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Abstract: Laser beam welding of metals has progressed dramatically over the last years mainly
arising from joining applications in the field of electromobility. Allowing the flexible, automated
manufacturing of mechanically, electrically, and thermally stressed components, the process is more
frequently applied for joining highly reflective materials, for example for battery tab and busbar
connections. The local, non-contact energy input favors this welding technology; however, joining
of copper and aluminum sheets still poses a challenge due to the physical properties of the joining
partners and intermetallic phases from dissimilar metal interaction, which reduce seam performance.
The use of green laser radiation compared to infrared laser radiation offers the advantage of a
significantly increased absorptivity for copper materials. A changed incoupling behavior is observed,
and a lower deep penetration threshold has been already proven for 515 nm wavelength. When
copper and aluminum are welded with the former as top sheet, this welding mode is essential to
overcome limited aspect ratios from heat conduction welding. However, the opportunities of applying
these beam sources in combination with spatial power modulation to influence the interconnection
area of copper-aluminum joints have not yet been studied. The aim of this work is therefore to
investigate the seam properties and process stability of different overlap welding strategies using
green laser radiation for dissimilar metal welding. A microstructural analysis of the different fusion
zones and mechanical strength of the joints are presented. In addition, the experimental parameter
sets were analyzed regarding their application in battery module busbars by examining the electrical
resistance and temperature distribution after welding. A parameter window was identified for all
investigated welding strategies, with the stitched seam achieving the most stable results.

Keywords: electromobility; visible laser radiation; laser beam micro welding; dissimilar metals
welding; spatial power modulation; battery tab connection; intermetallic phases

1. Introduction

Road transportation is responsible for about one -fifth of the greenhouse gas emissions
in the EU-27 states, with passenger vehicles making the largest contribution to this sector
with 61% [1]. Considering that the share has remained largely constant throughout recent
years, the electrification of vehicles in both the individual and shared mobility is the only
viable option to reduce CO2 emissions to the targeted level of less than 80.8 g CO2/km
by 2025 [2].

In this context, the importance of sustainable drive concepts has increased and a
transformation from vehicles with internal combustion engines to electric vehicles has
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begun in recent years [3]. In addition, the use of electronic comfort functions in internal
combustion engine vehicles has increased rapidly with the emergence of electric vehicles.
These developments require energy storage systems on an unknown scale, which are there-
fore the key factor for this progression [4]. Due to their high energy density, lithium-ion
batteries are currently used as accumulators in electric vehicles and hybrid electrical vehi-
cles (including plug-in hybrid electric vehicles) [5]. Depending on the area of application,
different battery cell variants are used that have been technically adapted to the respective
application [6]. Existing variants of lithium-ion batteries differ in the housing type [7],
the electrode geometries [8], and the chemical composition of the active layers [9]. The
electrodes of these batteries commonly consist of aluminum, due to its easy processability,
and copper, which has high electrical conductivity [10]. When connecting more cells to a
battery module, aluminum and copper have to be joined together. Considering pouch cells
due to their high volumetric energy density, this implies the joining task of sub-mm thick
battery tab connectors, also called arrester tabs [11].

A second major challenge arising from the additional weight of the battery packs
compared to internal combustion engines is the need for lightweight constructions. Mass
reduction for automotive applications is considered one of the most promising approaches
to reduce energy consumption, focusing on the use of ferrous and non-ferrous metals as well
as fiber-reinforced materials in combination for structural components. This multi-material
mixture requires the joining of different materials with different strength, deformability,
melting points, and heat conductivity. However, the mass reduction also involves wiring
and cable systems, as the total mass in cars can reach between 15 and 45 kg. By a reduction
of the cross section at a comparable resistivity or by a substitution of copper with lighter
aluminum, a mass reduction of up to 40% can be achieved. A comparable resistivity of a
copper wire (conductivity σ = 58 m/(Ω mm2; density δ = 8.93 g/mm3) at a diameter of
10 mm can be achieved with an aluminum wire of 16 mm diameter (σ = 35.5 m/(Ω mm2;
δ = 2.70 g/mm3) [12].

In addition, the raw material price of aluminum is more stable and is only about a
quarter of the price for copper (see Figure 1), so long-term economic planning is safer. This
method has its limitations, as larger cross-sections also require more space thus reducing
driver comfort.
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In summary, the main drivers for dissimilar copper to aluminum connections can
therefore be found in battery tab connections as well as in wiring/electrical systems.
The connection of copper to aluminum can be achieved through mechanical fastening or
crimping. Thereby a form locking is achieved, which can deteriorate due to relaxation or
partly releasing. The mechanical joining processes also prove to be strongly dependent on
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environmental conditions and humidity in terms of their contact resistance. This results in
a high amount of losses in the wiring system or in the battery power system [14].

The joining of copper to aluminum forming a bonding with metal continuity also
proves to be advantageous in long-term applications. Solid-state welding methods such as
ultrasonic welding or friction stir welding obtain good results concerning a limitation of
intermetallic phases in the weld seam due to their low joining temperatures [15]. However,
limitations such as restrictions on joint types, a large weld indentation, and the limited
accessibility of the joining partners can restrict their application. Within the scope of this
work, laser beam welding was therefore investigated for this demanding application, which
is described in detail in the following chapters.

2. State of the Art

The joining process used for dissimilar material connection must be designed to
provide product quality and production efficiency benefits as well as it must meet the
definition of a green low-carbon manufacturing process for battery equipment [16].

2.1. Laser Beam Welding and Application of Spatial Power Modulation

The automated production of mechanically, electrically, and thermally loaded com-
ponents in this sector is therefore more frequently realized using laser beam welding.
Especially when joining materials with high heat conductivity, such as copper, the local,
non-contact energy input favors this welding technology [17]. According to DIN 1910-100,
the process is a subgroup of fusion welding, whose energy carrier is radiation [18].

Depending on the intensity level used, the regimes heat conduction welding or deep
penetration welding can be achieved. In the heat conduction welding mode, the absorbed
irradiance leads to local melting on the metals surface in the area of the laser spot. The
energy is transferred inside the material by heat conduction. Therefore, the resulting weld
seams are limited to small ratios of significantly less than one (ratio of penetration depth to
seam width) for the single laser-matter interaction [19].

When the intensity in the interaction zone is increased over a material-dependent
threshold value, the metal is vaporized, and deep penetration welding occurs. A character-
istic feature of deep penetration welding is the formation of a vapor capillary in the material,
the so-called keyhole. Starting from the depression of the melt pool surface induced by
recoil pressure, multiple reflections within the forming keyhole potentiate the degree of
energy coupling into the material. As a result, deep and narrow laser-matter interaction
areas (high aspect ratios, up to 10:1) can be achieved compared to heat conduction welding.
By continuous movement of the beam, the solidifying melt forms a weld seam behind the
irradiated zone [20]. However, a technical zero gap is necessary for both regimes to create
a sufficient material bond between two joining partners. Important input parameters of
the welding process are the laser spot characteristics and the physical properties of the
materials as well as the process parameters laser power, feed rate, and seam geometry [21].

As especially due to the increased dynamics in deep penetration welding, the occur-
rence of process instabilities is detrimental, special welding strategies are used to reduce
fluctuations. The flexibility of the process allows the laser spot trajectory to be easily
adjusted. Through the implementation of spatial power modulation, the weld seam width
can be increased and nearly rectangular cross sections are achievable [22]. This strategy is
accompanied by a smaller weld seam depth as the local path speed is increased, but at the
same time a reduction in seam imperfection amount was observed. The laser beam manipu-
lation differs from the conventional strategy by superposing an oscillation movement such
as a circular or eight (infinite) motion to the global linear feed rate. The so-called Lissajous
figures provide the basis for mapping the oscillation trajectory when superimposing a
harmonic oscillation with constant amplitude in one or two coordinate directions [23]. The
beam trajectory is defined by different degrees of overlap depending on the oscillation
parameters and feed rate selected.
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Investigations using spatial power modulation also revealed an increased efficiency of
the welding process [24]. Comparing spatial power modulation with circular oscillation
and a linear weld at constant linear feed rate and laser power, the overall cross-sectional
area is larger in the former case [23]. This increase in weld seam width may be particularly
advantageous for overlap joints to reduce the electrical contact resistance.

2.2. Laser-Based Overlap Joining of Dissimilar Metals

Basically, welding dissimilar metals such as copper and aluminum are more complex
than joining metals of the same material group [25]. This can be attributed to different
physical and metallurgical properties of the joining partners, thus influencing the welding
process in different manners. One challenge is the difference in the melting temperature of
copper and aluminum, which is more than 400 K (TM,Cu = 1083 ◦C, TM,Al = 660 ◦C, [26]).
This fact leads to additional temperature induced dynamics in the melt pool due to the
temperature gradient. Furthermore, in situ synchrotron investigations revealed different
melt pool extensions, whereby uprising bubbles were trapped in the area of the material
transition and remained as pores in the joint [27]. Different coefficients of thermal expansion
(αCu = 17 × 10−6·K−1, αAl = 24 × 10−6·K−1, [26]) promote stresses between the joining
partners, especially during cooling. The different solidification rates can cause stresses in
the weld seam which can lead to cracks [28].

Especially when joining aluminum with steel [29] and copper with aluminum [10], the
limited solubility is the root cause for the formation of intermetallic phases in the common
melt pool during welding. Depending on the mixing ratio, different intermetallic phases
are formed, which have a significantly higher hardness, can lead to brittle fracture in the
joined area under mechanical load, and increase the electrical resistance respectively [30].
Table 1 shows the most important intermetallic phases formed when welding copper
and aluminum and their physical properties. It becomes clear that Al2Cu has the lowest
activation energy and Al4Cu9 has the highest [31].

Table 1. Intermetallic phases of copper and aluminum and their physical properties [31,32].

Phase Chemical
Composition

Cu Mass
in %

Al Mass
in %

Hardness
in HV

Specific Resistivity
in µΩ cm

∆G in kJ
mol−1

Cu Cu 100 0 100 1.8 -
γ1 Al4Cu9 80 20 1050 14.2 −21.69
δ Al2Cu3 78 22 180 13.4 −20.67
ζ2 Al3Cu4 75 25 624 12.2 −20.64
η2 AlCu 70 30 648 11.4 −19.92
Θ Al2Cu 55 45 413 8.0 −13.05
Al Al 0 100 60 2.9 -

The specific resistivity increases significantly for all phases compared to pure copper
and shows the highest value of 14.2 µΩ cm for the γ1-phase. In terms of mechanical
properties, the hardness increases with increasing copper content, with the exception of
the δ-phase [33]. Braunovic et al. showed a linear relationship between the thickness of
the intermetallic phase layer and its electrical resistivity. In addition, it was found that
the welded joint becomes very brittle at a intermetallic layer thickness above 5 µm [34].
This embrittlement of the joint may also have a negative influence on the tensile strength.
Since these intermetallic phases reduce the weld seam performance, but their formation
is inevitable in a laser welding process, the general aim is to reduce their amount to the
possible minimum. Therefore, different approaches are being pursued in literature.

On the one hand, the presence of a keyhole in deep penetration welding mode supports
metallurgical mixing in the melt pool, see [35,36]. By optimizing the process parameters
such as feed rate, laser power, and weld geometry, this mixing in the joining zone can
be controlled accordingly. Xue et al. [37] studied the linear overlap welding of 0.3 mm
thick copper and aluminum by means of experimental investigations and simulation. The
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interdiffusion of copper and aluminum in the molten state was found to be extensive
when copper was used as top plate. The joint was found to be full of various intermetallic
compounds. The intermediate layer had an arch shape because the fluid flows from
aluminum to copper near the interface in the weld pool. When aluminum was placed
on top of copper, the interdiffusion of copper and aluminum was found to be limited by
a small amount of copper melting. The weld pool had a characteristic bowl-shape with
the fusion zone being wider at the top of both materials. This behavior is assumed to
be caused by convective mixing and a lower melting temperature of the mixture [37]. In
addition, a lateral beam offset proved to be comparatively advantageous in butt weld
configuration [38]. Special laser beam trajectories have also been subjected to experimental
investigations [16].

Leera et al. [39] investigated the influence of pulse shape and pulse to pulse distance
in pulsed laser beam welding. Improved results in terms of mechanical strength and
electrical resistance were obtained when pulse shapes adopting preheating were used. The
authors in [40] developed a process control by real-time pulse shaping with a control loop
smaller than 10 µs. By adjusting the laser power in each individual pulse after detecting the
material specific process emissions, the laser beam welding of different metals with a nearly
constant penetration depth at the interface was demonstrated. Furthermore, investigations
revealed that intermediate layers of silver, zinc, or tin may effectively reduce the formation
of intermetallic phases. A positive effect regarding the tensile strength was found in the
work of Mys et al. [41].

Compared to conventional laser beam welding, spatial power modulation with circular
oscillation movement reduces the solidification rate due an overlapping laser trajectory.
According to the authors in [42], this reduces the detrimental phase formation as well as
the residual stresses and associated deformations. In [35], the material mixing in the fused
zone was found enhanced and the formation of cracks along the contact area of both sheets
was reduced for larger scanning amplitudes. Since the locally introduced laser energy per
unit length decreases with both parameters, the oscillations amplitude and the frequency,
the obtained weld depth decreased with both parameters. Thus, it was shown that the
average relative share of copper in the weld seam could to be influenced in the range of
0 to 53 wt. % by a proper adjustment of the oscillation parameters [35]. Similarly, Dimatteo
et al. investigated a circular laser beam oscillation strategy, achieving good mechanical
properties and low electrical resistance with double welds [43].

2.3. Influence of Processing Wavelength—Application of Visible Laser Radiation

For the most common laser beam welding processes, near-infrared laser radiation
(λ ≈ 1 µm) in continuous wave (cw) mode is employed. The high focusability of the
available disk and fiber lasers enables the high intensity required for the keyhole welding
process. This welding regime is beneficial for an efficient weld process due to the increased
energy coupling inside the keyhole. When welding copper and aluminum with the former
as top sheet, this mode is furthermore essential to overcome the limited aspect ratios in
heat conduction welding.

For highly reflective metals such as copper, the absorptivity for infrared laser radiation
at room temperature in solid state is only in the single digit range [44]. The use of green
laser radiation (λ ≈ 515 nm) compared to infrared laser radiation offers the advantage
of a significantly increased absorptivity in both solid and liquid state [19]. A changed
incoupling behavior is observed and a lower deep penetration threshold have been already
proven for the 515 nm wavelength [45]. Analytical studies in [46] based on the energy
balance in combination with thermophysical material properties support the experimental
findings and confirm a higher process stability for spot welds on copper with green laser
radiation. However, the opportunities of applying these beam sources in combination with
spatial power modulation to influence the interconnection area of copper-aluminum joints
have not yet been studied in detail [47].
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Studies in this direction, using visible wavelengths such as green and blue, are cur-
rently less comprehensive in the literature [48]. Mathivanan et al. [49] investigated the
mechanical properties of copper aluminum welds in overlap configuration using a beam
oscillation in the form of infinite shape with 515 nm laser radiation. A discontinuous weld
seam was observed in cross-sectional direction, which was related to the different degree
of intermixing. The combination of ductile and brittle intermetallic microstructure was
found, resulting in a strong joint with large plastic deformation of the aluminum sheet [49].
The authors in [50] focused on conduction mode welding using a blue laser for welding
low-thickness dissimilar materials, namely nickel-coated copper and mild steel, for electric
vehicle battery manufacturing. Ascari et al. also welded 0.3 mm thick nickel-plated copper
sheets to 0.4 mm thick aluminum sheets by using a 450 nm diode laser, finding a smooth
seam with no cracks or pores in the weld. The authors stated a larger process window
compared to previous experiments with a near-infrared laser beam, achieving similar
tensile strengths as in the earlier studies [48].

From the state -of -the -art and the amount of research on this topic, it can be concluded
that a deeper understanding of the influencing factors affecting the welding process is
absolutely needed and the top plate configuration selection in copper aluminum joining
requires methodology. In summary, only limited research has been conducted to study
copper as top plate in copper aluminum mixed joints [49], as for example the investigations
in [50–52]. In addition, the use of visible laser radiation proves high potential for these lim-
ited material thicknesses in deep penetration mode to create a reproducible, low fluctuation
joint between the two metals.

The aim of this work is therefore to investigate the seam properties and process
stability for different overlap welding strategies using green laser radiation for dissimilar
copper to aluminum joints. The laser beam is irradiated from the copper side, to distribute
the forming intermetallic phases inside the joint in order to obtain a ductile seam behavior
and achieve well -suited electrical properties. A microstructural analysis of the different
fusion zones is conducted, and the mechanical strength of the joints is examined. In
addition, the experimental parameter sets are analyzed regarding their application in
battery tab connections by examining the electrical transition resistance and the temperature
distribution after welding.

3. Materials and Methods

In this paragraph, the welding setup is introduced first. Then the experimental proce-
dure is described, followed by the analysis approaches for the experimental investigation.

3.1. Laser Beam Welding Setup

In this work, laser beam welding of copper (Cu) and aluminum (Al) in overlap
configuration was investigated applying different welding strategies. Therefore, a welding
setup with green laser radiation was used to join battery tab connectors of pouch-type
battery cells. The properties of the laser source and the optical setup are listed in Table 2.

Table 2. Laser beam source and optical setup used for the investigation.

Dimension Unit Trumpf TruDisk 3022

Wavelength (λ) [nm] 515
Laser power (Pmax) [W] 3000

Fiber diameter (dLLK) [µm] 200
Focal length collimator (fC) [mm] 150

Focal length optics (fF) [mm] 255
Focal diameter (dF, measured) [µm] 342.5

Diffraction factor (M2) [-] 46.1
Divergence angle (θ) [mrad] 88.2

Beam parameter product (BPP) [mm·mrad] 7.55
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The experiments were performed with a frequency-doubled disk laser TruDisk
3022 (TRUMPF Laser GmbH + Co. KG, Ditzingen, Germany) emitting 3 kW maximum
cw-output power at λ = 515 nm wavelength. The laser beam is guided through a fiber-
optic cable with a core diameter of dLLK = 200 µm to the welding optics (PFO 33-2). The
collimator focal length of fC = 150 mm in combination with a f-theta focusing optics,
fF = 255 mm, results in an imaging ratio of 1:1.7. A top hat -shaped intensity profile in
the focal plane was measured with a diameter of 342.5 µm using a Primes Focus Monitor
FM+. The copper and aluminum connectors were processed in the focal plane at z = 0 mm
(copper top surface). The customized experimental setup for the investigation is based on
the setup presented in Ref. [52], which was developed in cooperation with the Chair of
Production Engineering from the RWTH Aachen University. A schematic sketch of the
experimental setup is shown in Figure 2.
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to aluminum, (left); detail insert of a welded sample in the real setup (right, top) and application in
battery tab connections for electric vehicles (right, bottom).

For the experimental investigations, an aluminum (Al) and a copper (Cu) sample
plate were positioned in overlap configuration in the welding fixture. The dimension of
the sheets was 55 mm in length, 35 mm in width, and 0.2 mm thickness for the Cu plate,
0.3 mm for the Al plate respectively. Aluminum AlN30 was used on the one hand and
nickel-plated copper plates on the other. The 2.5 µm thick Ni-coating on the Cu-ETP plates
was electrodeposited, with a tolerance specified between 0.6 and 3 µm. The chemical
composition of the materials is listed in Table 3 according to the supplier inspection sheet
from Kunshan Huaiyuan Battery material Co., Ltd.

Table 3. Chemical composition of AlN30 and Ni-plated copper in wt. %.

Material/Element Al Zn Mg Mn Cu Si + Fe

Al (AlN30) 99.42 0.01 0.01 0.01 0.01 0.47
Cu (Cu, 2.5 µm Ni-layer) - - - - 99.96 -

For sufficient clamping, an overlapping distance of 10 mm was set in the area to be
welded. The zero-gap position was achieved using a clamping top beam. The laser beam
reached the material at an inclination angle of 90◦, as the high absorptivity of copper for
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green laser radiation does not require tilting the welding optics or working in the outer area
of the scan field, and it is typically applied when working with near-infrared lasers for back
reflection protection of the system setup. The global feed rate was set in positive x-direction.
A welded result can be seen in the detail insert in the top right of Figure 2, which shows a
final seam on a clamped sample after welding in the real experimental setup.

For the temperature measurement in the seam adjacent zone, two thermocouples were
placed on top of the samples, which were spring-loaded to increase the thermal contact
between the workpiece and the sensors. The thermocouples (type K, Therma Thermofühler
GmbH, Lindlar, Germany) with 7 mm probe diameter were positioned 20 mm away from
the symmetry plane of the weld seam to record the maximum temperatures in the base
material during welding. The recording was realized via connection to a data logger
(Delphin Expert Key 200L, Delphin Technology AG, Bergisch Gladbach, Germany) with
analogue inputs with 18 bit resolution. According to Ref. [53], a maximum permissible
temperature of TCrit = 65 ◦C should not be exceeded in the seam adjacent zone, since above
TCrit, decomposition reactions in the electrolyte, surrounding the cell-internal battery tab
connection, take place. This phenomenon can have a negative impact on the performance
and lifetime of the battery cells in the later application of this joining process for cell-external
battery tab connections.

Nitrogen was used for processing zone coverage supplied through a lateral gas nozzle
to remove the particle plume during welding. In addition, a cross-jet with compressed
air protects the welding optics from fume and spatters. The application of the developed
welding parameters in a battery module demonstrator can be seen in Figure 2 bottom right,
indicating different levels of detail of the investigation.

3.2. Overlap Welding Strategies

For the experimental investigations, three different welding strategies were examined.
These include a linear stitched weld and spatial laser beam oscillation in circular and
vertical eight shape. All three overlap welding strategies are presented with exemplary
parameters in Figure 3.
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tion: linear stitched weld (a), circular beam oscillation (b), and vertical eight beam oscillation (c).

The linear stitched weld is characterized by single lines of l = 3 mm length. These
single lines were arranged at a horizontal distance of 1 mm, welded in alternating y-
direction. In order to symmetrically distribute the energy input, the first seam is placed at
x = 16 mm in positive y-direction, followed by two seams at x = 15 mm and 17 mm in
negative y-direction. This stitching was then repeated 15 more times in alternating y-
direction. The laser beam trajectories of the circular and vertical eight oscillation can be
characterized by Equations (1) and (2) respectively. The trajectory of the laser beam using
circular motion in superposition to a global linear feed rate is described by Equation (1)
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(
x(t)
y(t)

)
=

(
v f ·t + a· cos(2π· f ·t)
−a· sin(2π· f ·t)

)
(1)

where v f is the linear feed rate, f the oscillation frequency, a the oscillation amplitude, and
t the time [54]. The oscillation amplitude corresponds to the radius of the circular motion,
visible in case (b) of Figure 3 in y-direction. The absolute velocity of the laser beam vp(t),
which corresponds to the feed rate of the linear stitched seam, is described by Equation (2).

vp =

√(
v f − 2π· f ·a· sin(2π· f ·t)

)2
+ (−2π· f ·a· cos(2π· f ·t))2 (2)

It becomes apparent that this value is not constant, in fact it varies along the weld
trajectory, with the absolute highest speed in the direction of the linear feed rate and
the lowest in the inverse direction [23]. The calculation of the magnitude of the path
velocity therefore results in a sinusoidal course that oscillates around a mean value vp. The
simplified relationship to the energy per unit length EL, which is directly proportional to
the path velocity, can consequently be described mathematically by Equation (3)

EL =
PL
vp

(3)

where PL indicates the laser power on the material surface. When considering the time-
dependent values vp(t) and Ep(t), a detrimental effect caused by the asymmetry of the
laser beam trajectory becomes apparent. Due to the local difference in Ep(t) between the
two sides in y-direction (y = ±0.75 mm), the weld penetration depth may be increased in
areas with higher Ep(t) compared to areas with lower Ep(t) (inclination transverse to the
global feed direction) [22]. Therefore, the vertical eight oscillation strategy is of interest
because it can be used to achieve a symmetrical energy deposition relative to the global
feed direction (x-axis). The trajectory of the laser beam using a vertical eight oscillation
movement is described by Equation (4)(

x(t)
y(t)

)
=

(
v f ·t + a· sin(2π· f ·t)

a· sin(π· f ·t)

)
(4)

For the comparison of the oscillation strategies, the parameters introduced above were
used to calculate the degree of overlap U. This parameter is defined as the quotient of the
distance between the local maximum of a first oscillation period xMax(p1) and the local
minimum of the following second period xMin(p2) and the distance between the maximum
and the minimum of the first period in global feed direction [23]. The relationship is
described mathematically by Equation (5)

U =
xMax(p1)− xMax(p2)
xMax(p1)− xMin(p1)

·100% (5)

wherein the spatial expansion of the laser beam is not considered. The analytic solution for
the circular beam oscillation is shown in Appendix A. As discussed above, for the energy
per unit length EL(t), a lower degree of overlap leads to a stronger asymmetry with regard
to the global feed direction, since the position of the local maxima is no longer close to the
y = 0 line.

The amplitude of the welding strategies with spatial beam oscillation was set to a fixed
value of a = 0.75 mm for the investigations. Note that this value is smaller than the seam
width of the linear stitched weld in order to compensate for lower values of the total length
of the laser beam trajectory. The beam oscillation was applied with a maximum frequency
of 250 Hz to ensure that the dynamic performance limit of the galvanometer scanner is not
exceeded. This value was determined as threshold value from preliminary laser marking
investigations on steel plates to evaluate the performance of the welding optics. The total
weld seam length in feed direction (x) was set to 32 mm.

3.3. Experimental Design and Procedure

A total amount of 350 Cu and Al plate pairs was available for the investigation of the
seam properties of overlap welding strategies from copper to aluminum in this work. In
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preliminary tests, process parameters were developed for all three welding strategies which
ensure good connection quality, assessed first by visual inspection of the generated weld
seams and followed by metallographic analysis. The weld seam quality was evaluated
according to DIN EN 1011-6 [55]. If no connection in the overlapping area or if an excessive
energy input was achieved (weld seam completely penetrates the Al-sample), the process
parameters laser power and feed rate (or frequency respectively for oscillation strategies)
were subsequently carefully adjusted. Two center point settings for each welding strategy
were developed, listed in Table 4.

Table 4. Process parameters developed from the preliminary study for different overlap welding
strategies from copper to aluminum.

Identification Welding Strategy PL in W vF in mm/s f in Hz

#1 Linear 1400 400 -
#2 Linear 1600 500 -
#3 O-oscillation 900 50 50
#4 O-oscillation 1500 150 150
#5 8-oscillation 800 30 75
#6 8-oscillation 800 25 100

In the main test series, the size of the process windows for the determined process
parameters #1–6 was then evaluated by systematic adjustment of the individual process
parameters in small increments. For this purpose, metallographic and mechanical as well
as electrical seam characteristics of the welded specimens were determined in the following
in order to compare the joining strategies against each other. The analysis methods used
are described in detail in the following section. The parameter sets were also tested for
reproducibility, with each parameter set welded at least three times.

3.4. Electrical, Metallurgical and Mechanical Characterization

Figure 4 shows a schematic representation of the analyses carried out on the welded
samples within the scope of the investigations.
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As outlined in Section 3.1, temperature measurement in the seam adjacent zone were
conducted using two thermocouples (grey arrows) to record the maximum temperatures
in the base metal during welding. The seam topography was recorded by an optical
3D profilometer (Keyence VR-6000, Keyence Corporation, Osaka, Japan) capturing the
entire weld seam surface with a resolution of 0.1 µm in height direction before further
destructive testing.
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The electrical resistance measurement was executed by a combined measurement of
the voltage and current as suggested by Ohm’s law [56]. Therefore, a 4-wire-measurement
setup was built to introduce a defined current through the welded samples and to measure
the voltage in equidistant distances of 17 mm in the base materials and the connection
area (red arrows). A Sefelec MGR10 (Eaton Sefelec GmbH, Achern, Germany) resistance
measurement unit working in the measurement range of 3 mΩ at 100 nΩ resolution with a
measurement current of I0 = 1.0 A was used. The measurement accuracy is specified as
±0.1%. From the voltage drop UI through the welded area, the connection resistance RI of
the welded area was calculated by Equation (6)

RI =
I0

UI
(6)

For a material-independent evaluation of the electrical properties of the intercon-
nection, the contact quality index (CQI) was calculated, which relates the proportion of
the joint’s resistance to its base materials and dimensions [57]. The CQI is described
mathematically by Equation (7)

CQI =
2 ·RI

RCu + RAl
(7)

The electrical resistance values were determined from averaging ten discrete mea-
surements. This method was applied three times per sample to cover the beginning, the
middle area, and the end of the weld seam. These values were once more averaged to a
median value including standard deviation. Since the resistance of the interconnection
area is substantially affected by the number of intermetallic phases in the weld seam (see
Section 2.2), these should be reduced to a minimum in order to achieve the lowest possible
electrical resistance.

Metallographic examination was performed by means of longitudinal sections and
cross sections of the weld seams as well as transversal sections of the interface area for
selected samples. The view definition is illustrated by the example planes in Figure 4.
Microstructural images were taken with an optical microscope (Olympus BX53M, Olympus
K.K., Tokyo, Japan), measuring the interface weld width and penetration depth in the Al-
sample. Therefore, the ground and polished sections were etched with a 5% Na-OH solution
for three minutes. Intermetallic phase analysis was performed using a scanning electron
microscope (SEM, Merlin Gemini II, Carl Zeiss AG, Oberkochen, Germany). To investigate
the distribution of copper and aluminum in the seam after welding, energy-dispersive
X-ray spectroscopy (EDS) mapping was applied. In addition, hardness measurements
were conducted on the cross-sections with 1 N imprints (HV 0.1) using a hardness testing
machine (KB 30 S, KB Prueftechnik). The mechanical testing of the seam performance was
carried out according to DIN EN ISO 6892 [58]. The tensile force was applied perpendicular
to the weld seam using a Quasar 100 tensile testing machine (Galdabini SA, Cardano Al
Campo, VA, Italy). Two metal gaskets were placed underneath at both ends in the clamping
jaws to ensure the coaxial application of the tensile force into the specimen to be tested.
The preload was set to 10 N and the test rate was 10 mm/min. The fractured samples were
analyzed by microscope and divided into seam failure (fracture in the weld seam) and a
fracture in the base metal (aluminum plate).

4. Results and Discussion
4.1. Evaluation of Weld Seam Cross-Sections—Influence of Process Parameters

Since the series of experiments were designed to study the seam properties and process
stability for different overlap welding strategies using green laser radiation for dissimilar
copper to aluminum joints, investigations were first carried out to determine the suitable
parameter sets for all three welding strategies.
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4.1.1. Linear Stitched Weld

In Figure 5 images of micrographs of longitudinal sections from joints produced with
the linear stitched welding strategy at varied laser powers PL and different feed rates vF
are shown. The resulting line energy is also depicted in the image captions.
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In general, two types of weld seam appearance were observed in the micrographs.
The first type includes either no or only minimal energy input detected in the aluminum
(see white dotted lines for (a,b) as well as the excessive mixing in the micrograph due to
excessive energy input (e,f,h)). Instead, the second variant reveals sufficient weld depth
into the aluminum and limited intermixing (indicated by the dark grayish and golden
colored areas in the longitudinal sections) in the copper aluminum interface, which is
outlined by green lines in Figure 5c,g.

As expected, the weld depth into the aluminum sheets increased with increasing laser
power at constant feed rates. Thereby, the fused area of aluminum and the mixing of both
metals also increased. Pores were observed in the weld seams, predominantly located in
the aluminum sheets as well as in the combined melt pool, as evident from sample (e).
Cracks were found in welds with excessive energy input (EL ≥ 3.6 J/mm) in the area of the
resolidified molten material (see (e,f,h)). For lower line energies, no cracks were observed.
Line energies in the range of 3.2 ≤ EL ≤ 3.5 J/mm showed a sufficient interconnection
area of copper and aluminum; however a minimum intensity must be applied to achieve a
suitable weld seam depth, as in case (a,b) the laser power was too low to fully weld the
aluminum sample (weld seams were not mechanically stable).

The interface area between copper top sheet and aluminum bottom sheet for the
parameter set shown in (g) was furthermore analyzed with regard to seam morphology by
preparing a cross and transversal section of the weld seam. The resulting micrographs are
presented in Figure 6.

From the cross section at the top left, the evolution of the weld seam in feed direction
can be observed. First of all, an increasing weld depth in the aluminum sheet is present
due to heat accumulation in the interaction zone for the limited material thickness of the
sample sheets. The intermixing of Cu and Al then increases until the end of the single weld
seam, which can be identified through the sagged seam surface of the copper sheet. A
constant weld depth was observed over the most part of the seam, caused by the high feed
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rate applied for the linear stitched weld. The dark area between the two joining partners
indicates a layer of Al-rich intermetallics that have been reacting to the etchant.
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and vF = 500 mm/s.

The homogeneity of the weld seams produced with the linear stitched strategy es-
pecially becomes visible from the transversal-sections in copper and aluminum (Figure 6
right and detail bottom left). In the copper sheet, a constant weld seam width and length
is observable. The high absorptivity of the green laser radiation in copper enables this
reproducible weld seam quality for small aspect ratios [59]. End craters were found, which
may be caused by the instantaneous shutdown of the laser power at the end of the weld
seam. The solidifying melt shrinks (solidification shrinkage of copper is higher than for
aluminum, [60]) and since no further liquid metal is available due to the completed welding
process, an end crater can form at the weld seam end. The weld seam width in aluminum is
found to be lower compared to the copper layer due to the high amount of heat conducted
in the copper sample and the V-shape of the weld seam (see Figure 5). Apart from the
first seam placed at x = 16 mm (middle area of the bottom right micrograph), a regular
appearance of the linear stitched seams can be confirmed. A slight increase in seam width
is observable in feed direction, which can be attributed to the reason stated above.

The unmodulated, linear welding of the dissimilar metals copper itself and aluminum
is a highly challenging process and prone to defect formation and fluctuations in penetration
depth [61]. It can be concluded that, compared to the investigations in [62], a constant seam
quality in rectilinear welding was achieved by applying a special linear stitched welding
strategy to symmetrically distribute the energy input in the material.

4.1.2. Circular Beam Oscillation

In Figure 7 images of longitudinal sections from welds produced with circular beam
oscillation at varied laser powers PL and different feed parameters (vF, f) are shown. The
resulting line energies, calculated according to Equation (3) are added in the image captions.

As introduced in Section 4.1.1, two types of weld seam appearance can again be
distinguished: Weld seams with insufficient energy input into the aluminum, where a
wavy, darkened area can be detected in the aluminum, indicated by the white dashed
lines in case (a), (b), (d), (e), and (f). The formation of these waves can be explained by the
oscillating circular motion of the laser beam. As a result, the energy input and thus the
penetration depth varies locally. In the case of excessive energy input (micrograph (h)), an
intermixing over the entire height of both welding partners is visible. Nevertheless, areas
with identifiable aluminum base material remain between the oscillating motion of the
laser beam, observable in the middle and left area of micrograph (h). This fact is attributed
to the low degree of overlap of ≈20% for this parameter set. The seam porosity appears to
increase with increasing laser power, as only the longitudinal sections with PL > 1000 W
and visible metallurgical mixing of copper and aluminum are found to have pores in the
weld seam.
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Sufficient weld depth and limited mixing in the interface was achieved for parameter
sets (c) and (g), which are outlined in green in Figure 7. For the lower feed rate and laser
power (case c), the joining area is limited to a width in the range of the laser spot diameter.
The heat-affected zone caused by the increased line energy (EL = 3.8 J/mm) is clearly visible
in the oval areas of the aluminum base metal. However, compared to the linear stitched
weld strategy, a good metallographic joint quality was achieved with an absolute velocity
(vp = 236 mm/s) that was significantly lower compared to the parameter sets discussed in
Section 4.1.1. The parameter set (g) using increased laser power and feed rate compared
to (c) resulted in a more uniform mixing of the components. Due to the higher intensity
on the copper sample and the accelerated beam movement (factor 3 compared to (c)), the
continuity in the connection zone was increased at a reduced line energy.

In sum, the line energy range for proper welding parameters was found larger for
the circular beam oscillation for a degree of overlap of U ≈ 20% compared to the linear
stitched weld. For EL = 2.1 J/mm, a controlled intermixing of copper and aluminum with
distinct penetration depth was still achieved. This phenomenon is attributed to the spatial
power modulation, significantly increasing the absolute point velocity of the laser spot but
enabling a stable weld due to the special beam movement strategy. A further increase in
the degree of overlap with the comparably large laser spot used in this study compared to
a single mode beams, as investigated for example in [25], resulted in an excessive amount
of Cu-Al-intermixing.

The results denote that, by means of an appropriate tuning of the process parameters,
several different welding results can be achieved, demonstrating a good versatility of the
process using green laser radiation. In addition, it becomes obvious that the feed rates used
are suitable to avoid heat accumulation effects during welding, which occur when the heat
flow is faster than the heat source and the material being joined tends to preheat gradually
during the process [48]. No significant increase of the weld seam width and penetration
depth was observed from the beginning to the end of the weld, as illustrated in Figure 8.
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Comparable to Figure 6, the left-hand side shows micrographs in sheet thickness direction
in copper and aluminum for parameter (g).
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Figure 8. Micrographs (transversal sections (left) and cross sections from the planes of the dashed
lines (1) and (2) of the transversal section top left (right)) of Cu-Al joint welded with circular beam
oscillation at PL = 1500 W, vF = 150 mm/s, f = 150 Hz.

The circular oscillating motion becomes particularly visible in the transversal sections
where in the overlapping areas significant intermixing is observed in regularly appearing
golden-colored areas (see Figure 8 top left). This phenomenon continues downwards into
the aluminum sheet, as predominantly in these seam regions the local energy input is
increased compared to the residual weld seam (Figure 8 bottom left). Two views in feed
direction are shown in Figure 8 on the right side for different x-positions, revealing the
locally varying seam width and penetration depth in detail. Due to increased energy input
around y = 0 (see Figure 3), the element mixing is remarkable, and the weld seam nearly
penetrates almost the complete aluminum sample in the case of cross Section 1. For cross
Section 2, a reduced interface width, divided into two parts, and a lowered penetration
depth become apparent. The more pronounced weld seam on the left side is related to the
crossing point of the laser spot trajectory, which resulted in an increased energy input there.
Overall, a good homogeneity and reproducibility of the presented process parameters with
circular beam oscillation was found.

4.1.3. Vertical Eight Beam Oscillation

The investigated process parameters and corresponding longitudinal sections from
welds produced with vertical eight beam oscillation at varied laser powers PL and different
feed parameters (vF, f) are shown in Figure 9. As can be noted from the calculated line
energies, lower values were found to be sufficient for this process strategy due to the
high degree of overlap in the beam movement. For a good weld quality—outlined in
green—a comparable value range of the line energy as for the linear stitched weld was
found; however the EL-values of the latter had an offset of +2 J mm.

Similar to Section 4.1.2, weld seams with vertical eight oscillation also show a wave
-like heat input into the aluminum that follows a regular repetition if the energy input
was insufficient for metallurgical intermixing. As can be derived from the parameter sets
(d) to (f), the amplitude and frequency of this wavy structure can be controlled by the
corresponding feed parameters vF and f. In the case of the weld seam in (a), the intensity
was too low for a stable penetration of the keyhole into the aluminum, so the result did not
show good mechanical properties. The copper layer is observed regularly bent upwards in
the interface area, probably due to distortion.

A sufficient weld depth with component mixing in the interface area was found for
parameter sets (b) and (c). Here, the lower feed rate and line energy setting case (b) showed
higher regularity compared to the weld seam presented in Figure 9c. However, the higher
degree of dark grayish and golden colored areas in the longitudinal sections indicates more
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intense melt flow dynamics and intermixing during welding for this oscillation strategy. In
contrast to the circular beam oscillation, no pores or cracks were detected in the joints. It is
assumed that this behavior is related to the low line energies and high degrees of overlap
(U(b) = 83%, U(c) = 74%) used for these experimental investigations.
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Figure 9. Longitudinal sections of welds produced with vertical eight circular beam oscillation for
different laser powers and feed parameters (vF, f); welding direction from left to right.

Figure 10 shows the weld seam evolution in feed rate direction for parameter set
b) from cross sections and a transversal section. A turbulent intermixing of copper and
aluminum over the entire seam area in width direction can be identified top left. From
the three cross sectional micrographs (1) to (3), the weld seam continuity of the vertical
eight oscillation may be studied: these were prepared with a distance of 2 mm (1), 16 mm
(2), and 30 mm (3) from the starting point of the welding process. At the beginning of
the weld, hardly any mixing can be observed, which is attributed to the low laser power
used for this parameter set (compare Sections 4.1.1 and 4.1.2). The symmetry of the beam
oscillation profile becomes noticeable in the heat affected zone in aluminum in the form of
a W-shape. The intermixing of copper and aluminum increases as the laser welding process
progresses and heat accumulation in the material becomes significant, see cross Section 2. A
homogenous weld seam with slightly larger penetration depth to the sides can be observed.
Toward the weld seam end, the energy input seems to accumulate and the intermixing over
the entire height of both welding partners is visible. This phenomenon is attributed to the
almost three times higher trajectory length compared to the circular oscillation strategy.

The difference in distribution of the local energy input energy for the circular and
vertical eight beam oscillation strategy is shown by analytical calculations in Figure 11.
Here, the distribution of the locally deposited energy is calculated according to∫

I(x(t), y(t))dt (8)

for a laser beam with incident power PL and the local intensity profile [63] of

I(x, y) =
8 ·PL

π·dF2 ·e
−8 |x(t)

2+y(t)2 |
dF

2 (9)

moving over the copper sample according to the given oscillation patterns.
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Figure 11. Distribution of the local energy input by spatial power modulation with a circular oscil-
lating beam, PL = 1500 W, vF = 150 mm/s, f = 150 Hz (#4, left) and by a vertical eight oscillation 
strategy with PL = 800 W, vF = 25 mm/s, f = 100 Hz (#6, right). 

It becomes clear that the two oscillation patterns produce significantly different dis-
tributions of the incident energy. Distinct peak areas of the deposited energy are present 
at the overlapping points along the circular beam oscillation (Figure 11 left). Here, the 
local energy introduced into the welding process (coupled into the vapor capillary) sig-
nificantly exceeds the local energy deposited anywhere along the trajectory in vertical 
eight beam oscillation. The constant and fast movement of the beam along the vertical 
eight oscillation path results in a lower and a more evenly distributed energy deposition, 

Figure 10. Micrographs (transversal section (top left) and cross sections at a distance of 2 mm (1),
16 mm (2), and 30 mm (3) from the starting point of the welding process) of Cu-Al joint welded with
vertical eight beam oscillation at PL = 800 W, vF = 25 mm/s, f = 100 Hz.
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Figure 11. Distribution of the local energy input by spatial power modulation with a circular
oscillating beam, PL = 1500 W, vF = 150 mm/s, f = 150 Hz (#4, left) and by a vertical eight oscillation
strategy with PL = 800 W, vF = 25 mm/s, f = 100 Hz (#6, right).

It becomes clear that the two oscillation patterns produce significantly different distri-
butions of the incident energy. Distinct peak areas of the deposited energy are present at
the overlapping points along the circular beam oscillation (Figure 11 left). Here, the local
energy introduced into the welding process (coupled into the vapor capillary) significantly
exceeds the local energy deposited anywhere along the trajectory in vertical eight beam
oscillation. The constant and fast movement of the beam along the vertical eight oscillation
path results in a lower and a more evenly distributed energy deposition, as shown in
Figure 11 right. However, the high degree of overlap in this case leads to a more areal
energy input (see light blue and yellow areas).

Looking at the micrographs presented in Figures 7–10, the weld seam appearance
can be understood more conclusively. The high energy input in the middle overlapping
area as well as at y = 0.75 mm can be correlated with the increased amount of intermixing
and interconnection width in cross Sections 1 and 2 in Figure 8. In contrast, the lower
region around y = −0.75 (Figure 11 left) and the right part of cross Section 2 (Figure 8) for
the circular oscillation strategy show a lower energy input and thus a limited amount of
metallic intermixing. The W-shape and the symmetrical applied energy input along the
x-axis for the vertical eight oscillation are clearly reflected in the weld seam appearance in
micrograph 2 in Figure 10.

The six weld seam results selected above (outlined in green) were used as reference
parameters for the microstructural, mechanical, and electrical analysis and discussion below.
The parameter sets are listed alongside the energy input (feedback from laser source) and
beam trajectory characteristics in Table 5.
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Table 5. Compilation of metallographically approved process parameters developed for different
overlap welding strategies from copper to aluminum (repetition and extension of Table 4).

Identification Welding
Strategy

PL
in W

vF in
mm/s

f in
Hz

vp in
mm/s

EIn
in J

lTrajectory
in mm Reference

#1 Linear 1400 400 - 400 11 99 Figure 5c
#2 Linear 1600 500 - 500 10 99 Figure 5g
#3 O-oscillation 900 50 50 236 582 153 Figure 7c
#4 O-oscillation 1500 150 150 707 323 153 Figure 7g
#5 8-oscillation 800 30 75 530 838 753 Figure 9c
#6 8-oscillation 800 25 100 707 990 565 Figure 9b

Figure 12 shows the relationship between the parameter sets and the main geometrical
characteristics of the weld seams. In general, the results confirm that the process parameters
have a significant influence on the weld pool geometry and thus on the appearance of the
copper aluminum interface.
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seams were observed comparatively small at about 25% of the mean value of parameter 
set #3–6. This fact is comprehensible due to the missing oscillation movement of the laser 

Figure 12. Weld seam depth in aluminum and interface width for selected parameter sets (n = 4).

A decisive influence of the line energy was found for the linear stitched welds, with
a larger standard deviation for the higher laser power applied in #2, indicating increased
process dynamics. The interface widths (in feed direction of the laser spot) of the two seams
were observed comparatively small at about 25% of the mean value of parameter set #3–6.
This fact is comprehensible due to the missing oscillation movement of the laser beam
in these cases. Both sets of parameters of both oscillation strategies (circular and vertical
eight) showed an almost complete penetration of the aluminum sheet in their mean values,
whereas the interface connection width was between 1350 and 1660 µm. These values are in
the range of the applied oscillation amplitude and indicate that a deep penetration welding
has taken place, incorporating the entire metal in the oscillation path. Good reproducibility
of the parameter sets can be determined by the low standard deviations. However, it
must be taken into account that with the oscillating overlap welding strategies there is a
significantly higher energy input into the joining partners, as the weld seams are continuous
and altogether longer (see Table 5).

Comparing the presented results with those obtained by the authors in
references [25,43], it becomes clear that deep penetration welding at a visible wavelength
allows sound weld seams with a reasonable penetration depth control and process win-
dows for linear and oscillating overlap welding strategies. In contrast, laser beam welding
with near-infrared wavelengths requires the use of small beams (single mode beam quality)
to achieve good welding results and a stable process window. Only small interface widths
can be achieved, which can be extended by the application of spatial power modulation.
The process parameters developed in this experimental study also favored very different
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mixing ratios between the base metals copper and aluminum. Mixing is minimal for low
seam lengths and energy input in the case of the linear stitched welding strategy. This also
corresponds to the short interaction times between laser and joining partners. In contrast,
mixing is more evident in case of the oscillated welding strategies, as the larger melt pool
promotes component intermixing.

4.2. Electron Dispersive Spectroscopy (EDS) Analysis Results—Influence of Welding Strategy

The high thermal gradient induced during laser beam welding favors the formation of
various microstructures and intermetallic phases [64]. Three of the presented overlap joint
samples were thus chosen for EDS analysis, where these samples were generated using
linear stitched weld strategy (#2), circular beam oscillation (#4), and vertical eight beam
oscillation (#6) respectively. In the surface scans, copper is colored orange and aluminum is
colored green. Figure 13 shows the EDS analysis results (surface scan) for a linear stitched
weld fabricated using parameter set (#2).
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Figure 13. EDS mapping image for the joint cross-section of parameter set #2 (linear stitched weld,
PL = 1600 W, vF = 500 mm/s) showing the elemental distribution of Cu and Al in the weld seam.

Slight mixing is present in the weld seam, especially upstreaming aluminum in the
copper melt can be noticed from the element distribution. It is particularly evident that
in the case of partial penetration, the limited amount of molten aluminum is distributed
quite uniformly in the copper melt due to the significant difference in density between
the two metals. Intermetallic phases were predominantly formed in a small area at the
interface of copper and aluminum. These were detected in EDS scanning spots, see the
EDS phase compositions at selected scanning spots in Figure 14. Observing the boundary
region of the melt pool, it can be seen that spot 1 possibly consists of Cu solid solution,
while spot 4 seems to have Cu solid solution [65]. However, spot 2 in the interface region of
the weld seem to have Al3Cu4 phase and spot 3 Al2Cu phase, which may have an adverse
effect on the joint strength [66]. The presence of numerous intermetallic phases in the
interconnection area increases the risk of solidification cracks [65]. However, no obvious
pores and cracks were detected in the fusion zone.

A subdivision of the intermetallic layer into zones can be made according to the
investigations presented in [67]. Thereby, the formation of four different zones can be
distinguished: in zone 1, the granular reticular structure is formed from the γ1-Al4Cu9
phase which is often the first to be formed during the reaction. Zone 2 is a mixture of
eutectic and hypoeutectic structures. It is characterized by a needle-like structure. The
measurements yielded the η2-AlCu phase, which contains about 50 at. % aluminum and
copper. In zone 3, a eutectic structure of α-Al and mainly θ-Al2Cu is present. Zone 4
is characterized by a dendritic structure that forms near the aluminum base metal. The
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growth of the solidification front and the segregation of the alloying elements create the
characteristic dendritic arms [67].
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Figure 14. SEM image and EDS scanning spots in the weld seam of the sample produced with
parameter set #2; white insert (a) indicates the area of the displayed detail image (a); dashed line
indicates intermetallic phases (top); EDS phase composition at selected scanning spots (right bottom).

The EDS mapping results for a weld generated with circular beam oscillation using pa-
rameter set (#4) in Figure 15 show a non-uniform distribution of the copper and aluminum
contents in the weld seam. This phenomenon has the potential to reduce the strength of the
joint (see Section 4.5). The observed porosity could be attributed to the high oxygen affinity
of the molten aluminum [68]. The spot measurements shown in Figure 16 in combination
with SEM images of the weld seam revealed intermetallic phases of distinct types that were
widely distributed across the weld seam. This distribution can cause high hardness values,
which are examined in Section 4.4 in conjunction with Table 1. From Figure 16, it is obvious
that the interface zone along the direction from pure copper to aluminum weld metal zone
is composed of the copper solid solution in the position of point 5, Al3Cu4 in the position
of point 6, Al2Cu in the position of point 7, and aluminum solid solution in the position of
point 8 [65]. Due to the increased energy input (increased EL) compared to parameter set #2,
intermetallic compounds were also detected near the copper top surface (especially visible
in the right part of the seam, which belongs to the interior of the circular beam movement).

Similarly, the SEM morphologies and EDS results for the copper aluminum joint
produced with the vertical eight beam oscillation and parameter set #6 are shown in
Figures 17 and 18. Compared to the linear stitched weld and the circular beam oscillation
presented above, an excessive intermixing of the joining partners, as already discussed in
Section 4.1.3, becomes visible. Copper is detected in aluminum down to the ground of
the weld seam and, conversely, aluminum can be found in copper up to the weld seam
top surface. Consequently, large amounts of intermetallic phases are observed in the weld
seam, indicated by the outlined areas in Figure 18. In addition, it becomes apparent from
the phase composition presented in Figure 18 that EDS spot 9 is likely to consist of Al4Cu9.
The interface area is furthermore composed of Al2Cu in the position of point 10, Al3Cu4 in
the position of point 11, and aluminum solid solution in the position of point 12 [65].
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From the microstructural analysis of the fusion zones, it can be concluded that the
absence of a beam oscillation significantly reduces the formation of intermetallic phases.
The short interaction time at high intensity and feed rate limits the formed layer width for
parameter set #2 to a thickness of ≈40 µm. In comparison, increased copper aluminum
intermixing and subsequent formation of intermetallic phases were observed when using
the circular beam oscillation strategy, which is in good accordance to the results presented
in [56]. The largest amount of intermetallic phases was detected for the vertical eight
oscillation strategy (parameter set #6).
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It should be noted that no significant amount of nickel was detected in the interface
areas and fusion zones (<0.5 at. %). This fact can be attributed to the low plating thickness
used in the investigations. Nevertheless, the incoupling behavior of the laser beam may be
positively influenced due to the increased absorptivity of nickel compared to copper for λ
= 515 nm [69]. Whether the idea of distributing the intermetallic compounds uniformly
in the weld to achieve a ductile behavior of the seam was successfully implemented
was investigated by tensile tests and contact resistance measurements. The analysis of
weld seam performance under variation of welding strategy and processing parameters is
presented in the following.
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4.3. Seam Surface Roughness Analysis

The surface appearance of the weld seam in laser beam welding is a meaningful
criterion, as it usually gives a good first impression of the weld quality through visual
inspection. Therefore, the selected parameter sets were examined in terms of seam surface
roughness to obtain a quantitative, comparable metric. An arithmetic mean of the surface
roughness was calculated by averaging the Ra values from the entire weld seam of each
specimen. The results are shown in Figure 19.
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Figure 19. Seam surface roughness evaluated over the entire seam area on copper for parameter sets
#1–#6 (see Table 5, n = 6).

It is noticeable in this case that the surface roughness of sample #6 is significantly
higher compared to all other sets of parameters examined. The highest value of
32.2 µm is reached for the vertical eight beam oscillation with PL = 800 W, vF = 25 mm/s,
f = 100 Hz. These samples also had the highest standard deviation of 13.5 µm. This behavior
is attributed to the high energy input associated with this parameter set, which leads to
increased elemental intermixing and high dynamics in the interaction zone. In addition,
this parameter setting shows the highest degree of overlap applied in the studies. The
surface roughness for the linear stitched weld #1 was found to be the lowest, while the other
parameter sets were observed with Ra-values of about 10 µm. The increased dynamics
when applying beam oscillation strategies are also reflected in the results of this analysis by
an increased standard deviation.

In summary, the surface roughness was observed for five of six parameter sets with
Ra values Ra ≤ 10.5 µm. With regard to the investigations presented in [70], comparable
roughness values could be achieved for the surface quality, although a significantly larger
spot diameter was used in the experimental studies presented in this work. By the appli-
cation of the stitched welding strategy #1, an average roughness of Ra = 7.4 µm can be
achieved, which may help to minimize rework efforts and reduce the required installation
space for battery tab connections in potential applications.

4.4. Vickers Microhardness Analysis of the Weld Seams

The mechanical properties of the welded joints were evaluated through microhard-
ness analysis and tensile tests at room temperature. This section presents the hardness
measurements of the tree parameter sets #2, #4, and #6 with different welding strategies
performed on cross sections of the weld seam (longitudinal section for the linear stitched
weld respectively). A force of 1 N (HV 0.1) was applied for the imprints, while the distance
between the imprints was set to 0.2 mm. Thus, for the oscillating welding strategies, eight
imprints could be placed in the joint area. The base material on both sides was added to
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study softening effects after welding. For the linear stitched weld, microhardness values
were obtained at five locations in and adjacent to the joint area. Two measurement routes
were performed with a distance of 0.1 mm from the interface in copper and aluminum,
respectively. Table 6 shows the microhardness values of unwelded copper and aluminum
specimens as a reference.

Table 6. Hardness measurements of the base material.

Identification Hardness in HV (HV 0.1)

Copper 58.1 ± 2.9
Aluminum 22.6 ± 1.6

In Figure 20, the microhardness profiles of the linear stitched joint welded with
parameter set #2 in copper and aluminum are displayed.
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Figures 21 and 22 show the results for the circular beam oscillation using parameter
set #4 and the vertical eight beam oscillation applying parameter set #6 respectively. Note
that the hardness scales are different due to the maximum values observed.
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In general, it is found that the hardness in the weld seams is significantly higher
than the hardness in the heat-affected base material of both copper and aluminum. No
significant softening of the base metal was observed in any of the examined weld seams.
The actual hardness profile in the joint area was found to be significantly dependent on the
choice of process parameters and welding strategy.

The highest hardness values for the linear stitched weld were determined in the
center of the weld with almost 140 HV in copper and aluminum. This indicates controlled
elemental mixing in the interaction zone, as increased microhardness values were observed
in the weld seam, particularly significant for aluminum. The hardness profiles when
applying temporal power modulation reveal a different behavior. The hardness curves
of the circular beam oscillation show an average value of 155 HV for copper and 91 HV
for aluminum in the seam cross section. The increased copper aluminum intermixing
compared to the linear stitched weld can also be noted from the significantly increased
standard deviation in Figure 21. A maximum microhardness of 300 HV for four averaged
weld seams was observed, while peak values of up to 500 HV indicate the presence of
copper-rich intermetallic phases in the joint. The vertical eighth oscillation strategy is
characterized by the highest microhardness values measured in this study. Average values
of 460 HV for copper and 440 HV for aluminum were determined for the seam cross sections.
The maximum microhardness in this case was 720 HV in copper, with outliers near 1000 HV
(967 HV for copper, x =−0.15). The plot of the hardness values for parameter set #6 denotes
symmetrically distributed components at the position of copper and aluminum. This in turn
points to large amounts of intermetallic phases in the weld seam. The observed behavior
may have a negative effect on the current flow in the weld seam, which is discussed
in Section 4.7.

In comparison, the average hardness across the weld seam area was the lowest for the
linear stitched weld compared to the oscillating welding strategies. It was found that a high
degree of overlap, as in the vertical eight beam oscillation, significantly increases the energy
input and thus can strongly stimulate the formation of intermetallic phases, which are
significantly harder than the base material (compare Table 1). The presence of intermetallic
phases can be well correlated with the EDS measurements, as shown in Section 4.2, which
also confirm their presence in the weld seams with varying amounts.

4.5. Tensile-Shear Strength Testing

The tensile strength of the joints was tested in a standard tensile shear test machine as
described in Section 3.4. Thereby, the parameter sets #1–#6 with different overlap welding
strategies and process parameters were investigated. In general, beam oscillation increases
the component intermixture in the weld seam area and results in a larger connection width
of copper and aluminum (compare Figure 12). The shear strength of the joints is reported in
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Figure 23 in terms of the maximum tensile load at failure. The exact resisting area depends
on the failure location and the calculation of the absolute fusion area is tedious and depends
on the seam geometry, which is why this representation was chosen here. Four samples
were examined per parameter set in order to obtain statistically relevant results and to
obtain information about the stability of the methods.
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which is assumed to be related to the large number of intermetallic phases in the weld 
seam. The distribution of these phases with a combination of ductile and brittle interme-
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strength of this parameter set was found to be the highest for the oscillating welds. This 
outcome confirms the studies in [49], where this type of oscillation is also found to be 
beneficial for the distributing of the intermetallic phases, since the fluid flow and the re-
sulting fusion zone follow the trajectory of the laser beam. For the linear stitched weld, a 

Figure 23. Tensile-shear strength result comparison for parameter sets #1–#6 (see Table 5).

As can be seen in Figure 23, the processed samples with linear stitched welding strategy
held the highest average loads of about 830 N (#1) to 840 N (#2), almost reaching the base
metal strength of the aluminum sheet, which was measured to be 860 N (Cu: 2370 N). Their
counterparts generated using beam oscillation withstood tensile forces of 700 N to 800 N
on average. Thus, a reduction of about 100 N can be derived for all oscillating welding
parameters compared to parameter sets #1 and #2. The standard deviation remained
limited, with the highest value reaching 58 N for the circular beam oscillation in parameter
set #4. The photographs in Figure 23 on the right show the failure behavior in the tensile
test for a circular and a vertical eighth oscillation parameter, respectively.

All specimens, except from the vertical eight beam oscillation parameter #6, fractured
in the aluminum base metal in the softened region within the heat-affected zone and not
in the molten seam area. These results are in good agreement with the findings presented
in [25]. In the case of parameter set#6, a failure in the weld seam in aluminum occurred,
which is assumed to be related to the large number of intermetallic phases in the weld seam.
The distribution of these phases with a combination of ductile and brittle intermetallic
structures apparently was achieved with parameter set #5, as the average tensile strength
of this parameter set was found to be the highest for the oscillating welds. This outcome
confirms the studies in [49], where this type of oscillation is also found to be beneficial for
the distributing of the intermetallic phases, since the fluid flow and the resulting fusion
zone follow the trajectory of the laser beam. For the linear stitched weld, a higher maximum
tensile load could be achieved in case of #2 with lower line energy. This behavior follows
the explanations in [49], describing an increasing tendency of the shear strength with
increasing laser power up to a maximum value for a linear weld, after which a further
power increase activates more copper and aluminum and thus leads to a larger fusion zone
with simultaneously decreasing shear force.

In summary, linear stitch welded specimens exhibit good mechanical stability and
were able to withstand higher forces than specimens welded by use of beam oscillation
when processed with the same experimental setup using a 340 µm laser spot with green
laser radiation at keyhole aspect ratios of ~1.

4.6. Temperature Measurement in the Seam Adjacent Zone during Welding

In Figure 24, the averaged maximum temperatures (n = 4) occurring in the seam
adjacent zone during the welding process are shown. All measured temperatures in the
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seam adjacent zone were below the maximum permissible temperature of TCrit = 65 ◦C.
At a distance of 20 mm between the symmetry plane of the weld seam and the measuring
points, a maximum temperature of 63 ◦C was detected for parameter set #6 on the copper
tab side. In general, the maximum temperature was recorded in the copper sheet, as can
be seen, for instance, in the diagram in Section 4.10 which was attributed to the upper
positioning and the high thermal conductivity of copper. Since the welding process takes
only about one second of time, a rapid heating of the welded samples takes place, followed
by different cooling curves for both metals. This high thermal gradient favors the formation
of intermetallic phases in the weld seam area [64] but also leads to the fact that the seam
adjacent zones stayed below TCrit. The evaluation of the influence of process parameters
on the mean maximum temperature in the battery tab connections shows values between
40 ◦C and 50 ◦C for the linear stitched weld and the circular beam oscillation. In both
cases, a reduced line energy has a decreasing effect on the value trend. The increased
degree of overlap in parameter set #6 compared to #5 results in an increase in the maximum
temperature in the seam adjacent zone due to an increased heat accumulation effect.
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Figure 24. Mean temperatures occurring in the seam adjacent area during welding for parameter sets
#1–#6 (see Table 5).

Based on the measurement results, it is recommended for the application of laser-based
contacting of battery tab connections to ensure a minimum distance of 20 mm between the
center of the weld trajectory and the critical component (e.g., the current collector edge).

4.7. Electrical Connection Resistance

Figure 25 shows the results for the electrical connection resistance measurements of
the welded joints. For this purpose, the average values of ten resistance measurements on
four samples per parameter set (n = 4) were calculated. Each welded copper aluminum
sample was evaluated at three distinct locations, at the beginning, in the middle, and at the
end of the weld seam respectively. As no significant trend was observed along the path of
the weld seam, only the averaged values and standard deviation are shown in Figure 25.

It should be noted that all measured resistances were between the two reference values
of the base materials (RCu = 28 µΩ and RAl = 55 µΩ). This behavior confirms the fact that all
welding conditions studied promote the formation of solid joints that do not significantly
affect the electrical performance of the final joint, either by the shape of the weld seam or
by the increased formation of intermetallic phases.

As can be noted from Figure 25, the resistance values for the linear stitched welds
were below 45 µΩ. In addition, a slightly improved resistance with reduced line energy
can be detected between parameter sets #1 and #2. The lowest resistance was measured at
42.2 µΩ for a laser power of PL = 1600 W at a feed rate of 500 mm/s (#2). For the circular
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beam oscillation strategy, the resistance of both parameter sets was in the range of 43 µΩ to
44 µΩ. The resistance of the first parameter set of the vertical eight beam oscillation (#5)
was 44.5 µΩ, which is also within the range of the other two overlap welding strategies.
The highest resistance was found for #6 while the CQI was 1.16. This significant increase
in resistance can be explained by an increased amount of intermetallic phases in the weld
seam, already discussed in Section 4.2. All other parameter sets examined could achieve
values close to a CQI of 1, emulating the conductance of the base materials. Moreover, the
difference between the resistance values of parameter sets #1–#6 is less than 13%. This result
confirms that all processing conditions used within this work are suitable for achieving
proper electrical connections between dissimilar battery tab connections. The obtained
resistance values are comparable to those obtained by the authors in [43,71], proving that
overlap welding of copper to aluminum using green laser radiation and a comparatively
large laser beam can achieve joint properties similar to those obtained when near-infrared
single-mode lasers are used.
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Figure 25. Electrical contact resistance and CQI of the specimen welded with parameter sets #1–#6
(see Table 5).

In addition, the tensile shear strength values from Sections 4.2 and 4.8 were correlated
with the measured electrical resistances of the weld seams. In Figure 26, both the maximum
tensile loads together with the electrical resistances are plotted for the welds produced with
and without spatial beam oscillation.

As discussed in Section 4.5, maximum loads of up to 880 N were observed, which
coincide with the lowest electrical resistance of 42 µΩ. The mechanical and electrical quality
were found to be correlated, thus the lowest electrical resistances were measured for high
tensile loads and vice versa. From the accumulation of measurement points, it can be
concluded that the linear stitched welding strategy has the best mechanical and electrical
properties with comparatively small scattering. This is followed by the circular beam
oscillation. The widest distribution was observed for the vertical eight beam oscillation.
Therefore, process optimizations that address one of these quality parameters are expected
to simultaneously optimize the other. In addition, the non-destructive measurement of
the electrical resistance may allow the mechanical strength of the joint to be predicted (see
overall trend for all parameter sets indicated by black dashed line). Therefore, the fast and
reliable determination of the joint resistance is assumed to be beneficial for the high-scale
manufacturing of battery tab connections. This topic is addressed by a clamping device
with integrated sensor technology for direct data acquisition before, during, and after the
welding process close to the interaction zone, see Section 4.10. In sum, presented results
agree well with correlations reported for the thin sheet welding using a single-mode fiber
laser in [72].
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4.8. Process Window Evaluation—Statistical Analysis of Parameter Variations

In order to investigate the process stability of the three different overlap welding
strategies, investigations with laser power variation from reference parameters #1–#6 were
conducted. For this purpose, offset values of 100 W higher and lower laser power compared
to the reference values were chosen to simulate process fluctuations caused, for example,
by a contaminated protective window or incorrect laser power calibration. Four samples
per setting were analyzed to obtain statistical meaningful results and obtain a measure
for parameter set stability. Figure 27 shows the mechanical seam properties of the welded
joints and Figure 28 shows the electrical contact resistance respectively.
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laser power.

It becomes evident that the circular beam oscillation shows the highest continuity
in the mechanical and electrical properties when the laser power is varied. The linear
stitched welds indicate slightly higher deviations in the measured data, which is attributed
to the lower feed rates used for parameter sets #1 and #2. Thus, line energy differences
are increased compared to welding strategies applying beam oscillation. In terms of
absolute values, the linear stitched welds reveal the most appropriate values for a potential
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application for battery tab connections, as discussed earlier in Section 4.7. The vertical eight
oscillation strategy is the most difficult to tune accurately to proper processing parameters,
which leads to strongly differing values in Figures 25 and 26, especially for parameter set #6.
It is worth mentioning that for all parameter sets of the three welding strategies with higher
line energy (#1, #3, and #5), a reduction in the laser power led to an improvement of the
joint properties. This can be observed in the characteristic staircase-like progression in the
evaluation results for parameter sets #1, #3, and #5 in Figures 25 and 26. All investigated
parameter sets for the three welding strategies can be found in Appendix B.
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4.9. Discussion

In this study, the green laser wavelength with comparatively large spot diameter
(340 um) was used to precisely control the element mixing in the fusion zone during laser
beam welding copper and aluminum. The requirements for the welded joints include the
highest possible tensile strength and low ohmic resistance in order to reduce heat losses in
battery tab connections as far as possible. Due to the precise energy input at small keyhole
aspect ratios with 515 nm wavelength (see [59]), overlap welds with suitable mechanical
strength and electrical resistance values were successfully generated by the use of linear
and oscillating welding strategies. Table 7 gives an overview of studies on dissimilar laser
beam welding of copper and aluminum.

Table 7. Summary of research conducted on laser beam welding of copper and aluminum.

Materials Weld
Length Laser Process Joint Type Welding

Strategy Maximum Load
Electrical
Contact

Resistance

Reference
(Year)

0.2 mm Cu
[Ni]/0.3 mm Al 32 mm Yb:YAG (2f)

λ = 515 nm (cw)
Lap joint (Cu

on top)
Linear

Oscillating 880 N 42 µΩ (Test
length 17 mm)

(this work)
2023

0.2 mm Al/
1 mm Cu 45 mm Single-mode fiber

(pulsed mode)
Lap joint (Al

on top) Oscillating 1209 N 86 µΩ (Test
length 40 mm) [71] 2023

0.3 mm Cu/
0.4 mm Al 45 mm Diode λ = 450 nm

(cw)
Lap joint (Cu

on top) Linear ~670 N 44 µΩ (Test
length 20 mm) [48] 2022

0.3 mm Cu
[Ni]/0.45 mm Al 45 mm Single-mode

fiber (cw)
Lap joint (Cu

on top) Linear 700–800 N 40~42 µΩ (Test
length 20 mm) [73] 2022

0.4 mm Al/
0.3 mm Cu 45 mm Single-mode fiber

(pulsed mode)
Lap joint (Al

on top) Linear ~107 kg (1049 N) N/A [74] 2019

0.3 mm Cu/
0.4 mm Al 45 mm Single-mode

fiber (cw)
Lap joint (Cu
or Al on top)

Linear
Oscillating ~130 kgf (1274 N) N/A [75] 2019

0.3 mm Cu
[Ni]/0.45 mm Al 45 mm Single-mode

fiber (cw)
Lap joint (Cu
or Al on top) Oscillating ~120 kgf (1177 N) Low electrical

resistance [43] 2019

0.3 mm Cu/
0.3 mm Al 20 mm Nd:YAG (cw) Lap joint (Cu

on top) Linear 539.52 N N/A [67] 2014
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Compared to the results of other researchers, the current study based on the use of
visible wavelength shows results to great advantage. Comparative mechanical strength
and electrical resistance values were achieved in distinct processing parameter regions
for the three different welding strategies compared to single mode near-infrared beam
sources in pulsed or continuous-wave (cw) operation mode and a blue diode laser in [48].
The presented investigations quantified the influence of the processing parameters on the
interface geometry and the resulting electrical and mechanical properties of the welds,
as well as their influence on the amount and local distribution of intermetallic phases in
the weld seams. In addition, joint repeatability was researched, identifying reproducible
parameter sets for high volume battery tab joining. Furthermore, our study confirmed a
correlation between the electrical resistance and the tensile strength of the joints. Since this
relationship offers the possibility of non-destructive testing of the joint quality, which is
much faster and cheaper than conventional tensile-shear strength tests, a special fixture
with integrated sensor technology was developed, which is described in Section 4.10.

4.10. Clamping Device with Integrated Sensor Technology

The developed clamping device with integrated sensor technology for direct data
acquisition before, during, and after the welding process close to the interaction zone is
shown in Figure 29. The measurement results for a welding process using parameter set #2
are displayed in the diagram on the right.
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Figure 29. Sample fixture with integrated sensors for the in-line measurement of seam performance
during welding.

The clamping device features the following structure and functionalities:

1. A 3D-printed clamping top part with integrated metal inserts in the specimen direction
and in areas where clamping force is induced into the part.

2. An integrated gas inlet for supplying a protective gas (nitrogen) to the interaction
zone of laser and material.

3. Two horizontal toggle clamps with integrated load cell and sensor unit (Kipp K1463,
Heinrich Kipp Werk GmbH, Sulz am Neckar, Germany) for the measurement and
assurance of the required clamping force before the welding process is started.

4. Two spring-loaded coaxial kelvin contacts (UWE electronic GmbH, Germany) with
isolated inner and outer conductors for electrical resistance measurement (test length
now 16 mm).

5. Four type K spring -loaded thermocouples (brass, gold plated; UWE electronic GmbH,
Unterhaching, Germany) to determine the temperature increase in the samples with
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spatial resolution near the welded area (all sensors were integrated in holes in 8 mm
distance to the symmetry plane of the weld seam).

6. A Si-photodiode PDA100A-EC (Thorlabs Inc., Newton, NJ, USA) mounted in the
welding cabin and pointing to the laser interaction zone to sense the onset of laser
emission for data recording using an Expert Key 200L (Delphin Technology AG,
Bergisch Gladbach, Germany) data logger.

All thermocouples were connected to 18-bit A/D converted inputs of the data logger.
The resistance measurement was triggered by the process start, while the signal was passed
from the measurement device to the data logger by means of its analog output. The
conversion factor was 100 mV = 0.1 mΩ. The clamping force was monitored before the
start of the welding process to ensure proper contact (zero gap) of the joining partners. The
rising edge of the photodiode signal at the start of the laser emission triggered the data
recording, with 2 s recorded retrospectively. The signal drop at 13 s indicates the opening
of the cabin door, as less light was reflected to the sensor and no filter was attached to the
photodiode. From the signal trend (red), the decrease in electrical resistance due to the
metallic bonding between copper and aluminum can be clearly seen. During the welding
process however, no physically meaningful values can be extracted from the measurement
setup for the electrical resistance. In addition, the rapid increase during the welding process
(TStart to TEnd) and the subsequent cooling can be read from the temperature measurements,
which is already below 35 ◦C, 12 s after the end of laser emission. A difference in the
cooling rate for the copper sheet on top compared to the aluminum sheet is also observed.
The local temperature distribution reveals that the left half of the copper plate has a slightly
higher maximum temperature than the right position (Positions: TE-1: Cu, seam start;
TE-2: Cu, seam end; TE-3: Al, seam start; TE-4: Al, seam end, T-Ref: reference temperature
data logger). This behavior may be related to the protective gas flow. Since the goal
of the measurement chain is an accurate temporal resolution of the welding process, it
enables process optimization with regard to the energy introduced into the components
(temperature) and the seam quality (resistance). The methodology could also extend the
easy determination of process stability once a suitable process parameter is identified.
Further experiments are needed to investigate the potential in detail.

5. Conclusions

In this work, the seam properties and the process stability of different overlap welding
strategies using green laser radiation for dissimilar copper to aluminum welding were
investigated. The intermixing of both metals and phase formation were studied, as these
connections are often encountered in the battery tab connections due to their good thermal
and electrical conductivity. In this process, the intermixing is rapid because of the differ-
ences in density and melting temperatures of the joining partners and the deep penetration
welding mode used. Thus, intermetallic phases may be formed, which are prone to reduce
the performance of the weld seam. Therefore, the capabilities of applying green laser
radiation in combination with and without spatial power modulation (linear stitched weld,
circular and vertical eight beam oscillation) to affect the interconnection area of copper-
aluminum joints were investigated. The most important contributions and findings of the
present study can be summarized as follows.

• Process parameter windows were identified for all three welding strategies, with the
linear stitched weld showing the most stable results. It is noticeable that there must
be a sufficient intensity to enable stable incoupling and interface area between the
components.

• The weld seam shape, characterized by penetration depth and seam width was repro-
ducibly reached with copper as the top layer. The process windows are large compared
to infrared laser applications of this type and the geometrical properties of the weld
seams can be precisely controlled by the process parameters laser power and feed rate
(vF, f for oscillating strategies).
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• Using beam oscillation, a discontinuous weld seam is formed in the cross-sectional
direction, which is a combination of different degrees of intermixing. Due to the
overlapping oscillation path, the local energy changes compared to the linear stitched
weld and copper aluminum intermixing in the interaction zone differs significantly.

• The results of the test series show a different sensitivity of the oscillating welding
strategies with regard to the temperatures in the seam adjacent zone since heat accu-
mulation effects cause higher maximum temperatures close to the permissible limit
when using the vertical eight oscillation strategy. Overall, no critical temperatures
were detected in the seam adjacent area in this study.

• The deep penetration mode used favors the formation of sound, crack-free weld seams.
Pores were found to be distributed over the entire joint area when higher line energies
were applied compared to the reference parameters.

• Based on the findings, the occurrence of intermetallic phases was investigated. EDS
analysis confirmed that intermetallic phases were distributed in the interconnection
area of copper and aluminum in the form of layers in the weld. Hardness measure-
ments confirmed the presence of these intermetallic phases (plausibly θ and η). In the
case of the oscillating welding strategies, these were distributed over the entire fusion
zone, while in the case of the linear stitched weld, a concentration was observed at the
interface.

• Excellent mechanical properties were observed for the reference welding parameter
sets defined for of all welding strategies, with tensile strengths similar to those obtained
in the literature with near-infrared single-mode laser welding.

• A maximum mechanical resistance of 880 N was found. The failure of the joints was
classified based on the fracture location. The weld seams were found to fail outside
the fusion zone despite the presence of brittle intermetallic phases in the joint. A large
plastic deformation of the aluminum sheet after fracture indicates a ductile weld seam
behavior. Only for increased intermixing using the vertical eight beam oscillation, a
fracture in the weld seam occurred.

• Based on the microstructural analysis and tensile-shear strength testing, it can be
concluded that maximum shear strength is achieved in copper-aluminum overlap
welds with low degree of intermixing and without the presence of large complex
intermetallic structures in the weld seam.

• The electrical resistance is observed to be relatively stable and not significantly sensi-
tive to process parameters. The measured values were comparable to those reported
in the literature. The linear stitched welded samples performed slightly better, and
a lower deviation was detected, with the lowest value of 42 µΩ. In addition, a corre-
lation is found between the electrical resistance and the mechanical strength of the
weld.

• Finally, a clamping device with integrated sensor technology (clamping force, resis-
tance, temperature) for direct data acquisition before, during, and after the welding
process close to the interaction zone was developed and tested.

In summary, this paper demonstrated the high feasibility of producing battery tab
connections by laser beam welding using green laser radiation with appropriate seam
properties. These in-depth analyses of weld seam properties, intermetallic phases, electrical
contact resistance, and temperature rise should enable the development of an efficient
battery system that meets critical quality requirements.

In future work, the long-term stability of this connections with regard to cyclic loads
induced by temperature or current may be investigated. An experimental study correlating
the electrical resistance with the thickness of the intermetallic layer in the weld seam is also
of interest and proposed for future studies.
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Appendix A

The overlap degree U for a circular beam oscillation with the linear feed rate v f , the
oscillation frequency f , the oscillation amplitude a, and the time t can be calculated by use
of Equation (A1).

U =

√
4·a2 −

( v f
π· f

)2
− v f

2·π· f ·
[
3·π + 2·arcsin

(
− v f

2· f ·a

)]
√

4·a2 −
( v f

π· f

)2
− v f

2·π· f ·
[
π + 2·arcsin

(
− v f

2· f ·a

)] ·100% (A1)

Appendix B

Table A1. Examined parameter sets for the welding strategies circular beam oscillation (left and
center) and vertical eight beam oscillation (right); reference parameter sets marked in green.

PL in W vF in
mm/s f in Hz PL in W vF in

mm/s f in Hz PL in W vF in
mm/s f in Hz

400 30 50 800 75 150 700 25 100
500 30 50 900 75 150 800 25 100
600 30 50 950 75 150 850 25 100
700 30 50 1000 75 150 900 25 100
800 30 50 1100 75 150 600 30 50
600 30 75 850 75 200 700 30 50
700 30 75 900 75 200 600 30 75
800 30 75 950 75 200 700 30 75
600 30 100 1000 75 200 800 30 75
700 30 100 800 100 100 900 30 75
800 30 100 900 100 100 800 50 50
600 50 50 1000 100 100 900 50 50
700 50 50 1100 100 100 1000 50 50
800 50 50 1200 100 100 1100 50 50
900 50 50 1100 100 150 900 50 100
700 50 75 1200 100 150 950 50 100
800 50 75 1300 100 150 1000 50 100
900 50 75 800 100 200 1100 50 100
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Table A1. Cont.

PL in W vF in
mm/s f in Hz PL in W vF in

mm/s f in Hz PL in W vF in
mm/s f in Hz

1000 75 900 100 200 1000 75 100
700 50 100 1000 100 200 1100 75 100
800 50 100 1100 100 200 1200 75 100
900 50 100 1200 100 200 800 75 125

1000 50 100 1200 150 150 900 75 125
700 50 150 1300 150 150 1000 75 125
800 50 150 1400 150 150 900 100 100
900 50 150 1500 150 150 1000 100 100

1000 50 150 1600 150 150 1100 100 100
800 75 100 800 150 200 1200 100 100
900 75 100 1000 150 200 800 100 125

1000 75 100 1400 150 200 900 100 125
1100 75 100 1600 150 200 1000 100 125
1200 75 100 1800 150 200 1100 100 125

1200 100 125
900 125 125

1000 125 125
1100 125 125
1200 125 125
1300 125 125

Table A2. Examined parameter sets for the linear stitched weld; reference parameter sets marked
in green.

PL in W vF in mm/s

1200 300
1300 300
1400 300
1500 300
1300 400
1400 400
1500 400
1600 400
1500 500
1600 500
1700 500
1800 500
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