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Abstract

The detection and removal of precancerous polyps through colonoscopy is the primary technique 

for the prevention of colorectal cancer worldwide. However, the miss rate of colorectal polyp 

varies significantly among the endoscopists. It is well known that a computer-aided diagnosis 

(CAD) system can assist endoscopists in detecting colon polyps and minimize the variation among 

endoscopists. In this study, we introduce a novel deep learning architecture, named MKDCNet, for 

automatic polyp segmentation robust to significant changes in polyp data distribution. MKDCNet 

is simply an encoder-decoder neural network that uses the pre-trained ResNet50 as the encoder 

and novel multiple kernel dilated convolution (MKDC) block that expands the field of view 

to learn more robust and heterogeneous representation. Extensive experiments on four publicly 

available polyp datasets and cell nuclei dataset show that the proposed MKDCNet outperforms 

the state-of-the-art methods when trained and tested on the same dataset as well when tested 

on unseen polyp datasets from different distributions. With rich results, we demonstrated the 

robustness of the proposed architecture. From an efficiency perspective, our algorithm can process 

at (≈ 45) frames per second on RTX 3090 GPU. MKDCNet can be a strong benchmark for 

building real-time systems for clinical colonoscopies. The code of the proposed MKDCNet is 

available at https://github.com/nikhilroxtomar/MKDCNet.

Index Terms–
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I. INTRODUCTION

Colorectal cancer (CRC) is the second leading cause of cancer-related death and the third 

leading common cause of cancer worldwide [1]. The five-year survival rate is 90% for 39% 

of the patients that are diagnosed with localized stage disease but declines to 71% and 14% 

once diagnosed with regional and distant stage respectively [2]. Colonoscopy is considered 

the primary technique for colon cancer screening because it offers both detecting and 

removal of the polyp in a single operation. U.S. Preventive Services Task Force recommends 

forty-five to be considered as the new fifty for screening of CRC [3]. Colonoscopy can 

reduce the mortality through early detection at treatable stage and remove precancerous 

adenomas [4], [5].
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During the colonoscopy operation, the average miss rate of the polyp is around 22–28% 

[6]. It is mainly because colonoscopy is an operator-dependent procedure and high inter-

observer variations are seen in endoscopists’ skills in detecting polyps [7]. During routine 

colonoscopy, the most frequently missed polyps are flat and smaller polyps [8]–[10]. Studies 

have shown that even a 1% increase in adenomas detection leads to a 3% decrease in the risk 

of interval colon cancer [11]. Therefore, it is highly critical to decrease the polyp miss-rate 

via an automated systems for CRC screening.

A Computer-Aided diagnosis (CADx) can highlight the suspicious frames and improve 

colonoscopy procedures. Jha et al. [12] proposed DoubleU-Net that used two U-Net’s where 

the output of first U-Net acts as a soft-attention to the other. The network uses VGG-19 as an 

encoder and efficient blocks such as squeeze and excitation network [13] and atrous spatial 

pyradimal pooling [14] to capture some semantically meaningful information. DoubleU-Net 

showed state-of-the-art (SOTA) results on different biomedical image segmentation datasets. 

Wu et al. [15] proposed a lightweight context-aware network, PolypSeg+, for real-time 

polyp segmentation. The proposed architecture can capture distinguishable polyp features 

even with less trainable parameters and retain real-time speed. Tomar et al. [16] proposed 

a feedback attention network (FANet) for improved biomedical image segmentation, where 

they showed the SOTA performance on seven publicly available benchmark datasets. FANet 

unifies the mask of the previous epoch with the current training epoch and rectifies the 

prediction iteratively during the test time for improved performance. Ji et al. [17] proposed 

a progressively normalized self-attention network (PNS-Net) for video polyp segmentation. 

Shen et al. [18] proposed a hard region enhancement network (HRENet) for automatic polyp 

segmentation.

Despite the several automated methods proposed to improve the accuracy of polyp 

segmentation, further investigations are required to show the generalizability of the existing 

and the proposed method. Currently, most of the algorithms are only trained and tested on 

the same datasets [16], [17], [19]–[21]. Therefore, we aim to develop a novel deep learning 

algorithm to work well on varying distribution datasets coming from different institutions 

across different countries. To this end, we introduce a multiple kernel dilated convolution 

network (MKDCNet) architecture and test its performance on four still image datasets 

(polyps) and one cell nuclei dataset.

The main contribution of our work can be summarized as follows:

1. We present a novel deep learning architecture, MKDCNet, that utilizes novel 

multiple kernel dilated convolution block to increase the field of view of 

convolution kernel in order to capture local and global features. The multi-scale 

feature fusion block fuses different decoder blocks output for more robust feature 

representation that helps in accurate polyp segmentation.

2. We obtained SOTA results on four publicly available polyp datasets (same train-

test set), and a nuclei segmentation dataset. Similarly, the proposed method 

outperformed other methods on three cross-center polyp dataset. Extensive 

experimental results shows the strong learning and generalization ability of 

MKDCNet.
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II. METHOD

The proposed MKDCNet architecture is illustrated in Figure 1. The architecture begins with 

a pre-trained ResNet50 [22] as the encoder from which we extract four different feature 

maps. Each of these feature map is then passed through a sequence of 3 × 3 convolution 

layer, batch normalization, and a ReLU activation function. The output from the ReLU 

activation function is then passed through our novel Multiple Kernel Dilated Convolution 

(MKDC) block, which consists of multiple parallel convolution layers with different kernel 

sizes and dilation rates. After that, we have three decoder blocks, the output from all the 

three decoder blocks is passed through a Multiscale Feature Fusion (MSFF) block where 

we upsample and fuse the feature map to produce a more robust semantic representation. 

Finally, this feature map is then passed through a 1 × 1 convolution followed by a sigmoid 

activation function generating a binary segmentation mask.

A. Multiple kernel dilated convolution (MKDC) block

The MKDC block begins with four parallel convolution layers with a kernel size of 1 × 1, 

3 × 3, 7× 7 and 11 × 11 respectively. The kernel size’s progressive increase helps capture 

a broad range of features, allowing the network to learn a more robust representation. 

Each convolution layer is then followed by batch normalization and a ReLU activation 

function. Next, each of these feature maps are then concatenated and passed through four 

parallel convolution layer, each having a dilation rate of 1, 3, 7 and 11, respectively. The 

use of different dilated convolutions helps to further expand the field of view and allows 

the network to capture more details and refine the significant features. In this sense, the 

MKDC is similar to multi-resolution strategies but in our case we capture rich details 

with convolutional kernels instead of using multiple parallel architectures or iterative and 

simultaneous connection from each resolutions. Each of the convolution layer is then 

followed by batch normalization and ReLU activation function. After that, we perform a 

concatenation over these features and feed them to a 1 × 1 convolution followed by a 

residual connection. Finally, the generated feature maps are passed through a channel and 

spatial attention mechanism which further highlight the significant features.

B. Decoder block

The decoder block begins with a bilinear upsampling which increases the spatial dimensions 

(height and width) of the input feature map by a factor of two. After that, the upsampled 

feature map is then concatenated with the output of another MKDC block, that brings 

more semantic information to the decoder increasing its feature representation. Next, we 

have two residual block, where each residual block consists of a convolutional block 

and an identity mapping connecting the input and output of the convolutional block. The 

convolutional block begins with two 3 × 3 convolution layer, where each is followed by a 

batch normalization and a ReLU activation function.

C. Multiscale feature fusion (MSFF) block

We use the proposed MSFF block to enhance the feature at different scales by aggregating 

them to produce a more robust feature representation. The MSFF block takes the output 

from the first decoder block and passes it through a bilinear upsampling layer to increase its 
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spatial dimensions by a factor of two. After that, it is followed by a 3 × 3 convolution layer, 

batch normalization and a ReLU activation function. The output of the ReLU activation 

function is then concatenated with the output from the second decoder block. Next, we 

again follow a bilinear upsampling layer where the concatenated feature map is upsampled 

by a factor of two and then followed by a 3 × 3 convolution layer, batch normalization 

and a ReLU activation function. The output from the ReLU activation function is then 

concatenated with the output from the third decoder block. After this, the feature map 

is again upsampled and passed through a 3 × 3 convolution layer, batch normalization 

and a ReLU activation function. The feature map is then passed through channel and 

spatial attention mechanism that focus on significant features and thus improve the feature 

representation and its robustness.

III. EXPERIMENTAL SETUP

In this section, we will present the datasets, evaluation metrics, and implementation details 

used in this study.

A. Datasets and evaluation

For this study, we have select four publicly available polyp datasets and a nuclie 

segmentation dataset. The details about the number of images, their size, and their 

application can be found in Table I. We have utilized Kvasir-SEG [23], BKAI-IGH [24], 

CVC-ClinicDB [25], and MedAI challenge test set [26] datasets for the polyp segmentation 

task. For the cell nuclei segmentation task, we have used the 2018 Data Science Bowl 

[27] dataset. To evaluate the performance of all the models, we have used metrics such as 

Dice Coefficient (DSC), mean Intersection over Union (mIoU), precision, recall, accuracy, 

F2-score, and Frame Per Second (FPS).

B. Implementation details

We have implemented the proposed MKDCNet and the SOTA methods using the PyTorch 

framework. For a fair comparison, we have used the same set of hyperparameters for all 

models used in this study. All models were trained on NVIDIA RTX 3090 GPU, where 

both the images and masks were first resized to 256 × 256 pixels for better utilization 

of GPU. The datasets were then split into training, validation and testing in the ratio of 

80:10:10, except for Kvasir-SEG, where a split of 880/120 was used for training and testing 

respectively. An online data augmentation strategy was used on the training dataset which 

includes random rotation, horizontal flipping, vertical flipping and coarse dropout. The 

data augmentation helped to increase the robustness of the model. All the models were 

trained with an Adam optimizer having a learning rate of 1e−4 with a batch size of 16. A 

combination of binary cross-entropy loss and dice loss was used. ReduceLROnPlateau was 

used while training to reduce the learning rate for better performance. An early stopping 

criterion was also used to stop the training when the model stops improving.
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IV. RESULT

At first, we performed validation of the algorithms on same datasets (same distribution). 

Next, we tested the trained model on completely unseen polyp datasets from different 

medical centers (different distribution).

A. Performance test on the same dataset

Table II shows the result of the MKDCNet and SOTA methods. On the Kvasir-SEG dataset, 

MKDCNet achieved a DSC of 0.8887 and mIoU of 0.8267 and outperformed the most 

competitive benchmarking method DeepLabv3+ with ResNet50 encoder with a margin of 

0.5% in DSC and 0.94% in mIoU. Similarly, MKDCNet had a higher recall, precision, F2-

score and nearly equal accuracy. Both DeepLabv3+ and MKDCNet had a real-time speed. 

Similarly, with the BKAI-IGH [24], our method outperformed DeepLabv3+ with a margin 

of 0.41% in DSC and 0.78% in mIoU. Additionally, we performed experiments on the 2018 

Data Science Bowl [27] dataset, where we showed that our method consistently outperforms 

all other baseline methods. Figure 2 showed the example of qualitative results along with 

the heatmap. The qualitative results indicated that MKDCNet had better segmentation as 

compared to the UNet [28] and DeepLabv3+ [31].

B. Performance test on completely unseen dataset

Table III shows the results on the unseen dataset. For the unseen CVC-ClinicDB [25], our 

MKDCNet outperformed DeepLabv3+ with 1.01% in DSC and 0.78% in mIoU showing the 

superior generalization capability of our proposed method compared to others. Similarly, for 

the unseen BKAI-IGH dataset [24], our method outperformed best performing DeepLabv3+ 

by 1.97% in DSC and 1.93% in mIoU. For MedAI challenge test dataset, we only evaluated 

the performance on 200 positive polyp images provided by the task organizers. The models 

trained on Kvasir-SEG obtained better performance on the MedAI challenge dataset and 

slightly weaker performance with the BKAI datasets, which might be because BKAI-IGH 

dataset was captured at a different hospital (Institute of Gastroenterology and Hepatology 

(IGH), Vietnam), whereas the MedAI challenge dataset came from the HyperKvasir [33] 

whose distribution was similar to Kvasir-SEG (as both of them are captured at Vestre Viken 

Hospital Trust, Norway), despite the image frames being different. For both models trained 

on Kvasir-SEG and BKAI-IGH, proposed MKDCNet outperformed DeepLabv3+ by 1.77% 

and 4.4% in DSC, respectively.

C. Ablation study

In Table IV, we presented the ablation study on Kvasir-SEG dataset. When we compared 

setting #3 and setting #4, there was a 1.02% improvement in DSC and a 1.94% in mIoU 

with the multiple Kernel dilated convolution and multiscale feature fusion block in the 

network. Similarly, the Table IV also showed an improvement over both of the individual 

blocks.
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V. CONCLUSION

We presented a novel architecture, MKDCNet, that utilizes ResNet50 as an encoder and 

the novel multiple kernel dilated convolution block to learn more robust representation to 

automatically segment polyps from colonoscopy images with high performance. Extensive 

experimental results on four publicly available datasets (both on the same set as well as 

on completely unseen datasets) consistently showed that MKDCNet has the promising 

capability to improve the segmentation accuracy. With MKDCNet, we obtained a real-time 

processing speed of nearly 45 frames per second. Our results exhibited that MKDCNet has 

a better generalizability, accuracy, and real-time speed. Thus, MKDCNet can be a strong 

new baseline for developing artificial intelligence-based support to improve the traditional 

colonoscopy procedure. In the future work, we plan to exploit MKDCNet under federated 

learning settings where we can train multiple institute datasets and minimize the privacy 

concerns raised by each center.
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Fig. 1: 
Block diagram of the proposed MKDCNet along with its building blocks.
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Fig. 2: 
Qualitative results comparison along with the heatmap on the Kvasir-SEG [23], BKAI-IGH 

[24], and 2018 Data Science Bowl [27] datasets. The heatmaps provide insight into the 

intermediate feature maps from the multi scale feature fusion block. The heatmap shows the 

region of interest and its statistical significance and the color intensity shows the effect. The 

red and yellow colors denote the most significant feature and the blue color denote the least 

significance feature.
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TABLE I:

Details of the datasets used in our experiments.

Dataset Images Size Application

Kvasir-SEG [23] 1000 Variable Colonoscopy

BKAI-IGH [24] 1000 1280 × 995 Colonoscopy

CVC-ClinicDB [25] 612 384 × 288 Colonoscopy

MedAI Challenge test set [26] 200 Variable Colonoscopy

2018 Data Science Bowl [27] 670 256 × 256 Nuclie
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