TABLE 2.
Network | CSF | GM | WM | Avg | ||||
---|---|---|---|---|---|---|---|---|
Baseline | MixACB | Baseline | MixACB | Baseline | MixACB | Baseline | MixACB | |
BuiNet | 0.938 ± 0.010 | 0.938 ± 0.011 | 0.905 ± 0.007 | 0.908* ± 0.007 | 0.888 ± 0.014 | 0.892* ± 0.013 | 0.910 ± 0.007 | 0.912* ± 0.007 |
3D‐UNet | 0.940 ± 0.010 | 0.942* ± 0.008 | 0.907 ± 0.007 | 0.909* ± 0.007 | 0.889 ± 0.014 | 0.892* ± 0.015 | 0.912 ± 0.007 | 0.914* ± 0.008 |
CC‐3D‐FCN | 0.923 ± 0.010 | 0.942* ± 0.008 | 0.910 ± 0.006 | 0.911 ± 0.007 | 0.892 ± 0.013 | 0.894* ± 0.013 | 0.908 ± 0.006 | 0.915* ± 0.006 |
NLU‐Net | 0.947 ± 0.009 | 0.949* ± 0.008 | 0.918 ± 0.007 | 0.919 ± 0.006 | 0.903 ± 0.012 | 0.904 ± 0.014 | 0.922 ± 0.006 | 0.924* ± 0.006 |
DU‐Net | 0.951 ± 0.008 | 0.953* ± 0.008 | 0.922 ± 0.007 | 0.923* ± 0.007 | 0.907 ± 0.015 | 0.907 ± 0.015 | 0.927 ± 0.007 | 0.928* ± 0.008 |
Note: The best values are highlighted in bold font. “Baseline” denotes that the corresponding model adopted the standard convolutional operation; “MixACB” denotes that the corresponding model was transformed into 3D‐MASNet; “*” denotes that the difference between baseline and 3D‐MASNet is statistically significant (p < .05) .