medial orbitofrontal cortex, also showed low to moderate version compatibility. We

confirm low compatibility between v6.0 and v5.3 of pallidum and putamen volumes,

while those from v7.1 were compatible with v6.0. Replication in an independent sam-

ple showed largely similar results for measures of surface area and subcortical vol-

umes, but had lower overall regional thickness reliability and compatibility. Batch

effect correction may adjust for some inter-version effects when most sites are run

with one version, but results vary when more sites are run with different versions.

Age associations in a quality controlled independent sample (N = 106) revealed ver-

sion differences in results of downstream statistical analysis. We provide a reference

to highlight the regional metrics that may yield recent version-related inconsistencies

in published findings. An interactive viewer is provided at http://data.brainescience.

org/Freesurfer_Reliability/.
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1 | INTRODUCTION

The reproducibility of research findings in the biological sciences has

recently come to light as a major problem, particularly for the

neuroimaging-heavy fields of psychological and neurological-sciences

(Boekel et al., 2015; Bowring et al., 2019; Button et al., 2013; Hodge

et al., 2020; Poldrack et al., 2020). Studies on major depressive disor-

der (MDD), for example, have pointed out inconsistencies in results as

well as difficulties in drawing comparisons due to analytical and study

design variability (Beijers et al., 2019; Dichter et al., 2015; Fonseka

et al., 2018; Kang & Cho, 2020; Müller et al., 2017; Stuhrmann

et al., 2011). In one study, using a more heterogeneous sample and

rigorous statistical testing, Dinga et al. (2019) were unable to replicate

the statistical significance used to define MDD biotypes previously

found in the literature. Inconsistent results investigating neuroimaging

traits and diseases have also been found in studies of insomnia

(Spiegelhalder et al., 2015) and mild traumatic brain injury (mTBI). A

meta-analysis of 14 reports of working memory in mTBI showed

mixed findings of functional magnetic resonance imaging (MRI) hyper-

activity, hypoactivity, and some studies even report both hyper and

hypo activity (Bryer et al., 2013). Neuroimaging offers mechanistic

insights into the variability that leads to risk for brain dysfunction, yet

these findings must be replicable in order to extend the use of MRI-

derived biomarkers to a clinical setting.

It is important to understand how and why these discrepancies

occur, so that we can better understand why certain findings are, or

are not reproducible. For example, studies may be underpowered, or

the variable of interest might have different effects across

populations. Experimental results can also be affected by methodolog-

ical factors such as the type of data collection (Han et al., 2006;

Jovicich et al., 2009; Yan et al., 2020), data processing and analysis

(Bennett & Miller, 2013; Botvinik-Nezer et al., 2020; Carp, 2012;

Lindquist, 2020), tool version and selection (Bigler et al., 2020; Dickie

et al., 2017; Gronenschild et al., 2012; Meijerman et al., 2018; Perlaki

et al., 2017; Tustison et al., 2014; Zavaliangos-Petropulu et al., 2022),

and even operating system environments (Glatard et al., 2015). The

presence of pathological tissue has also been reported to cause sys-

tematic errors in segmentation output (Dadar et al., 2021). If sample

population and methodology differ, it can be difficult to tease apart

the main source of the discrepant findings.

Recent efforts in the neuroimaging community have heightened

awareness and partially addressed concerns surrounding reproducibil-

ity. Guides and tools for enhancing reproducibility have been pub-

lished in an effort to promote Open Science. Open science aims to

provide transparency into research studies to better understand the

data collected, the code implemented and software used, the analysis

performed, and the full scope of results, including null findings

(Gorgolewski et al., 2015; Gorgolewski & Poldrack, 2016; Kennedy

et al., 2019; Nichols et al., 2017; Poldrack & Gorgolewski, 2017;

Vicente-Saez & Martinez-Fuentes, 2018; Zuo et al., 2014). These

efforts often include detailed documentation and containerization of

analytical software to ensure consistency of software version, and

even operating system to the extent possible should the study be

replicated. Other efforts such as the Consortium for Reliability and

Reproducibility (CoRR) emphasize reliability and reproducibility in

neuroimaging. This is demonstrated by their open-source test–retest

data sets which help facilitate these reliability and reproducibility

assessments in both structural and functional MRI (Zuo et al., 2014).

Compared to sample size, these metrics are often overlooked, but it is

important to note that reliability is a key determinant of statistical

power (Zuo et al., 2019). Large consortia, such as the Enhancing Neu-

roImaging Genetics through Meta-Analysis (ENIGMA) Consortium,

have also addressed issues of low power and varying data processing

pipelines by conducting large-scale harmonized meta- and mega-

analyses across international data sets (Thompson et al., 2020). Ana-

lytical protocols are proposed and approved by the community in

advance; they are then distributed and made readily available. These

protocols also include data quality control (QC) guidelines to improve

analytic consistency across heterogeneous data sets and populations.

Large, publicly available and densely phenotyped data sets that

use these protocols have recently become a powerful resource that

has advanced the field of neuroscience (Horien et al., 2021). Studies

like the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the

UK Biobank collect data from 1000 to 10,000 of individuals

(Littlejohns et al., 2020; Weiner et al., 2015) with some collecting lon-

gitudinal data that spans well over a decade (Weiner et al., 2017).

Automatic segmentation tools are widely used on such data sets and

have allowed for tens to hundreds of thousands of scans to be conve-

niently processed, thus enabling neuroimaging traits to be used in a

wide range of clinical and epidemiological studies. However, these

tools do not come without challenges and limitations.

Data processed from updated versions of these softwares are

continuously released (http://adni.loni.usc.edu/2021/) and this leaves

researchers questioning which version is most reliable or whether

data and results from work that used prior versions are compatible

with those of later releases. If the detected effects depend on the

software version used, then that variability could threaten the repro-

ducibility of published research and compromise clinical translation.

However, these version updates are often needed to keep up with

the many advancements made in the neuroimaging field. For example,

version updates may include added options or tools to work with

higher resolution images, or more computational efficient image pro-

cessing pipelines (e.g., the use of GPUs for processing). As newer soft-

ware releases are made available, we often lack information on

whether new results will be consistent with prior findings, and the

overall impact of a software upgrade. To understand sources of study

variability, it is important to understand how version upgrades may

impact outcome measures.

One such automatic feature extraction and quantification tool that

is widely used in neuroimaging is FreeSurfer (Fischl, 2012). FreeSurfer

is a structural MRI processing suite that allows researchers to obtain

brain parcellations and metrics from just a single T1-weighted image.

Running the software involves just a one command, but the process

itself is quite extensive—where the single image undergoes over

30 stepwise processing stages (https://surfer.nmr.mgh.harvard.edu/

fswiki/recon-all). Notably, more than 60 research papers have been
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published detailing FreeSurfer's algorithms and workflows (https://

www.zotero.org/freesurfer/collections/F5C8FNX8). The overall pro-

cessing steps include: image preprocessing, brain extraction, gray and

white matter segmentation, reconstruction of the white matter and pial

surfaces, labeling of cortical and subcortical regions, and a spherical

nonlinear registration of the cortical surface using a stereotaxic atlas,

allowing for a more accurate alignment of gyral and sulcal landmarks.

Users can then extract features, such as cortical thickness (defined as

the distance between the white matter and pial surfaces), surface area

(or the area of all the triangles on the mesh representing the white mat-

ter surface), and cortical and subcortical volumes, measured in cubic

millimeters (Fischl, 2012).

A PubMed search of “freesurfer,” in the year 2020 alone, results

in a total of 344 publications, indicating its wide use as a neuroimag-

ing resource (https://pubmed.ncbi.nlm.nih.gov/?term=%28freesurfer

%29&filter=years.2020-2020). It has been a popular tool for over

20 years throughout which over 25 different stable releases have

been disseminated (https://surfer.nmr.mgh.harvard.edu/fswiki/

PreviousReleaseNotes). Version release updates have included, for

example, improvements in accuracy of the cortical labels or a change/

addition in a preprocessing step such as denoising or bias field correc-

tion (https://surfer.nmr.mgh.harvard.edu/fswiki/ReleaseNotes). These

version changes may affect certain extracted measures. Gronenschild

et al. (2012) compared volumes and cortical thickness measures

across FreeSurfer v4.3.1, v4.5.0, and v5.0.0 and found many measure-

ments differed significantly. After the release of the next version,

v5.3, Dickie et al. (2017) performed correlation analysis between cor-

tical thickness measures output from FreeSurfer v5.1 and v5.3, and

found high compatibility between the two versions. Such work helped

inform protocols for consortia such as ENIGMA, where groups that

had run FreeSurfer versions older than v5.0, were asked to rerun their

processing pipeline, whereas both v5.1 and v5.3 were used for ana-

lyses within certain working groups. A more recent study, Bigler

et al. (2020), compared FreeSurfer v5.3 and v6.0 across a select set of

volumes, finding low compatibility between versions for the volume

of the globus pallidus.

The latest stable release, v7.1, has yet to be thoroughly assessed

for intraversion reliability and between-version compatibility. Here,

we assessed the reliability and compatibility of the last three stable

FreeSurfer version releases—v5.3 (2013), v6.0 (2017), and v7.1

(2020)—across three publicly available test–retest data sets. We set

out to determine the (1) between-version compatibility and (2) within-

version reliability, for cortical thickness, surface area, and subcortical

volumes. We also perform a replication analysis using an independent

data set and test how batch correction using a mixture of versions

affects age associations in these test–retest data sets. To further test

how these version differences may influence population-level findings,

we ran all three FreeSurfer versions on a subset of cross-sectional

data from the UK Biobank, a cohort of middle-aged to older adults.

We visually quality controlled and computed Dice overlap scores

between each pair of versions for all regional outputs. Finally, we

determined the linear effect of age for each region and metric of inter-

est, to understand the stability of this effect across software versions.

2 | METHODS

2.1 | Data sets

Test–retest data sets from the Human Connectome Project (HCP)

(Van Essen et al., 2013), Kennedy Krieger Institute (KKI) (Landman

et al., 2010), and Open Access Series of Imaging Studies (OASIS-1)

(Marcus et al., 2007) were used to assess reliability within and between

FreeSurfer versions. We limited the analysis to 76 healthy individuals

with T1-weighted brain MRI scans aged 19–61. KKI includes test-

retest data from 21 healthy volunteers with no history of neurological

conditions; a test-retest subset of 35 healthy young adults was pro-

vided by HCP, and OASIS-1 includes 20 nondemented subjects imaged

twice. The maximum interscan interval of 11 months in the HCP data

set is longer than OASIS and KKI, yet we do not suspect considerable

changes in brain structure between sessions given that HCP is com-

prised of generally healthy young adults between the ages of 22 and

35 years (Van Essen et al., 2013). See Table 1 for more details.

A subset of 106 neurologically normal individuals was selected at

random from the UK Biobank (Miller et al., 2016) to test age associa-

tion outcome differences between versions. This included 56 females

with a mean age and standard deviation of 62.3 (7.2) years and

50 males with a mean age and standard deviation of 61.2 (7.7) years.

The age ranged from 46 to 78 years of age. In this case, being neuro-

logically normal was defined based on the following exclusion criteria:

TABLE 1 Cohort demographics and scan parameters for test–retest data sets analyzed. HCP is a family-based data set including up to four
individuals per family, so we limited our ICC investigations to one randomly chosen individual per family. *indicates the maximum duration
between any two consecutive scans; the maximum duration between the baseline scan and the final retest is 40 days.

Cohort Age range; mean (SD) No. subjects (%F)
Maximum interscan
interval in days (mean) Manufacturer/field strength Voxel size (mm)3

HCP 22–35; 30.7 (2.97) 35 (44%) 330 (144) Siemens 3 T (0.7 � 0.7 � 0.7)

KKI 22–61; 31.8 (9.47) 21 (48%) 14 Philips 3 T (1 � 1 � 1.2)

OASIS 19–34; 23.4 (4.03) 20 (60%) 90 (20.6) Siemens 1.5 T (1.0 � 1.0 � 1.25)

HNU (replication) 20–30; 24.4 (2.41) 30 (50%) 10 (3.7)* GE 3 T (1.0 � 1.0 � 1.0)

Abbreviations: HCP, Human Connectome Project; HNU, Hangzhou Normal University; ICC, intraclass correlation coefficient; KKI, Kennedy Krieger

Institute; OASIS, Open Access Series of Imaging Studies.
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cancers of the nervous system, diseases of the nervous system, aortic

valve diseases, head injuries, and schizophrenia/bipolar disorders; as a

large number of individuals had either anxiety or depressive episodes,

the entire mental disorders category was not excluded. While the UK

Biobank has over 40,000 individual scans, we selected a relatively

small subset, with a sample size more in line with most single-site cur-

rent neuroimaging studies.

2.2 | FreeSurfer regions and metrics of interest

All scans were run through the same recon-all pipeline provided by Free-

Surfer for stable v5.3, v6.0, and v7.1 releases on the USC Mark and

Mary Stevens Neuroimaging and Informatics Institute's high perfor-

mance computing cluster using a Linux-centos6 operating system,

ensuring the same OS and environment. For runtimes, please see sup-

plementary Table S1. Cortical parcellations were computed based on

the Desikan-Killiany (DK) atlas (Desikan et al., 2006), where 34 distinct

regions on each cortical hemisphere are labeled according to the gyral

patterns. For each cortical region, FreeSurfer outputs the average corti-

cal thickness, surface area, and volume. We focus our analyses on corti-

cal thickness and surface area, as these are largely independent

measures (Winkler et al., 2010) and volume is a composite of the two.

We also extract and evaluate the FreeSurfer derived measures of total

intracranial volume (ICV) and volumes of eight subcortical regions: the

nucleus accumbens, amygdala, caudate, hippocampus, lateral ventricle,

pallidum, putamen, and the thalamus. These metrics are all ones that

have been repeatedly used throughout multinational ENIGMA projects,

and are therefore of particular interest to many collaborative investiga-

tors invested in reproducible findings. For all of our intraclass correlation

coefficient (ICC) analysis here, we report left and right measures, as well

as average cortical thickness, total surface area, and average subcortical

volumes. We also include hemisphere and whole brain cortical thickness

and surface area. Euler values from the test–retest data sets for the final

surfaces, as well as the surfaces before topological defect correction,

are made available in the supplementary materials (Table S2).

2.3 | Statistics and quality control

ICCs were calculated using the psych library in R (https://CRAN.R-

project.org/package=psych). The following three compatibility com-

parisons were evaluated: v7.1 versus v6.0, v7.1 versus v5.3, and v6.0

versus v5.3. Only the first time points from the test–retest data were

selected for these comparisons. ICC2 was used to compute between-

version compatibility measures to account for any systematic errors

using the following formula:

ICC2¼ BMS�EMS
BMSþ k�1ð ÞEMSþk JMS�EMSð Þ=n0

where BMS is the between-targets mean square, EMS is the residual

mean square, k is the number of judges, JMS is the between-judges

mean square, and n0 is the number of targets (in our context, the

judges would correspond to different software versions used to com-

pute the measures).

Within-version reliability measures were performed on within-

subject test–retest data for FreeSurfer versions v7.1, v6.0, and v5.3.

ICC3 was used to measure within-version reliability using the follow-

ing formula:

ICC3¼ BMS�EMS
BMSþ k�1ð ÞEMS

where BMS is the between-targets mean square, EMS is the residual

mean square, and k is the number of judges. ICCs were computed for

each site and a weighted average was also computed, where the

reported ICC2 and ICC3 measures represent a weighted average to

account for the number of participants in each data set. ICC interpre-

tation was based on Koo and Li (2016): ICCs < 0.50 are considered

poor; between 0.50 and 0.75 are moderate, between 0.75 and 0.90

denote good agreement; and values greater than 0.90 indicate excel-

lent reliability.

To test if FreeSurfer version affects population level findings in

studies of modest sample size, age associations were performed in a

cross-sectional subset of the UK Biobank using linear regressions. Sex

was used as a covariate; ICV was added as a covariate for subcortical

volumes. In that same subset, detailed QC was performed using the

ENIGMA QC protocol (http://enigma.ini.usc.edu/protocols/imaging-

protocols/) to test differences in regional fail rates across the versions.

Then, 54 subjects were assigned to rater #1 and 52 to rater #2. Each

rater QC'ed the same subset across all three versions. Rater #3 then

reviewed all QC fails for consistency. All subcortical QC was per-

formed by rater #3 where a fail constitutes any notable overestima-

tion or underestimation of volume for any structure. Age associations

were also performed in this QC'ed subset, where subjects were

excluded if the QC of any ROI was inconsistent across versions. If

subjects had consistent regional fails, they were kept in the analysis,

but those regions were excluded. While many studies of such sample

size may perform manual segmentation corrections, there is no way to

ensure consistent manual editing across the outputs of all software

versions. We therefore opted to exclude QC fails to ensure our

reported differences were due to changes in software version.

For each set of regressions within a version, statistical signifi-

cance was determined after controlling the false discovery rate (FDR)

at q < 0.05 across 234 measures, which included all bilateral, unilat-

eral, and full brain measures. FDR (Benjamini & Hochberg, 1995) cor-

rected p-values and z-statistics were plotted on brain surfaces for

comparison. All values, including uncorrected p-values, are tabulated

on our web-viewer. Dice coefficients (Dice, 1945) were also calcu-

lated in the UK Biobank subset to assess the extent of spatial overlap

of ROIs across versions, for all regions in the DK atlas.

2.4 | Replication analysis

To ensure replicability of our results, we calculated reliability and com-

patibility measures on the Hangzhou Normal University (HNU) cohort.
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This data set is a valuable resource to assess reliability with its

10 test–retest design (Zuo et al., 2014): 30 participants were scanned

10 times, all within 40 days of their baseline scan with a mean of

3.7 days between two consecutive scans (see Table 1 for more

details). Upon visual inspection of the FreeSurfer outputs, we

excluded three subjects (subject IDs: 25434, 25440, 25438) due to an

error in the brain extraction that cut off a superior segment of the

brain in at least one of that subject's sessions. Out of 300 scans, we

note that this was observed three times in v5.3, two times in v6.0,

and four times in v7.1. Radar plots of ICCs are available in the supple-

mentary materials (Figures S7 and S8).

2.5 | ComBat analysis

To test the effects of batch correction, we performed an additional

set of age associations on all the test–retest data sets—harmonizing

for site using ComBat (Fortin et al., 2018). We limited our analysis to

the first timepoint with a max age of 35 years old as the KKI data set

only had a few participants with ages beyond this point. Here, we

used all subjects from HNU given that errors in baseline scans were

not observed. We compare harmonized v7.1 results to a mixture of

v7.1 and other versions, where we change the version of one (75%

v7.1) or two data sets (50% v7.1) to v5.3 or v6.0. Differences in bilat-

eral significant z-statistics before and after FDR correction are avail-

able in the supplementary materials (Figures S11–S14).

3 | RESULTS

The full set of our reliability, compatibility, and association results are

available through an interactive 3D brain viewer here: http://data.

brainescience.org/Freesurfer_Reliability/. Cohort specific ICCs and

associated statistics are also available in the supplementary material

(Figures S1–S8, Tables S3–S6).

3.1 | Between version compatibility

Version compatibility results between FreeSurfer v5.3, v6.0, and v7.1

for all cortical and subcortical metrics are shown in Figure 1. Overall,

the version compatibility across all versions for average cortical thick-

ness was good to excellent (ICCv7.1:v6.0 = 0.81; ICCv7.1:v5.3 = 0.85;

ICCv6.0:v5.3 = 0.91). Similarly, left and right hemispheric thicknesses

were good for v7.1 comparisons (left: ICCv7.1:v6.0 = 0.80, ICCv7.1:

v5.3 = 0.86; right: ICCv7.1:v6.0 = 0.81, ICCv7.1:v5.3 = 0.83), and excellent

when comparing v6.0 to v5.3 (left: ICCv6.0:v5.3 = 0.91; right: ICCv6.0:

v5.3 = 0.90). Furthermore, version compatibility was excellent for v7.1

versus v6.0 in several bilateral regional parcellations including the

paracentral, postcentral, superior frontal, transverse temporal, and

superior parietal cortices (ICCv7.1:v6.0 > 0.90). The postcentral (ICCv7.1:

v5.3 = 0.91) and superior parietal (ICCv7.1:v5.3 = 0.91) gyri also showed

excellent compatibility between v7.1 and v5.3. Additionally, v6.0 was

highly compatible with v5.3 in the superior frontal, superior temporal,

parahippocampal, supramarginal, pars orbitalis, and the banks of the

superior temporal sulcus (ICCv6.0:v5.3 ≥ 0.90). Several bilateral regions

showed poor compatibility between v7.1 and older versions, however.

In particular, the lowest ICCs were found for the isthmus (ICCv7.1:

v5.3 = 0.37; ICCv7.1:v6.0 = 0.58), posterior (ICCv7.1:v5.3 = 0.41; ICCv7.1:

v6.0 = 0.55), caudal anterior (ICCv7.1:v5.3 = 0.46; ICCv7.1:v6.0 = 0.45),

and rostral anterior (ICCv7.1:v5.3 = 0.61; ICCv7.1:v6.0 = 0.50) subregions

of the cingulate gyrus. An example subject with notable differences in

cingulate segmentations is displayed in Figure 2a. Other regions that

showed moderate agreement with v7.1 and either v6.0 or v5.3

included the entorhinal (ICCv7.1:v5.3 = 0.64; ICCv7.1:v6.0 = 0.67), middle

temporal (ICCv7.1:v5.3 = 0.68), and insular (ICCv7.1:v6.0 = 0.67) cortices,

as well as the temporal (ICCv7.1:v5.3 = 0.69) and frontal poles (ICCv7.1:

v5.3 = 0.70; Figure 1a).

Total surface area showed excellent compatibility across all three

versions (ICCv7.1:v6.0 = 0.99; ICCv7.1:v5.3 = 0.96; ICCv6.0:v5.3 = 0.99).

Left and right hemispheric surface area compatibility between ver-

sions were also excellent across all comparisons (ICCs > 0.96). Overall,

the two most compatible versions were v7.1 versus v6.0, where, nota-

bly, 29/34 bilateral regions had ICCs > 0.90. Several regions also

showed excellent compatibility (ICC > 0.90) across all three version

comparisons: these included the caudal middle frontal, the inferior

parietal, postcentral, posterior cingulate, rostral middle frontal, supe-

rior parietal, and the supramarginal gyri. However, we did find surface

area compatibility discrepancies not only in regions mostly distinct

from cortical thickness, but also between the pairs of versions being

compared as well. The lowest bilateral regional surface area compati-

bility ICCs were observed in frontal and temporal areas when compar-

ing newer versions to v5.3, where v7.1 showed lower compatibility to

v5.3 than to v6.0. Frontal regions included the medial orbitofrontal

cortex (ICCv7.1:v5.3 = 0.51; ICCv6.0:v5.3 = 0.76), pars orbitalis (ICCv7.1:

v5.3 = 0.54; ICCv6.0:v5.3 = 0.66), and the frontal poles which were not

compatible between either v7.1 (ICCv7.1:v5.3 = 0.19) or v6.0 (ICCv6.0:

v5.3 = 0.32). However, compatibility between v7.1 and v6.0 was mod-

erate for the medial orbitofrontal cortex (ICCv7.1:v6.0 = 0.71), excellent

for the pars orbitalis (ICCv7.1:v6.0 = 0.94), and moderate for the frontal

pole (ICCv7.1:v6.0 = 0.63). Temporal regions that followed similar

trends included the parahippocampal gyrus (ICCv7.1:v5.3 = 0.61;

ICCv6.0:v5.3 = 0.70) and the temporal poles (ICCv7.1:v5.3 = 0.43;

ICCv6.0:v5.3 = 0.66). In contrast, v7.1 has excellent compatibility with

v6.0 for the parahippocampal gyrus (ICCv7.1:v6.0 = 0.90) and moderate

compatibility for the temporal pole (ICCv7.1:v6.0 = 0.73; Figure 1d).

ICV was highly compatible across all versions (ICCs > 0.97). All

bilateral subcortical volumes showed good to excellent compatibility

when comparing v7.1 to v6.0 (ICCs > 0.87). Good to excellent compati-

bility was also found comparing v5.3 to the newer versions in the lat-

eral ventricle, hippocampus, thalamus, caudate, and amygdala

(ICCs > 0.82). Compatibility issues arose when comparing v7.1 and

v6.0 against v5.3. Poor to moderate regional compatibility was found in

the pallidum (ICCv7.1:v5.3 = 0.34; ICCv6.0:v5.3 = 0.36), putamen (ICCv7.1:

v5.3 = 0.56; ICCv6.0:v5.3 = 0.52; Figure 2b), and to a lesser extent, the

nucleus accumbens (ICCv7.1:v5.3 = 0.78; ICCv6.0:v5.3 = 0.73; Figure 1g).
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Replication analysis using the HNU data set showed the compati-

bility of surface area and subcortical volumes to be largely in line with

our main analysis (Figure S7d,g). Whereas in our main analysis, we

show the most discrepancy between cortical thickness measures

from v7.1 and the previous versions, mostly in the cingulate regions,

our replication analysis showed lower compatibility more broadly

F IGURE 1 Regional interversion agreement (compatibility; estimated by ICC2). Bilateral, left, and right ICC2 values comparing cortical
thickness (a–c), cortical surface area (d–f), and subcortical volumes (g–i) between versions. Outer concentric circles represent lower ICC2 values,
truncated at 0.50, while the center represents ICC2 = 1. Regions with the lowest compatibility differ for cortical thickness and surface area.
These compatibility estimates shown are a sample-size weighted average of results in each of Human Connectome Project (HCP), Kennedy
Krieger Institute (KKI), and Open Access Series of Imaging Studies (OASIS) data sets.
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between cortical thickness from v5.3 and those from newer versions

(Figure S7a).

3.2 | Within-version reliability

The meta-analyzed scan-rescan reliability for all cortical and subcorti-

cal metrics within each of FreeSurfer v5.3, v6.0, and v7.1 are shown

in Figure 3. All versions showed high reliability for average bilateral,

left hemispheric, and right hemispheric cortical thickness (ICC > 0.90).

Regional bilateral metrics with the lowest thickness ICCs—but still

considered moderate to good—included the temporal pole

(ICCv7.1 = 0.71; ICCv6.0 = 0.83; ICCv5.3 = 0.74), rostral anterior cingu-

late (ICCv7.1 = 0.83; ICCv6.0 = 0.79; ICCv5.3 = 0.78), and the medial

orbitofrontal cortex (ICCv7.1 = 0.85; ICCv6.0 = 0.88; ICCv5.3 = 0.80;

Figure 3a). Total bilateral, left hemispheric, and right hemispheric sur-

face area reliability was also high (ICC = 0.99) for all three FreeSurfer

versions. The regions with the lowest surface area ICCs were all still

highly reliable, but included the frontal poles (ICCv7.1 = 0.88;

ICCv6.0 = 0.87; ICCv5.3 = 0.77), insula (ICCv7.1 = 0.91; ICCv6.0 = 0.86;

ICCv5.3 = 0.89), and entorhinal cortex (ICCv7.1 = 0.92; ICCv6.0 = 0.95;

ICCv5.3 = 0.88) (Figure 3d). Regional bilateral subcortical volumes

were all reliable for each of the three versions (ICC > 0.86; Figure 3g).

ICV reliability was also very high (ICC > 0.97) for all versions.

F IGURE 2 (a) Axial slices from the same UK Biobank participant across versions. Arrows indicate posterior and isthmus cingulate differences
in v7.1 versus v5.3 and v6.0. (b) Coronal slices from the same subject across versions. Arrows demonstrate v5.3 volume differences in the
putamen and pallidum versus v6.0 and v7.1. (c) Medial surface representations of two UK Biobank participants across versions. Arrows highlight
differences in the medial wall pinning, particularly in the entorhinal cortex, in v7.1 compared to the two prior releases.
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Replication analysis using the HNU data set showed the reliability

of surface area and most subcortical volumes to be largely in line with

our main analysis—similar to compatibility (Figure S8d,g). The

reliability of the accumbens, amygdala, and hippocampus in v5.3

showed the most discrepancy from the main analysis with lower ICCs

in the replication data set. Cortical thickness reliability showed more

F IGURE 3 Regional intraversion agreement (reliability; estimated by ICC3). Bilateral, left, and right ICC3 values comparing cortical thickness
(a–c), cortical surface area (d–f), and subcortical volumes (g–i) between versions. Outer concentric circles represent smaller ICC3 values, truncated
at 0.70, while the center represents ICC3 = 1. Regions with the lowest reliability differ for cortical thickness and surface area. These reliability
estimates shown are a sample-size weighted average of results in each of Human Connectome Project (HCP), Kennedy Krieger Institute (KKI),
and Open Access Series of Imaging Studies (OASIS) data sets.
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widespread and lower reliability overall, across all versions. Regions

that were classified as having moderate to poor reliability in HNU

included the temporal pole, insula, entorhinal, inferior temporal, rostral

anterior cingulate, medial orbitofrontal, and lateral orbitofrontal corti-

ces (Figure S8a).

3.3 | ComBat analysis

When comparing multisite age association results of harmonized v7.1

measures to a combination of either harmonized v7.1 and v6.0 or har-

monized v7.1 and v5.3 measures, we find results to be similar, but not

identical. When we harmonize a single cohort's v6.0 or v5.3 measures

in combination with v7.1, we find that all measures that were consid-

ered statistically significant after FDR correction in the harmonized

v7.1 analysis were also significant in the analyses for which we

swapped out a single cohort's measures to be from v6.0 or v5.3

(Figures S11 and S12). The only exception was the thickness of the

banks of the superior temporal sulcus, which was not significant using

HCP's v6.0 values in the harmonization, but was when using all har-

monized v7.1 and any of the KKI, OASIS, or HNU v6.0 swaps in com-

bination with v7.1. We find some regions were not significant in the

harmonized v7.1 alone analysis, but were significant when using a sin-

gle cohort's v5.3 or v6.0 results. For example, the thickness of the pre-

cuneus was not significantly associated with age when using only v7.1

harmonized measures, but was when swapping HCP and OASIS

measures for those of v5.3 and for swapping OASIS and HNU mea-

sures for those of v6.0. When we harmonize the measures of half the

cohorts with v7.1 and half the cohorts with v5.3, we no longer find

the same age associations as in v7.1 for the banks of the superior

temporal sulcus thickness and the posterior cingulate surface area.

When we harmonize with half the cohorts run through v6.0, again the

banks of the superior temporal sulcus banks did not always show a

significant association. Similar to the single cohort swaps, we see

regions that are significantly associated with age in the mixtures but

not in the v7.1 only analysis. In addition to the precuneus surface area

in both v5.3 and v6.0, we also see associations with the pars opercu-

laris and transverse temporal surface areas in combinations that

included either v5.3 or v6.0, and postcentral surface area associations

for combinations with v6.0. All results, including uncorrected associa-

tions are available in the supplementary materials (Figures S11–S14).

3.4 | Quality control and population-level analysis

Figure 4 highlights regional cortical quality issues noted in the subset

of UK Biobank participant scans across each of the evaluated FreeSur-

fer versions. The region that showed the greatest difference in failure

rate was the left superior temporal gyrus—where v7.1 performed the

best (5.7% fails) followed by v6.0 (7.5% fails), and v5.3 performed the

worst (12.3% fails; Figure 4a). In one subject with poor image quality,

a general underestimation occurred throughout the brain in v5.3 but

F IGURE 4 Cortical quality control results. Results based on 106 neurologically healthy UK Biobank participants. (a) Manual cortical quality
control results (percentage fail) based on the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) quality control (QC) protocol
across versions. Gray regions indicate no failures. Note more widespread failures particularly in the temporal and frontal regions due to a single
subject (representative failure case) in (b). We also note generally higher rates of failure in the left temporal lobes across all versions. (c) Dice
scores across left and right hemisphere Desikan-Killiany atlas labels. We note the lowest overlap in the cuneus, entorhinal, pericalcarine, cingulate
cortices, and temporal and frontal poles, particularly when comparing v5.3 to the newer versions.
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not in v6.0 and v7.1 (see Figure 4b). Other regions that failed at a rela-

tively similar rate across all three versions included the left banks of

the superior temporal sulcus (v7.1 = 17%; v6.0 = 17%;

v5.3 = 18.9%), the left (v7.1 = 14.2%; v6.0 = 13.2%; v5.3 = 12.3%),

and right (v7.1 = 11.3%; v6.0 = 12.3%; v5.3 = 13.2%) pericalcarine,

the left middle temporal (v7.1 = 13.2%; v6.0 = 12.3%; v5.3 = 13.2%),

the left cuneus (v7.1 = 13.2%; v6.0 = 12.3%; v5.3 = 10.4%), and the

right cuneus (v7.1 = 8.5%; v6.0 = 10.4%; v5.3 = 10.4%).

The highest overlap was between v7.1 and v6.0, where most

regions had a Dice coefficient of 0.90 or greater. The lowest overlap

occurred when comparing v5.3 to both v7.1 and v6.0, particularly in

the frontal pole (left: DCv7.1:v5.3 = 0.74, DCv6.0:v5.3 = 0.76; right:

DCv7.1:v5.3 = 0.79, DCv6.0:v5.3 = 0.81), entorhinal (left: DCv7.1:

v5.3 = 0.78, DCv6.0:v5.3 = 0.79; right: DCv7.1:v5.3 = 0.75, DCv6.0:

v5.3 = 0.77), and right cuneus (DCv7.1:v5.3 = 0.75, DCv6.0:v5.3 = 0.77).

Other regions with lower Dice coefficients were the cingulate regions,

temporal pole, pericalcarine, and the banks of the superior temporal

sulcus (Figure 4c).

Figure 5 highlights the subcortical quality issues noted across

each of the evaluated FreeSurfer versions. The most regional failures

were detected in v5.3. Failures occurred more often in the left hemi-

sphere (Figure 5a). The most notable differences in failure rates were

for the left pallidum (v7.1 = 0.9%; v6.0 = 0.9%; v5.3 = 18.9%), left

amygdala (v7.1 = 7.5%; v6.0 = 11.3%; v5.3 = 17.9%), and left puta-

men (v7.1 = 0.9%; v6.0 = 1.9%; v5.3 = 14.2%). Example outputs may

be viewed in Figure 5b. The regions with the lowest overlap were in

the left and right pallidum (left: DCv7.1:v5.3 = 0.66, DCv6.0:v5.3 = 0.67;

right: DCv7.1:v5.3 = 0.78, DCv6.0:v5.3 = 0.78) as well as the left and

right nucleus accumbens (left: DCv7.1:v5.3 = 0.72, DCv6.0:v5.3 = 0.71;

right: DCv7.1:v5.3 = 0.70, DCv6.0:v5.3 = 0.69) when comparing v5.3 to

both newer versions. Notably, the segmentation of the left putamen

often appeared larger and the left pallidum smaller in v5.3 compared

to the newer versions (Figure 5b).

Age associations are shown in Figures 6 and 7. Maps of the z-

statistic differences are also made available in the supplementary

materials (Figures S9 and S10). In the full set (106 UK Biobank scans)

age associations for cortical thickness (Figure 6), v7.1 had 29 regions

that survived FDR correction, less than both v6.0 with 32 and v5.3

with 43; all these regions showed lower thickness with age other than

the right rostral anterior cingulate, which showed a positive associa-

tion with age across all versions. The strongest associations were in

the left supramarginal (zv7.1 = �5.55, qv7.1 = 3 � 10�5; zv6.0 = �6.24,

qv6.0 = 1 � 10�6; zv5.3 = �5.90, qv5.3 = 4 � 10�6) and left superior

temporal gyrus (zv7.1 = �4.88, qv7.1 = 1 � 10�4; zv6.0 = �5.21,

qv6.0 = 4 � 10�5; zv5.3 = �5.33, qv5.3 = 2 � 10�5) for all three ver-

sions. All regions that were significant in v7.1 and v6.0 were also sig-

nificant in v5.3, except for the left frontal pole in v6.0 (zv7.1 = �2.19,

qv7.1 = 9 � 10�2; zv6.0 = �2.55, qv6.0 = 4 � 10�2; zv5.3 = �1.83,

qv5.3 = 1 � 10�1). Generally, v5.3 had the largest absolute z-statistics

compared to v7.1 and v6.0. For the surface area age associations, no

regions survived FDR correction in v7.1, whereas in v6.0, the left

frontal pole survived correction, and in v5.3, the right paracentral, left

banks of the superior temporal sulcus, right entorhinal, right lateral

orbitofrontal, and right temporal pole were considered significantly

associated with age after correction. For subcortical volumes, all

regions were significantly associated with age, except for the left and

right caudate and pallidum for all three versions and the right amyg-

dala for v7.1 (qv7.1 = 0.08).

F IGURE 5 Subcortical quality control results. Results based on 106 neurologically healthy UK Biobank participants. (a) Manual subcortical
quality control results (percentage fail) across versions. Gray regions indicate no failures. Note generally higher fail rates in the left hemisphere
and when comparing v5.3 to the newer versions. (b) Example subcortical outputs. Arrows indicate the left putamen (cyan) and pallidum (light
green) mis-segmentation in v5.3. (c) Dice scores across left and right hemisphere subcortical regions. Note the lowest overlap when comparing
v5.3 to v6.0 and v7.1.
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A total of 69 subjects remained for regression analysis in the cor-

tical QC'ed subset (37F, mean age: 61.1 ± 7.11). In this subset, cortical

thickness was associated with age in 13 regions for v7.1, 16 for v6.0,

and 22 for v5.3 (Figure 7). As with the full set above, all regions that

survived FDR correction in v7.1 also survived in v6.0 and v5.3 and all

regions that survived in v6.0 were also significant in v5.3. Cortical

thickness regions that had a considerable proportion of fails and no

longer reached the significance threshold in the QC'ed subset

included the left banks of the superior temporal sulcus, left middle

temporal, right precentral, and the right superior parietal gyrus. The

left lingual, left cuneus, right pericalcarine, and the right banks of the

superior temporal sulcus were all regions that had considerable quality

issues and for which cortical thickness associations met FDR

significance criteria for v5.3 in the full subset, yet these thickness

associations were no longer significant in the QC'ed subset. The only

surviving region in the QC'ed subset for surface area was the right

entorhinal cortex in v5.3, although it is worth noting this region was

not heavily QC'ed. The external surface in this area was apparently

different in v7.1 compared to the previous versions (Figure 2c) and

the rate at which this occurred would have resulted in the majority of

participants being considered as a “fail” in the older versions.

A total of 61 subjects (35F, mean age: 62.6 ± 6.8 years) were

found to have no quality issues in the subcortical segmentations

across any versions. Age associations with these subjects indicated

that only the thalamic volumes were significantly associated with age

in v5.3 (both right and left) and v6.0 (left only).

F IGURE 7 Regional age associations in subjects with no segmentation quality issues. Results based on n = 69 (cortical) and 61 (subcortical) of
the 106 neurologically healthy UK Biobank participants. (a) FreeSurfer v5.3, (b) v6.0, and (c) v7.1. Top row indicates the z-statistic and bottom
indicates �log10(q < 0.05) for left and right surface area, thickness, and subcortical volumes. Several regions found to be significant in the full
sample of n = 106 did not survive false discovery rate (FDR) correction here.

F IGURE 6 Regional age associations in all subjects. Results based on 106 neurologically healthy UK Biobank participants. (a) FreeSurfer v5.3,
(b) v6.0, and (c) v7.1. Top row indicates the z-statistic and bottom indicates �log10(q < 0.05) for left and right cortical thickness, surface area, and
subcortical volumes. We note that v5.3 generally has the largest absolute z-statistics, particularly for cortical thickness, and the largest number of
statistically significant regions.
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4 | DISCUSSION

Our work has four main findings that may help explain how a FreeSur-

fer version upgrade can impact results:

1. The compatibility between v7.1 and the previous version, v6.0,

was largely good to excellent for measures of cortical surface area

and subcortical volume, with the exception of the medial orbito-

frontal cortex and the frontal/temporal poles. Similar trends were

observed in our replication analysis. Most compatibility issues

arose in regional cortical thickness estimates, where moderate or

even poor compatibility was seen in the thickness estimates of the

cingulate gyrus (rostral anterior, caudal anterior, posterior, and

isthmus), entorhinal, insula, and orbitofrontal regions (medial and

lateral). In our replication analysis, mostly moderate compatibility

was found in these regions. The exceptions were the entorhinal

cortical thickness with poor compatibility and the thickness of the

isthmus cingulate with good compatibility.

2. There were substantial compatibility issues between v7.1 and

v5.3, in cortical regional thickness, area, and subcortical volumes.

Thickness measures with low compatibility between v7.1 and v5.3

were the same as those between v7.1 and v6.0. However, the rep-

lication data set showed more similarities between the compari-

sons evaluating v5.3 against the newer versions. Regions with

cortical surface area and subcortical volume compatibility issues

between v7.1 and v5.3 were the same as the regions that were

less compatible between v5.3 and v6.0, suggesting these area and

volume differences were introduced with v6.0, not v7.1, which

was in line with our replication analysis.

3. The test–retest reliability for all v7.1 metrics evaluated here was

good to excellent in our main analysis, except for the thickness of

the temporal pole. Replication analysis showed similar trends for

surface area and subcortical volumes, but cortical thickness intra-

version reliability was lower overall across all versions.

4. Age associations revealed generally smaller absolute z-statistics in

v7.1 compared to earlier releases, where v5.3 had the largest abso-

lute z-statistics overall. Quality issues were more prevalent in v5.3,

particularly in the left superior temporal gyrus, pallidum, and puta-

men. Age associations did not meet the statistical significance

threshold in many of the heavily quality controlled regions.

The regions in which v7.1 had the lowest compatibility with the

previous versions were along the caudal-rostral axis of cingulate cor-

tex. The subdivisions of the cingulate cortex play distinct roles in

large-scale brain networks including the visceromotor, ventral

salience, dorsal executive/salience, and default mode networks

(Touroutoglou & Dickerson, 2019). Alterations in the subregions of

the cingulate cortex have been demonstrated throughout the lifespan

and in association with different neuropsychiatric disorders. For

example, compared to controls, developmental delays in adolescents

with attention deficit hyperactivity disorder are seen most promi-

nently in the thickness of the prefrontal regions including the cingu-

late cortices (Vogt, 2019). In posttraumatic stress disorder (PTSD)

studies, the anterior midcingulate, and in some cases the posterior cin-

gulate, show, on average, lower thickness in individuals with PTSD

compared to healthy controls (Hinojosa et al., 2019). Subregions of

the cingulate cortex have also been associated with age related cogni-

tive performance. In “SuperAgers,” or adults over the age of 80 years,

whose episodic memory is resistant to age-related decline, a preserva-

tion of the anterior cingulate thickness is observed (de Godoy

et al., 2021; Gefen et al., 2015; Harrison et al., 2012; Harrison

et al., 2018; Sun et al., 2016). Many of these studies were performed

using versions of FreeSurfer that precede v7.1, so possible replication

issues in future studies may be partially explained by the version

incompatibility described in this work. Although we tested within a

very narrow age range, and more extensive evaluation may be

needed, we find that batch correction methods may adjust for these

effects in the case where the large majority of the cohorts are run

through the same version of FreeSurfer. By simulating a multi-cohort

analysis, where all but one of the cohorts have run v7.1 and one site

has been run on a version that precedes v7.1, we find similar cortical

thickness and surface area cingulate associations after multiple com-

parisons correction. However, prior to multiple comparisons correc-

tion, differences exist across the cohorts for both v6.0 and v5.3—

suggesting that mixing versions could possibly result in false positives.

Furthermore, as we also tested different age associations after Com-

Bat harmonization across iterations with two cohorts run with v7.1,

and two cohorts with other versions, we notice that as more cohorts

are run with different FreeSurfer versions, ComBat harmonization is

less effective and some regional variability in results, possibly false

positives, may be introduced by using a mixture of versions. This anal-

ysis is limited in the number of combinations that were tested here,

and additional extensive evaluation may be needed on a wider age-

range with more cohorts run across multiple versions.

Other regions with lower thickness compatibility with v7.1

included the medial and lateral orbitofrontal, entorhinal, and insular

cortices. Inferior frontal regions such as the medial and lateral orbito-

frontal cortices are often susceptible to signal loss and bias field inho-

mogeneities. v7.1 uses an updated bias field and denoising method

that could affect the gray/white matter contrast in these areas. Tem-

poral regions, such as the entorhinal and insular cortex, which were

less compatible with v7.1, could be due to an algorithmic update that

pins the pial surface in the medial wall to the white matter surface.

This prevents a premature cutoff through the hippocampus and amyg-

dala, which may affect surrounding regions in earlier versions. Nota-

bly, visual inspection of the external surface of the entorhinal cortex

revealed an improvement of the entorhinal pinning to the medial wall

in v7.1—as opposed to prior versions (Figure 2c). This issue was

extremely prevalent, and considering these subjects as “QC-fails”
would have resulted in the majority of subjects failing; therefore, sub-

ject scans affected by this cutoff in v5.3 and v6.0 remained included

in our “error-free” subset. Downstream effects of this may be demon-

strated in our age associations within the full n = 106 sample. Here,

the left insular thickness showed significant age effects in v5.3 and

v6.0, as well as the thickness of the right entorhinal cortex in v5.3, but

neither showed associations with age in v7.1. The entorhinal cortex
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plays an important role in mediating information transfer between the

hippocampus and the rest of the brain (Coutureau & Di Scala, 2009;

Garcia & Buffalo, 2020). Measurements of its thickness are widely

assessed in Alzheimer's disease, as it is one of the first regions to be

impacted by the disease process (Braak & Braak, 1991) and

researchers have found associations between its thickness and

markers of amyloid and tau (Thaker et al., 2017). Entorhinal thickness

is often a feature of interest in models that are designed to predict

progressive cognitive decline due to its early vulnerability and role in

the prodromal stages of Alzheimer's disease. Although v7.1 may have

a more anatomically accurate segmentation, we advise caution when

comparing the performance of predictive models that use earlier

releases of FreeSurfer for deriving this metric.

Compatibility issues between v7.1 and older versions were less

frequent with surface area and did not occur in the same regions as

cortical thickness. This could be due to the relative independence of

these measures: surface area is calculated as the area of all the trian-

gles on the white matter surface, and the large area covered by many

regions makes them more robust to slight variation in vertex counts.

On the other hand, cortical thickness is measured as the distance

between the vertices of the white matter and pial triangulated sur-

faces, and is often between 2 and 4 mm thick, a span of only two to

four voxels; slight variability in partial voluming may have a more dra-

matic effect on cortical thickness. Yet, as the thickness is averaged in

the entire area, a slight variation in the number of vertices on the sur-

face will have little effect on the averaged cortical thickness estimates.

The independence of these measures has also been established in

relation to their genetic associations (Grasby et al., 2020; Winkler

et al., 2010) overall suggesting that our results are not unexpected.

Measures of v7.1 surface area that had poor compatibility with v5.3

(and moderate with v6.0) included the frontal and temporal poles. The

release of v7.1 included a remeshing of the white matter surface to

improve its triangle quality—potentially impacting the most rounded

points of the frontal and temporal lobes. We find that v7.1 had the

lowest fail rate in the temporal pole compared to v5.3 and v6.0 sug-

gesting an improvement in the parcellation.

Subcortical volumes are also another set of metrics derived from

FreeSurfer that are of major interest to neuroimaging researchers (Ohi

et al., 2020; Satizabal et al., 2019). Efforts to provide references of

normative subcortical volume changes that occur as a result of aging

have been put forth (Bethlehem et al., 2022; Coupé et al., 2017; Dima

et al., 2022; Mileti�c et al., 2022; Narvacan et al., 2017; Potvin

et al., 2016). For example, Potvin et al., 2016 pooled data from

21 research groups (n = 2790) and segmented subcortical volumes

using FreeSurfer v5.3 to provide norms of volumetric estimate

changes during healthy aging. Although this study, along with many

others, provides a valuable resource to researchers, we advise caution

with the newer versions when referencing normative data derived

from v5.3, particularly in the lentiform nucleus. The lentiform nucleus

(i.e., the putamen and globus pallidus combined) has often been found

to be difficult to segment due to the high white matter content in the

pallidum—making it more difficult to distinguish gray-white matter

contrast (Bigler et al., 2020; Makowski et al., 2018; Ochs et al., 2015;

Visser et al., 2016). We find poor compatibility in the pallidum and

moderate in the putamen when comparing v7.1 and v5.3. Visual QC

of these regions revealed a higher failure rate and lower Dice overlap

in v5.3 compared to v7.1, particularly in the left hemisphere. How-

ever, we find the compatibility between v7.1 and v6.0 to be excellent

and the Dice overlap was greater than 90% in the lentiform nucleus.

This suggests that changes made in the release of v6.0 contributed to

v5.3 discrepancies. For example, the putamen does not extend so far

laterally in the two newer versions—a known issue noted in the

release notes of v6.0.

The main goal of our work was to evaluate FreeSurfer's latest sta-

ble release, v7.1, yet it is also worth noting how v6.0 differs from

v5.3. While compatibility was generally good for cortical thickness,

regional surface area estimates were more moderately compatible,

with the frontal pole even showing poor compatibility, similar to v7.1

compared to v5.3. Temporal lobe regions showing moderate compati-

bility in surface area between v6.0 and v5.3 included the entorhinal,

insula, parahippocampal, and temporal pole. Updates that accompa-

nied the release of v6.0 that may contribute to these compatibility

discrepancies include improved accuracy of the cortical labels and an

updated template (fsaverage) that “fixes” the peri/entorhinal labels. As

previously mentioned, v6.0 compatibility with v5.3 was poorest in the

pallidum and putamen. Our results coincide with Bigler et al. (2020)

where the lowest agreement was also found in the pallidum and puta-

men when comparing v5.3 to v6.0.

Overall, we note consistencies across sites. For example, HCP,

KKI, and OASIS all showed the lowest compatibility in the cingulate

regions when comparing v7.1 to the previous versions, and overall

lower compatibility in thickness measures compared to surface area.

However, some site differences were observed. For example, more

widespread lower compatibility in cortical thickness in temporal and

frontal regions was seen for HCP compared to KKI and OASIS, which

both have larger and anisotropic voxels. The opposite occurred for

compatibility of surface area between v5.3 and the later versions

where OASIS and KKI showed more widespread compatibility issues

compared to HCP, particularly in the temporal regions. HCP also

showed the highest overall reliability for cortical thickness and surface

area compared to KKI and OASIS with more widespread and lower

reliability, likely due to HCP's more advanced acquisition protocol.

KKI had the lowest compatibility for the accumbens, particularly when

comparing v5.3 to the newer versions, where compatibility was poor/

moderate as opposed to moderate/good for OASIS and HCP, both of

which are from Siemens scanners, compared to Philips for KKI. Reli-

ability across subcortical regions and cohorts showed generally consis-

tent good to excellent reliability, although v5.3 was most variable for

the hippocampus and accumbens.

To assess if our main analysis generalizes to other data sets, we

performed a replication analysis for reliability and compatibility using

the HNU cohort—a data set composed of 30 participants with a

10 test–retest design within 40 days of the initial baseline scan. While

the results for reliability and compatibility of surface area and subcor-

tical volumes were largely in line with our main analysis, we observed

distinct trends in the replication data set for cortical thickness. For
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example, whereas our main analysis showed generally good to excel-

lent reliability of all measures for cortical thickness, reliability assessed

in the HNU data set showed lower, more widespread differences

across the versions, where some regions even had poor reliability.

Between version analysis in the replication data set did not show the

same distinctly lower compatibility between v7.1 and the earlier ver-

sions for the cingulate regions. Instead, the replication analysis

showed more widespread discrepancy between v5.3 and the later ver-

sions. Differences in compatibility could be attributed to a smaller

sample size (n = 27), as we only performed this analysis using the first

time point to replicate the methods in our main data sets. (Individual

data set variation can be observed in the supplementary materials,

Figures S1–S8, Tables S3–S6.) However, despite the smaller sample

size, the study design lends itself to more stable within-version reli-

ability measures, due to the increased number of repeated measures.

This suggests that there may be another source of variation that is

not accounted for, such as voxel thickness or scanner manufacturer,

particularly impacting cortical thickness. KKI and OASIS have aniso-

tropic voxel sizes, with thickness being 1.2–1.25 mm, while HNU has

isotropic 1 mm voxels. Also, while HCP, and OASIS were scanned on

Siemens and KKI on Philips, HNU used a GE scanner. Interscanner

variability of local thickness between Siemens and GE scanners, for

example, was found to be on average 0.15 mm in Han et al. (2006),

and differences in volumetric measures between all three different

platforms was observed in Jovicich et al. (2009).

One limitation of our study was that there was no available

higher-resolution or postmortem ground truth data to know which

FreeSurfer version most represents true anatomical structure. How-

ever, given that many of these measures have been widely studied

regarding their relationship with age, even in the absence of postmor-

tem or higher resolution data (Fischl, 2012; Frangou et al., 2022; Salat

et al., 2004), we instead assess age associations to gauge the down-

stream consequences of version differences. Version-related differ-

ences in FreeSurfer metrics between cases and controls have been

assessed in Filip et al., 2022. In their work, Filip and colleagues assess

group differences between nine preselected cortical and subcortical

volumes of patients with type 1 diabetes and those of controls across

the latest FreeSurfer versions. They found the statistical significance

between groups was dependent on version; notably, analyses run

using v7.1 metrics did not replicate the results of older versions. Our

compatibility findings highlight specifically the regions for which

effects differ. Our work also highlights the dampened effects that

might be expected with v7.1, suggesting larger sample sizes might be

needed to find similar effects, than what might be expected from

power calculations using v5.3 results.

We also performed QC of regional parcellations to rule out any

spurious associations with gross mis-segmentations. One example

worth noting is that v7.1 and v6.0 may be better able to handle

images with lower quality and/or motion as evidenced by one subject

in our UK Biobank subset that failed in v5.3 but not in the newer ver-

sions (Figure 4b). This could be due to the improved error handling of

the Talairach registration: if one registration fails, v7.1 and v6.0 would

try an older atlas. Another example involved the left middle temporal

gyrus, which is often susceptible to underestimations due to the spill-

age/overestimation of the banks of the superior temporal sulcus into

that gyrus. This occurred at approximately the same rate across ver-

sions. When associating the thickness of both the left banks of the

superior temporal sulcus and the middle temporal gyrus with age

before QC, all versions reveal significant associations for both regions.

After removing subjects encountering this issue, although the direc-

tion of the effects stayed the same, neither region was associated

with age in any of the versions. While this may be due to a reduced

sample size and study power, it is also possible that findings in these

regions may not represent true anatomical structure, and may instead

be due to common segmentation errors. It is also worth noting that

our results are solely based on the DK atlas (Desikan et al., 2006) and

translation to other atlases may not apply. We chose the DK atlas as

it consists of a set of coarse regions defined by anatomical landmarks

that can be reasonably quality controlled. Most other atlases, while

possibly more precise, define finer parcellations based on cortical

function, connectivity, topography, myelin, or a combination thereof

(Glasser et al., 2016; Schaefer et al., 2018). Visual QC by region may

not be readily possible when cortical parcellations are finer and there

are over 100 regions in each hemisphere, so version performance of

segmentation accuracy may be more difficult to compare. Our data

sets were exclusively from adults without major neurological abnor-

malities, so our findings may not necessarily generalize to cohorts of

young children, adolescents, or individuals with significant brain

abnormalities. Finally, we recognize that repeatability is an important

metric, and differences in repeatability may be explained, in part, by

differences in operating systems used. While Tustison et al. (2014)

found good repeatability for FreeSurfer v5.3, users of multiple work-

stations should exercise caution when pooling data run on various

machines, as differences in floating point precision may affect repro-

ducibility of these measures (Glatard et al., 2015). Containerization

packages, such as Docker or Singularity (Matelsky et al., 2018), help

mitigate differences in environment along with differences in version,

which are quantified in this manuscript.

Overall, we find generally high within-version reliability across

most versions and data sets, and many advantages to using FreeSurfer

v7.1 over older versions for adult neuroimaging studies. However,

considerable differences are observed when analyzing between-

version compatibility for regional cortical thickness, surface area, and

subcortical volumes. It is important to consider these compatibility dif-

ferences when pooling data or statistical inferences across software

versions, and when comparing findings across published works, espe-

cially for those regions with lower compatibility. Understanding these

differences may help researchers to make informed decisions on study

design and provide insight into reproducibility issues.

ACKNOWLEDGMENTS

This research was funded by NIH grants R01MH117601,

R01AG059874, R01AG058854, R01MH121246, and P41EB015922.

HCP data were provided [in part] by the Human Connectome Project,

WU-Minn Consortium (Principal Investigators: David van Essen and

Kamil Ugurbil; U54MH091657) funded by the 16 NIH Institutes and

1528 HADDAD ET AL.



Centers that support the NIH Blueprint for Neuroscience Research

and by the McDonnell Center for Systems Neuroscience at

Washington University. KKI was supported by NIH grants NCRR P41

RR015241 (Peter C.M. van Zijl), R01NS056307 (Jerry Prince),

R21NS064534 (Bennett A. Landman/Jerry L. Prince), R03EB01246

(Bennett A. Landman). OASIS: Cross-Sectional: Principal Investigators:

D. Marcus, R. Buckner, J. Csernansky, J. Morris; P50 AG05681, P01

AG03991, P01 AG026276, R01 AG021910, P20 MH071616, and

U24 RR021382.

CONFLICT OF INTEREST

NJ and PMT received grant support from Biogen, Inc., for research

unrelated to this manuscript.

DATA AVAILABILITY STATEMENT

All data used in this study are in the public domain (https://www.

humanconnectome.org/study/hcp-young-adult, https://www.nitrc.org/

projects/multimodal, https://www.oasis-brains.org/#data, http://

fcon_1000.projects.nitrc.org/indi/CoRR/html/download.html, https://

www.ukbiobank.ac.uk/). The data that support the findings of this

study are openly available at http://data.brainescience.org/Freesurfer_

Reliability/.

ORCID

Elizabeth Haddad https://orcid.org/0000-0002-7622-9085

Fabrizio Pizzagalli https://orcid.org/0000-0003-4582-0224

Alyssa H. Zhu https://orcid.org/0000-0003-0083-5107

Ravi R. Bhatt https://orcid.org/0000-0003-2498-8888

Tasfiya Islam https://orcid.org/0000-0002-2354-9237

Iyad Ba Gari https://orcid.org/0000-0003-1443-8786

Daniel Dixon https://orcid.org/0000-0003-3706-5636

Sophia I. Thomopoulos https://orcid.org/0000-0002-0046-4070

Paul M. Thompson https://orcid.org/0000-0002-4720-8867

Neda Jahanshad https://orcid.org/0000-0003-4401-8950

REFERENCES

Beijers, L., Wardenaar, K. J., van Loo, H. M., & Schoevers, R. A. (2019).

Data-driven biological subtypes of depression: Systematic review of

biological approaches to depression subtyping. Molecular Psychiatry,

24(6), 888–900.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate:

A practical and powerful approach to multiple testing. Journal of the

Royal Statistical Society, 57(1), 289–300.
Bennett, C. M., & Miller, M. B. (2013). fMRI reliability: Influences of task

and experimental design. Cognitive, Affective, & Behavioral Neurosci-

ence, 13(4), 690–702.
Bethlehem, R. A. I., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M.,

Adamson, C., Adler, S., Alexopoulos, G. S., Anagnostou, E., Areces-

Gonzalez, A., Astle, D. E., Auyeung, B., Ayub, M., Bae, J., Ball, G.,

Baron-Cohen, S., Beare, R., Bedford, S. A., Benegal, V., … Alexander-

Bloch, A. F. (2022). Brain charts for the human lifespan. Nature, 604,

525–533. https://doi.org/10.1038/s41586-022-04554-y
Bigler, E. D., Skiles, M., Wade, B. S. C., Abildskov, T. J., Tustison, N. J.,

Scheibel, R. S., Newsome, M. R., Mayer, A. R., Stone, J. R., Taylor, B. A.,

Tate, D. F., Walker, W. C., Levin, H. S., & Wilde, E. A. (2020). FreeSurfer

5.3 versus 6.0: Are volumes comparable? A chronic effects of neuro-

trauma consortium study. Brain Imaging and Behavior, 14(5), 1318–1327.
Boekel, W., Wagenmakers, E.-J., Belay, L., Verhagen, J., Brown, S., &

Forstmann, B. U. (2015). A purely confirmatory replication study of

structural brain-behavior correlations. Cortex, 66, 115–133.
Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J.,

Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J. A., Adcock, R. A.,

Avesani, P., Baczkowski, B. M., Bajracharya, A., Bakst, L., Ball, S.,

Barilari, M., Bault, N., Beaton, D., Beitner, J., … Schonberg, T. (2020).

Variability in the analysis of a single neuroimaging dataset by many

teams. Nature, 582(7810), 84–88.
Bowring, A., Maumet, C., & Nichols, T. E. (2019). Exploring the impact of

analysis software on task fMRI results. Human Brain Mapping, 40(11),

3362–3384.
Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-

related changes. Acta Neuropathologica, 82(4), 239–259.
Bryer, E. J., Medaglia, J. D., Rostami, S., & Hillary, F. G. (2013). Neural

recruitment after mild traumatic brain injury is task dependent: A

meta-analysis. Journal of the International Neuropsychological Society,

19(7), 751–762.
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J.,

Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small

sample size undermines the reliability of neuroscience. Nature Reviews.

Neuroscience, 14(5), 365–376.
Carp, J. (2012). The secret lives of experiments: Methods reporting in the

fMRI literature. NeuroImage, 63(1), 289–300.
Coupé, P., Catheline, G., Lanuza, E., Manj�on, J. V., & Alzheimer's Disease

Neuroimaging Initiative. (2017). Towards a unified analysis of brain

maturation and aging across the entire lifespan: A MRI analysis. Human

Brain Mapping, 38(11), 5501–5518.
Coutureau, E., & Di Scala, G. (2009). Entorhinal cortex and cognition. Pro-

gress in Neuro-Psychopharmacology & Biological Psychiatry, 33(5),

753–761.
Dadar, M., Potvin, O., Camicioli, R., Duchesne, S., & Alzheimer's Disease

Neuroimaging Initiative. (2021). Beware of white matter hyperintensi-

ties causing systematic errors in FreeSurfer gray matter segmenta-

tions! Human Brain Mapping, 42(9), 2734–2745.
de Godoy, L. L., Alves, C. A. P. F., Saavedra, J. S. M., Studart-Neto, A.,

Nitrini, R., da Costa Leite, C., & Bisdas, S. (2021). Understanding brain

resilience in superagers: A systematic review. Neuroradiology, 63(5),

663–683.
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C.,

Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T.,

Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for

subdividing the human cerebral cortex on MRI scans into gyral based

regions of interest. NeuroImage, 31(3), 968–980.
Dice, L. R. (1945). Measures of the amount of ecologic association

between species. Ecology, 26(3), 297–302.
Dichter, G. S., Gibbs, D., & Smoski, M. J. (2015). A systematic review of

relations between resting-state functional-MRI and treatment

response in major depressive disorder. Journal of Affective Disorders,

172, 8–17.
Dickie, E., Hodge, S., Craddock, R., Poline, J.-B., & Kennedy, D. (2017).

Tools matter: Comparison of two surface analysis tools applied to the

ABIDE dataset. Research Ideas and Outcomes, 3, e13726. https://doi.

org/10.3897/rio.3.e13726

Dima, D., Modabbernia, A., Papachristou, E., Doucet, G. E., Agartz, I.,

Aghajani, M., Akudjedu, T. N., Albajes-Eizagirre, A., Alnaes, D.,

Alpert, K. I., Andersson, M., Andreasen, N. C., Andreassen, O. A.,

Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur-

Streubel, R., Bertolino, A., … Karolinska Schizophrenia Project (KaSP).

(2022). Subcortical volumes across the lifespan: Data from 18,605

healthy individuals aged 3-90 years. Human Brain Mapping, 43(1),

452–469.

HADDAD ET AL. 1529

https://www.humanconnectome.org/study/hcp-young-adult
https://www.humanconnectome.org/study/hcp-young-adult
https://www.nitrc.org/projects/multimodal
https://www.nitrc.org/projects/multimodal
https://www.oasis-brains.org/#data
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/download.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/download.html
https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
http://data.brainescience.org/Freesurfer_Reliability/
http://data.brainescience.org/Freesurfer_Reliability/
https://orcid.org/0000-0002-7622-9085
https://orcid.org/0000-0002-7622-9085
https://orcid.org/0000-0003-4582-0224
https://orcid.org/0000-0003-4582-0224
https://orcid.org/0000-0003-0083-5107
https://orcid.org/0000-0003-0083-5107
https://orcid.org/0000-0003-2498-8888
https://orcid.org/0000-0003-2498-8888
https://orcid.org/0000-0002-2354-9237
https://orcid.org/0000-0002-2354-9237
https://orcid.org/0000-0003-1443-8786
https://orcid.org/0000-0003-1443-8786
https://orcid.org/0000-0003-3706-5636
https://orcid.org/0000-0003-3706-5636
https://orcid.org/0000-0002-0046-4070
https://orcid.org/0000-0002-0046-4070
https://orcid.org/0000-0002-4720-8867
https://orcid.org/0000-0002-4720-8867
https://orcid.org/0000-0003-4401-8950
https://orcid.org/0000-0003-4401-8950
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.3897/rio.3.e13726
https://doi.org/10.3897/rio.3.e13726


Dinga, R., Schmaal, L., Penninx, B. W. J. H., van Tol, M. J.,

Veltman, D. J., van Velzen, L., Mennes, M., van der Wee, N. J. A., &

Marquand, A. F. (2019). Evaluating the evidence for biotypes of

depression: Methodological replication and extension of. NeuroImage:

Clinical, 22, 101796.

Filip, P., Bednarik, P., Eberly, L. E., Moheet, A., Svatkova, A., Grohn, H.,

Kumar, A. F., Seaquist, E. R., & Mangia, S. (2022). Different FreeSurfer

versions might generate different statistical outcomes in case-control

comparison studies. Neuroradiology, 64(4), 765–773.
Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781.
Fonseka, T. M., MacQueen, G. M., & Kennedy, S. H. (2018). Neuroimaging

biomarkers as predictors of treatment outcome in major depressive

disorder. Journal of Affective Disorders, 233, 21–35.
Fortin, J.-P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I.,

Cook, P. A., Adams, P., Cooper, C., Fava, M., McGrath, P. J.,

McInnis, M., Phillips, M. L., Trivedi, M. H., Weissman, M. M., &

Shinohara, R. T. (2018). Harmonization of cortical thickness

measurements across scanners and sites. NeuroImage, 167,

104–120.
Frangou, S., Modabbernia, A., Williams, S. C. R., Papachristou, E.,

Doucet, G. E., Agartz, I., Aghajani, M., Akudjedu, T. N., Albajes-

Eizagirre, A., Alnaes, D., Alpert, K. I., Andersson, M., Andreasen, N. C.,

Andreassen, O. A., Asherson, P., Banaschewski, T., Bargallo, N.,

Baumeister, S., Baur-Streubel, R., … Dima, D. (2022). Cortical thickness

across the lifespan: Data from 17,075 healthy individuals aged

3-90 years. Human Brain Mapping, 43(1), 431–451.
Garcia, A. D., & Buffalo, E. A. (2020). Anatomy and function of the primate

entorhinal cortex. Annual Review of Vision Science, 6, 411–432.
Gefen, T., Peterson, M., Papastefan, S. T., Martersteck, A., Whitney, K.,

Rademaker, A., Bigio, E. H., Weintraub, S., Rogalski, E.,

Mesulam, M.-M., & Geula, C. (2015). Morphometric and histologic sub-

strates of cingulate integrity in elders with exceptional memory capac-

ity. The Journal of Neuroscience, 35(4), 1781–1791.
Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J.,

Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M.,

Smith, S. M., & Van Essen, D. C. (2016). A multi-modal parcellation of

human cerebral cortex. Nature, 536(7615), 171–178.
Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N.,

Lepage, C., Rioux, P., Rousseau, M.-E., Sherif, T., Deelman, E., Khalili-

Mahani, N., & Evans, A. C. (2015). Reproducibility of neuroimaging

analyses across operating systems. Frontiers in Neuroinformatics, 9, 12.

Gorgolewski, K. J., & Poldrack, R. A. (2016). A practical guide for improving

transparency and reproducibility in neuroimaging research. PLoS Biol-

ogy, 14(7), e1002506.

Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwarz, Y., Ghosh, S. S.,

Maumet, C., Sochat, V. V., Nichols, T. E., Poldrack, R. A., Poline, J.-B.,

Yarkoni, T., & Margulies, D. S. (2015). NeuroVault.org: A web-based

repository for collecting and sharing unthresholded statistical maps of

the human brain. Frontiers in Neuroinformatics, 9, 8.

Grasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J.,

Hibar, D. P., Lind, P. A., Pizzagalli, F., Ching, C. R. K., McMahon, M. A. B.,

Shatokhina, N., Zsembik, L. C. P., Thomopoulos, S. I., Zhu, A. H.,

Strike, L. T., Agartz, I., Alhusaini, S., Almeida, M. A. A., Alnæs, D., …
Enhancing NeuroImaging Genetics through Meta-Analysis Consortium

(ENIGMA)—Genetics working group. (2020). The genetic architecture of

the human cerebral cortex. Science, 367(6484), eaay6690. https://doi.

org/10.1126/science.aay6690

Gronenschild, E. H. B. M., Habets, P., Jacobs, H. I. L., Mengelers, R.,

Rozendaal, N., van Os, J., & Marcelis, M. (2012). The effects of Free-

Surfer version, workstation type, and Macintosh operating system ver-

sion on anatomical volume and cortical thickness measurements. PLoS

One, 7(6), e38234.

Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S.,

Busa, E., Pacheco, J., Albert, M., Killiany, R., Maguire, P., Rosas, D.,

Makris, N., Dale, A., Dickerson, B., & Fischl, B. (2006). Reliability of

MRI-derived measurements of human cerebral cortical thickness: The

effects of field strength, scanner upgrade and manufacturer. Neuro-

Image, 32(1), 180–194.
Harrison, T. M., Maass, A., Baker, S. L., & Jagust, W. J. (2018). Brain mor-

phology, cognition, and β-amyloid in older adults with superior mem-

ory performance. Neurobiology of Aging, 67, 162–170.
Harrison, T. M., Weintraub, S., Mesulam, M.-M., & Rogalski, E. (2012).

Superior memory and higher cortical volumes in unusually successful

cognitive aging. Journal of the International Neuropsychological Society,

18(6), 1081–1085.
Hinojosa, C. A., Kaur, N., VanElzakker, M. B., & Shin, L. M. (2019). Cingu-

late subregions in posttraumatic stress disorder, chronic stress, and

treatment. Handbook of Clinical Neurology, 166, 355–370.
Hodge, S. M., Haselgrove, C., Honor, L., Kennedy, D. N., & Frazier, J. A.

(2020). An assessment of the autism neuroimaging literature for the

prospects of re-executability. F1000Research, 9, 1031.

Horien, C., Noble, S., Greene, A. S., Lee, K., Barron, D. S., Gao, S.,

O'Connor, D., Salehi, M., Dadashkarimi, J., Shen, X., Lake, E. M. R.,

Constable, R. T., & Scheinost, D. (2021). A hitchhiker's guide to work-

ing with large, open-source neuroimaging datasets. Nature Human

Behaviour, 5(2), 185–193.
Jovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B.,

Pacheco, J., Albert, M., Killiany, R., Blacker, D., Maguire, P., Rosas, D.,

Makris, N., Gollub, R., Dale, A., Dickerson, B. C., & Fischl, B. (2009).

MRI-derived measurements of human subcortical, ventricular and

intracranial brain volumes: Reliability effects of scan sessions, acquisi-

tion sequences, data analyses, scanner upgrade, scanner vendors and

field strengths. NeuroImage, 46(1), 177–192.
Kang, S.-G., & Cho, S.-E. (2020). Neuroimaging biomarkers for predicting

treatment response and recurrence of major depressive disorder. Inter-

national Journal of Molecular Sciences, 21(6), 2148. https://doi.org/10.

3390/ijms21062148

Kennedy, D. N., Abraham, S. A., Bates, J. F., Crowley, A., Ghosh, S.,

Gillespie, T., Goncalves, M., Grethe, J. S., Halchenko, Y. O., Hanke, M.,

Haselgrove, C., Hodge, S. M., Jarecka, D., Kaczmarzyk, J., Keator, D. B.,

Meyer, K., Martone, M. E., Padhy, S., Poline, J.-B., … Travers, M.

(2019). Everything matters: The ReproNim perspective on reproduc-

ible neuroimaging. Frontiers in Neuroinformatics, 13, 1.

Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intra-

class correlation coefficients for reliability research. Journal of Chiro-

practic Medicine, 15(2), 155–163.
Landman, B. A., Huang, A. J., Gifford, A., Vikram, D. S., Lim, I. A. L.,

Farrell, J. A. D., Bogovic, J. A., Hua, J., Chen, M., Jarso, S., Smith, S. A.,

Joel, S., Mori, S., Pekar, J. J., Barker, P. B., Prince, J. L., & van

Zijl, P. C. M. (2010). Multi-parametric neuroimaging reproducibility: A

3-T resource study. NeuroImage, 54(4), 2854–2866.
Lindquist, M. (2020). Neuroimaging results altered by varying analysis

pipelines. Nature, 582(7810), 36–37.
Littlejohns, T. J., Holliday, J., Gibson, L. M., Garratt, S., Oesingmann, N.,

Alfaro-Almagro, F., Bell, J. D., Boultwood, C., Collins, R., Conroy, M. C.,

Crabtree, N., Doherty, N., Frangi, A. F., Harvey, N. C., Leeson, P.,

Miller, K. L., Neubauer, S., Petersen, S. E., Sellors, J., … Allen, N. E.

(2020). The UKUK Biobank imaging enhancement of 100,000 partici-

pants: Rationale, data collection, management and future directions.

Nature Communications, 11(1), 2624.

Makowski, C., Béland, S., Kostopoulos, P., Bhagwat, N., Devenyi, G. A.,

Malla, A. K., Joober, R., Lepage, M., & Chakravarty, M. M. (2018). Eval-

uating accuracy of striatal, pallidal, and thalamic segmentation

methods: Comparing automated approaches to manual delineation.

NeuroImage, 170, 182–198.
Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., &

Buckner, R. L. (2007). Open access series of imaging studies (OASIS):

Cross-sectional MRI data in young, middle aged, nondemented, and

1530 HADDAD ET AL.

https://doi.org/10.1126/science.aay6690
https://doi.org/10.1126/science.aay6690
https://doi.org/10.3390/ijms21062148
https://doi.org/10.3390/ijms21062148


demented older adults. Journal of Cognitive Neuroscience, 19(9), 1498–
1507.

Matelsky, J., Kiar, G., Johnson, E., Rivera, C., Toma, M., & Gray-Roncal, W.

(2018). Container-based clinical solutions for portable and reproduc-

ible image analysis. Journal of Digital Imaging, 31(3), 315–320.
Meijerman, A., Amiri, H., Steenwijk, M. D., Jonker, M. A., van

Schijndel, R. A., Cover, K. S., Vrenken, H., & Alzheimer's Disease Neu-

roimaging Initiative. (2018). Reproducibility of deep gray matter atro-

phy rate measurement in a large multicenter dataset. AJNR. American

Journal of Neuroradiology, 39(1), 46–53.
Mileti�c, S., Bazin, P.-L., Isherwood, S. J. S., Keuken, M. C., Alkemade, A., &

Forstmann, B. U. (2022). Charting human subcortical maturation across

the adult lifespan with in vivo 7 T MRI. NeuroImage, 249, 118872.

Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E.,

Xu, J., Bartsch, A. J., Jbabdi, S., Sotiropoulos, S. N., Andersson, J. L. R.,

Griffanti, L., Douaud, G., Okell, T. W., Weale, P., Dragonu, I., Garratt, S.,

Hudson, S., Collins, R., Jenkinson, M., … Smith, S. M. (2016). Multi-

modal population brain imaging in the UK Biobank prospective epide-

miological study. Nature Neuroscience, 19(11), 1523–1536.
Müller, V. I., Cieslik, E. C., Serbanescu, I., Laird, A. R., Fox, P. T., &

Eickhoff, S. B. (2017). Altered brain activity in unipolar depression

revisited: Meta-analyses of neuroimaging studies. JAMA Psychiatry,

74(1), 47–55.
Narvacan, K., Treit, S., Camicioli, R., Martin, W., & Beaulieu, C. (2017). Evo-

lution of deep gray matter volume across the human lifespan. Human

Brain Mapping, 38(8), 3771–3790.
Nichols, T. E., Das, S., Eickhoff, S. B., Evans, A. C., Glatard, T., Hanke, M.,

Kriegeskorte, N., Milham, M. P., Poldrack, R. A., Poline, J.-B., Proal, E.,

Thirion, B., Van Essen, D. C., White, T., & Yeo, B. T. T. (2017). Best

practices in data analysis and sharing in neuroimaging using MRI.

Nature Neuroscience, 20(3), 299–303.
Ochs, A. L., Ross, D. E., Zannoni, M. D., Abildskov, T. J., Bigler, E. D., & Alz-

heimer's Disease Neuroimaging Initiative. (2015). Comparison of auto-

mated brain volume measures obtained with NeuroQuant and

FreeSurfer. Journal of Neuroimaging, 25(5), 721–727.
Ohi, K., Shimada, T., Kataoka, Y., Yasuyama, T., Kawasaki, Y., Shioiri, T., &

Thompson, P. M. (2020). Genetic correlations between subcortical

brain volumes and psychiatric disorders. The British Journal of Psychia-

try: the Journal of Mental Science, 216(5), 280–283.
Perlaki, G., Horvath, R., Nagy, S. A., Bogner, P., Doczi, T., Janszky, J., &

Orsi, G. (2017). Comparison of accuracy between FSL's FIRST and

Freesurfer for caudate nucleus and putamen segmentation. Scientific

Reports, 7(1), 2418.

Poldrack, R. A., & Gorgolewski, K. J. (2017). OpenfMRI: Open sharing of

task fMRI data. NeuroImage, 144(Pt B), 259–261.
Poldrack, R. A., Whitaker, K., & Kennedy, D. (2020). Introduction to the

special issue on reproducibility in neuroimaging. NeuroImage, 218,

116357.

Potvin, O., Mouiha, A., Dieumegarde, L., Duchesne, S., & Alzheimer's Dis-

ease Neuroimaging Initiative. (2016). Normative data for subcortical

regional volumes over the lifetime of the adult human brain. Neuro-

Image, 137, 9–20.
Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S. R.,

Busa, E., Morris, J. C., Dale, A. M., & Fischl, B. (2004). Thinning of the

cerebral cortex in aging. Cerebral Cortex, 14(7), 721–730.
Satizabal, C. L., Adams, H. H. H., Hibar, D. P., White, C. C., Knol, M. J.,

Stein, J. L., Scholz, M., Sargurupremraj, M., Jahanshad, N.,

Roshchupkin, G. V., Smith, A. V., Bis, J. C., Jian, X., Luciano, M.,

Hofer, E., Teumer, A., van der Lee, S. J., Yang, J., Yanek, L. R., …
Ikram, M. A. (2019). Genetic architecture of subcortical brain struc-

tures in 38,851 individuals. Nature Genetics, 51(11), 1624–1636.
Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N.,

Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. (2018). Local-global parcel-

lation of the human cerebral cortex from intrinsic functional connec-

tivity MRI. Cerebral Cortex, 28(9), 3095–3114.

Spiegelhalder, K., Regen, W., Baglioni, C., Nissen, C., Riemann, D., &

Kyle, S. D. (2015). Neuroimaging insights into insomnia. Current Neu-

rology and Neuroscience Reports, 15(3), 9.

Stuhrmann, A., Suslow, T., & Dannlowski, U. (2011). Facial emotion proces-

sing in major depression: A systematic review of neuroimaging find-

ings. Biology of Mood & Anxiety Disorders, 1(1), 10.

Sun, F. W., Stepanovic, M. R., Andreano, J., Barrett, L. F.,

Touroutoglou, A., & Dickerson, B. C. (2016). Youthful brains in older

adults: Preserved neuroanatomy in the default mode and salience net-

works contributes to youthful memory in superaging. The Journal of

Neuroscience, 36(37), 9659–9668.
Thaker, A. A., Weinberg, B. D., Dillon, W. P., Hess, C. P., Cabral, H. J.,

Fleischman, D. A., Leurgans, S. E., Bennett, D. A., Hyman, B. T.,

Albert, M. S., Killiany, R. J., Fischl, B., Dale, A. M., & Desikan, R. S.

(2017). Entorhinal cortex: Antemortem cortical thickness and postmor-

tem neurofibrillary tangles and amyloid pathology. AJNR. American

Journal of Neuroradiology, 38(5), 961–965.
Thompson, P. M., Jahanshad, N., Ching, C. R. K., Salminen, L. E.,

Thomopoulos, S. I., Bright, J., Baune, B. T., Bertolín, S., Bralten, J.,

Bruin, W. B., Bülow, R., Chen, J., Chye, Y., Dannlowski, U., de

Kovel, C. G. F., Donohoe, G., Eyler, L. T., Faraone, S. V., Favre, P., …
ENIGMA Consortium. (2020). ENIGMA and global neuroscience: A

decade of large-scale studies of the brain in health and disease across

more than 40 countries. Translational Psychiatry, 10(1), 100.

Touroutoglou, A., & Dickerson, B. C. (2019). Cingulate-centered large-scale

networks: Normal functions, aging, and neurodegenerative disease.

Handbook of Clinical Neurology, 166, 113–127.
Tustison, N. J., Cook, P. A., Klein, A., Song, G., Das, S. R., Duda, J. T.,

Kandel, B. M., van Strien, N., Stone, J. R., Gee, J. C., & Avants, B. B.

(2014). Large-scale evaluation of ANTs and FreeSurfer cortical thick-

ness measurements. NeuroImage, 99, 166–179.
Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E.,

Ugurbil, K., & WU-Minn HCP Consortium. (2013). The WU-Minn

Human Connectome Project: An overview. NeuroImage, 80, 62–79.
Vicente-Saez, R., & Martinez-Fuentes, C. (2018). Open Science now: A

systematic literature review for an integrated definition. Journal of

Business Research, 88, 428–436.
Visser, E., Keuken, M. C., Douaud, G., Gaura, V., Bachoud-Levi, A.-C.,

Remy, P., Forstmann, B. U., & Jenkinson, M. (2016). Automatic seg-

mentation of the striatum and globus pallidus using MIST: Multimodal

image segmentation tool. NeuroImage, 125, 479–497.
Vogt, B. A. (2019). Cingulate impairments in ADHD: Comorbidities, con-

nections, and treatment. Handbook of Clinical Neurology, 166,

297–314.
Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J.,

Cedarbaum, J., Donohue, M. C., Green, R. C., Harvey, D., Jack, C. R.,

Jr., Jagust, W., Morris, J. C., Petersen, R. C., Saykin, A. J., Shaw, L.,

Thompson, P. M., Toga, A. W., Trojanowski, J. Q., & Alzheimer's Dis-

ease Neuroimaging Initiative. (2015). Impact of the Alzheimer's Dis-

ease Neuroimaging Initiative, 2004 to 2014. Alzheimer's & Dementia,

11(7), 865–884.
Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J.,

Green, R. C., Harvey, D., Jack, C. R., Jr., Jagust, W., Morris, J. C.,

Petersen, R. C., Salazar, J., Saykin, A. J., Shaw, L. M., Toga, A. W.,

Trojanowski, J. Q., & Alzheimer's Disease Neuroimaging Initiative. (2017).

The Alzheimer's Disease Neuroimaging Initiative 3: Continued innovation

for clinical trial improvement. Alzheimer's & Dementia, 13(5), 561–571.
Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T.,

Duggirala, R., & Glahn, D. C. (2010). Cortical thickness or grey matter

volume? The importance of selecting the phenotype for imaging

genetics studies. NeuroImage, 53(3), 1135–1146.
Yan, S., Qian, T., Maréchal, B., Kober, T., Zhang, X., Zhu, J., Lei, J., Li, M., &

Jin, Z. (2020). Test-retest variability of brain morphometry analysis: An

investigation of sequence and coil effects. Annals of Translational Medi-

cine, 8(1), 12.

HADDAD ET AL. 1531



Zavaliangos-Petropulu, A., Tubi, M. A., Haddad, E., Zhu, A.,

Braskie, M. N., Jahanshad, N., Thompson, P. M., & Liew, S.-L. (2022).

Testing a convolutional neural network-based hippocampal segmen-

tation method in a stroke population. Human Brain Mapping, 43(1),

234–243.
Zuo, X.-N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., Blautzik, J.,

Breitner, J. C. S., Buckner, R. L., Calhoun, V. D., Castellanos, F. X.,

Chen, A., Chen, B., Chen, J., Chen, X., Colcombe, S. J., Courtney, W.,

Craddock, R. C., Di Martino, A., Dong, H.-M., … Milham, M. P. (2014).

An open science resource for establishing reliability and reproducibility

in functional connectomics. Scientific Data, 1, 140049.

Zuo, X.-N., Xu, T., & Milham, M. P. (2019). Harnessing reliability for neuro-

science research. Nature Human Behaviour, 3(8), 768–771. https://doi.
org/10.1038/s41562-019-0655-x

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Haddad, E., Pizzagalli, F., Zhu, A. H.,

Bhatt, R. R., Islam, T., Ba Gari, I., Dixon, D., Thomopoulos, S. I.,

Thompson, P. M., & Jahanshad, N. (2023). Multisite test–

retest reliability and compatibility of brain metrics derived

from FreeSurfer versions 7.1, 6.0, and 5.3. Human Brain

Mapping, 44(4), 1515–1532. https://doi.org/10.1002/hbm.

26147

1532 HADDAD ET AL.

https://doi.org/10.1038/s41562-019-0655-x
https://doi.org/10.1038/s41562-019-0655-x
https://doi.org/10.1002/hbm.26147
https://doi.org/10.1002/hbm.26147

	Multisite test-retest reliability and compatibility of brain metrics derived from FreeSurfer versions 7.1, 6.0, and 5.3
	1  INTRODUCTION
	2  METHODS
	2.1  Data sets
	2.2  FreeSurfer regions and metrics of interest
	2.3  Statistics and quality control
	2.4  Replication analysis
	2.5  ComBat analysis

	3  RESULTS
	3.1  Between version compatibility
	3.2  Within-version reliability
	3.3  ComBat analysis
	3.4  Quality control and population-level analysis

	4  DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


