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Abstract: Liver and muscle health are intimately connected. Nutritional strategies that support
liver detoxification are beneficial to muscle recovery. Computational–in silico–molecular systems’
biology analysis of supplementation of calcium and potassium glucarate salts and their metabolite
D-glucaric acid (GA) reveals their positive effect on mitigation of liver detoxification via four specific
molecular pathways: (1) ROS production, (2) deconjugation, (3) apoptosis of hepatocytes, and
(4) β-glucuronidase synthesis. GA improves liver detoxification by downregulating hepatocyte
apoptosis, reducing glucuronide deconjugates levels, reducing ROS production, and inhibiting
β-Glucuronidase enzyme that reduces re-absorption of toxins in hepatocytes. Results from this in
silico study provide an integrative molecular mechanistic systems explanation for the mitigation of
liver toxicity by GA.
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1. Introduction

Muscle soreness and liver health are interconnected systems [1–3]. Muscle soreness
has been shown to upregulate biomarkers of liver damage and liver toxicity [4–7], and liver
detoxification has been shown to support muscle recovery [8]. Dietary supplementation
has been shown to ameliorate muscle and liver damage [6,9]; however, the mechanistic
reasons of such benefits are not yet fully understood.

D-glucaric acid (GA) is a natural and non-toxic compound that can improve the
metabolic cleansing process and aid biotransformation [10]. Dietary calcium or potas-
sium glucarate salts have been shown to increase the level of GA in the serum [11]. GA
and its derivative D-saccharic acid-1,4-lactone (DSL) have been shown to have hepato-
protective [12,13], anti-inflammatory, cholesterol lowering, anti-oxidant [12], and anti-
carcinogenic [11] effects. In this study, we focus on understanding the underlying mecha-
nisms of action of GA on liver damage and liver detoxification.

Detoxification is an important cellular task that involves mobilization, modification,
and excretion of exogenous and endogenous toxicants [14,15]. Common toxicants in-
clude heavy metals, persistent organic pollutants, electromagnetic radiation, stress, fat
metabolites, alcohol metabolite, pharmaceutical and recreational drugs, and bacterial endo-
toxins [16,17]. Liver is the first filter organ between the gastrointestinal tracts and the rest of
the body, providing critical detoxification processes [14]. The majority of the detoxification
and biotransformation processes occur in the liver [18]. The process of detoxification in the
liver involves multiple steps in the biotransformation of primarily non-polar, lipid-soluble
toxicants into polar, water-soluble, and excretable derivatives, which are classified as Phase-
I and Phase-II detoxification pathways [14]. Any dysfunction in detoxification processes
leads to an accumulation of toxins and initiation of early morbidity and mortality [17].
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A growing body of evidence has shown that foods rich with glucarate salts, such
as apple, grapefruit, alfalfa sprouts, etc., may upregulate or favorably balance metabolic
pathways to assist liver detoxification [19–21]. Such findings suggest that dietary supple-
mentation of glucarate salts may benefit liver detoxification processes.

While there is substantial empirical evidence suggesting the role of the metabolites
of glucarate salts in aiding liver detoxification processes, the mechanistic explanation
of how these metabolites exert such beneficial effect is not clearly understood. In this
study, the research aim is to understand the effect of GA on the molecular pathways of
liver detoxification processes. Such understanding demands the need to uncover complex
molecular systems that conventional in vitro and in vivo methods find difficult to elicit.

Emerging modern bioinformatics and computational systems biology methodologies,
performed in silico-meaning on the computer, provide the opportunity to explore such
complex systems. Once such platform is CytoSolve® (version 5.204) which is a well-
established computational systems biology framework of technology and processes that
provide the capability to derive molecular mechanisms of action, to create quantitative and
predictive models of those mechanisms, and to employ the resultant models to simulate
complex biomolecular phenomena [22–27]. The study herein employs CytoSolve, a proven
computational systems biology approach to: (1) identify potential molecular mechanisms
involved in liver detoxification affected by GA; and (2) quantitatively predict the effect
of GA in aiding liver detoxification. Previous work has demonstrated the viability of
using such a computational systems biology approach to model complex biomolecular
phenomena [23,26–31].

2. Materials and Methods

The methodology used to identify the mechanisms of action of liver detoxification and
to quantitatively predict the effects of GA on such mechanisms is described in this section.
The CytoSolve® computational systems biology platform was employed in this process.
The protocol for setting up and using CytoSolve® is explained in detailed by Ayyadurai
and Deonikar, 2022 [31], and briefly described in Supplementary File S1.

2.1. Systematic Literature Review Process and Inclusion Criteria

The workflow for the identification, organization, and curation of the literature and
the extraction of information from the literature was performed per the standardized
CytoSolve® protocol detailed in previous studies [29–31]. The specific list of Medical
Subject Headings (MeSH) keywords is provided in File S3 in Supplementary Materials
Section S3.1.

Using the keywords in File S3, the relevant retrieved articles are categorized and
represented in Figure 1 and follow PRISMA guidelines [32].

2.2. CytoSolve in Silico Modeling Protocol

The identification and extraction of data related to reaction rate constants, biochemical
reactions, and pharmacokinetic properties of GA with respect to the molecular pathways
of liver detoxification were performed per the standardized CytoSolve® protocol detailed
in previous studies [29–31]. All biochemical reactions for each of the individual liver
detoxification mathematical models, along with the kinetic parameters and the initial
concentration of biochemical species, are listed in Supplementary File S2 in Tables S2.1–S2.4.

Molecular pathways of liver detoxification are converted into individual mathematical
models using the biochemical reactions per the standardized CytoSolve® protocol detailed
in previous studies [29–31]. The individual mathematical models were integrated using the
standardized CytoSolve® protocol detailed in previous studies [29–31].

2.2.1. Control Conditions

In this study, the control condition denotes the in silico experimental condition where
supplementation of GA is set to zero. Using this control condition, all four models in-
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volved in liver detoxification were simulated to find the concentrations of their respective
biomarkers—ROS, glucuronide deconjugate, cPARP, and β-glucuronidase—in the absence
of GA supplementation. The values of these four biomarkers under control conditions were
then compared with those obtained in the presence of GA supplementation to understand
how GA affects these biomarkers.

Nutrients 2023, 15, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. PRISMA flow diagram. The systematic literature review process included identifying the 
relevant literature from PubMed, Medline, and Google Scholar. The literature was then filtered to 
remove duplicate studies. The eligibility of articles for the comprehensive review was determined 
using the inclusion criteria detailed in the Materials and Methods section. 

2.2. CytoSolve In Silico Modeling Protocol 
The identification and extraction of data related to reaction rate constants, biochemi-

cal reactions, and pharmacokinetic properties of GA with respect to the molecular path-
ways of liver detoxification were performed per the standardized CytoSolve® protocol 
detailed in previous studies [29–31]. All biochemical reactions for each of the individual 
liver detoxification mathematical models, along with the kinetic parameters and the initial 
concentration of biochemical species, are listed in Supplementary File S2 in tables S2.1–
S2.4. 

Molecular pathways of liver detoxification are converted into individual mathemat-
ical models using the biochemical reactions per the standardized CytoSolve® protocol de-
tailed in previous studies [29–31]. The individual mathematical models were integrated 
using the standardized CytoSolve® protocol detailed in previous studies [29–31]. 

2.2.1. Control Conditions 
In this study, the control condition denotes the in silico experimental condition where 

supplementation of GA is set to zero. Using this control condition, all four models in-
volved in liver detoxification were simulated to find the concentrations of their respective 
biomarkers—ROS, glucuronide deconjugate, cPARP, and β-glucuronidase—in the ab-
sence of GA supplementation. The values of these four biomarkers under control condi-
tions were then compared with those obtained in the presence of GA supplementation to 
understand how GA affects these biomarkers. 

Figure 1. PRISMA flow diagram. The systematic literature review process included identifying the
relevant literature from PubMed, Medline, and Google Scholar. The literature was then filtered to
remove duplicate studies. The eligibility of articles for the comprehensive review was determined
using the inclusion criteria detailed in the Materials and Methods section.

For the ROS production model, the hepatocytes were assumed to be under oxidative
hepatic injury condition, which increases the production ROS 10-fold [33] than the normal.
Using this as an initial condition, the ROS production model was simulated over a period
of two (2) days to predict the steady state control value of ROS to be 70 nM.

For the deconjugation/deglucuronidation model, the cell was assumed to be in an
infectious state with elevated endotoxin levels of 0.1 nM [34]. Using this as an initial
condition, the deconjugation model was simulated over a period of two days to predict the
steady state control value of glucuronide deconjugates to be 0.0049 nM.

For hepatic apoptosis model, the cell was assumed to be in an infectious state with
elevated pro-inflammatory cytokine TNF-α level of 0.0012 nM [35]. Using this as an initial
condition, the hepatic apoptosis model was simulated over a period of two days to predict
the steady state control value of cPARP to be 1217 nM.

For β-glucuronidase synthesis model, the cell was assumed to be in an infectious
state with elevated endotoxin levels of 0.1 nM [34]. Using this as an initial condition,
β-glucuronidase synthesis model was simulated over a period of two days to predict the
steady state control value of β-glucuronidase levels to be 4.75 nM.
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2.2.2. Computer Simulations to Study the Effect of GA on Integrated Model of
Liver Detoxification

The integrated model of liver detoxification includes four major sub-systems: (1) hepatic
apoptosis, (2) ROS production, (3) deconjugation/deglucuronidation, and (4) β-glucuronidase
synthesis. The effect of GA was assessed by estimating the cellular concentration levels of
biomarkers of these processes such as cPARP, reactive oxygen species, deconjugates, and
β-glucuronidase, respectively, in the presence and absence of the GA. The integrated model
of detoxification was simulated using the standardized CytoSolve® protocol detailed in
previous studies [29–31].

Input dosage levels of GA in simulation of all the models were based on its amounts
present in some of the natural sources such as grapefruit. GA levels were found as low
as 1.8 mg to as high as 120 mg in 100 mL of grapefruit juice of different varieties that are
predominantly consumed [20]. In this study, we used GA concentrations of 1.8, 26, 52, and
120 mg/100 mL of grapefruit juice to understand the dose-dependent effect of GA on the
biomarkers of four molecular pathways involved in liver toxicity. The serum levels of GA
for each dose were calculated using Cmax value [36] and are shown in Table 1 below. The
serum values of GA were assumed to be same as the mean liver values for GA.

Table 1. Glucaric acid doses and their respective serum concentrations.

Glucaric Acid Dose (mg/100 mL) Serum Concentration (µM)

1.8 2.7
26 39
52 78

120 180

The simulations were performed for a period of two days as all the model output
parameters reached a steady state value within that period. GA was administered at the
beginning of the simulations, starting at t = 0 s, and was maintained at same concentration
levels for the duration of the simulations.

The following computer simulations are performed:

1. Effect of GA on ROS levels
2. Effect of GA on glucuronide deconjugate levels
3. Effect of GA on C-PARP levels
4. Effect of GA on β-glucuronidase synthesis

3. Results

This study provides three results: (1) A curated set of literature related to liver toxicity,
(2) the identification of molecular pathways involved in the liver toxicity, and (3) in silico
efficacy analysis of effect of GA on four molecular pathways involved in liver toxicity.

3.1. Systematic Literature Review

A systematic literature review resulted in the identification of an initial set of 119 articles
(duplicates were removed) (see Figure 1 for the PRISMA study selection flow chart). Further
analysis of the title and abstract yielded 93 relevant articles that were comprehensively
reviewed by the authors. Of these 85 relevant articles, 45 informed about the 4 molecular
pathways related to liver toxicity, 29 informed about the biochemical interactions between
phytonutrients and the molecular pathways related to liver toxicity, and 19 informed about
the pharmacokinetic and pharmacodynamics properties of GA.

3.2. Molecular Pathways Involved in Liver Toxicity

Four pathways including ROS production pathway, deconjugation/deglucuronidation
pathway, hepatic apoptosis pathway, and β-glucuronidase synthesis were identified to be
involved in liver toxicity. They are described in detail below.
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3.2.1. ROS Production Pathway Involved in Liver Toxicity

Hepatotoxicity induced by exogenous toxins such as alcohol [18] and carbon tetra-
chloride (CCl4) is mediated through ROS production, which leads to apoptosis in liver
cells [37–39]. In Kupffer cells, LPS interacts with Toll-like 4 (TLR-4) receptor and begins
a signaling mechanism that facilitates liver damage by favoring the production of ROS
production and pro-inflammatory cytokines. Reactive oxygen species (ROS) produced
by cytochrome P450 2E1 (CYP2E1) and nicotinamide adenine dinucleotide phosphate
(NADPH+) oxidase activity aggravate the cell response to endotoxins by highly increasing
the transduction of signals mediated by TLR-4 through transcription factors, such as the
nuclear factor kappa-B (NF-κB) and STAT3. Additionally, ROS induced by alcohol has
been shown to inhibit hepatoprotective adenosine monophosphate activated protein kinase
(AMPK) [17]. The inhibition of nuclear factor erythroid 2-related factor-2 (Nrf2) by ROS
is implicated in the accumulation of liver toxins [18,40]. The various signaling pathways
that are involved in exotoxin- and alcohol-induced ROS production and ROS-induced liver
toxicity are schematically represented in Figure 2A.
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Figure 2. Molecular pathways of liver toxicity. (A) ROS production resulting from ex-
ogenous toxins, such as alcohol, inducing liver damage by apoptosis; (B) Liver damage
caused by deconjugation of endotoxins; (C) Death receptor-mediated signaling pathway in
liver cells inducing liver damage by apoptosis; (D) β-glucuronidase synthesis pathway in-
duced by endotoxin LPS. EtOH—Ethanol; ROS—Reactive oxygen species; TLR4—Toll like
receptor 4; NADPH—Nicotinamide adenine dinucleotide phosphate; MyD88—Myeloid dif-
ferentiation primary response 88; IKK—IκB kinase; NFkB—Nuclear factor kappa-light-chain-
enhancer of activated B cells; JAK—Janus kinase; STAT3—Signal transducer and activator
of transcription 3; AMPK–5’—AMP-activated protein kinase; Nrf-2—Nuclear factor erythroid
2–related factor 2; TNFa—Tumor necrosis factor-alpha; TNFR—TNF receptor; TRAIIL—TNF-related
apoptosis-inducing ligand; FADD—Fas-associated death domain; Bid—BH3 interacting domain;
Bcl2—B-cell CLL/lymphoma 2; Bax—Bcl2-associated X protein; Bak—Bcl-2 homologous antago-
nist/killer; APAF-1—apoptosis-activating factor-1; C-PARP—cleaved Poly (ADP-ribose) polymerase;
LPS—Lipoplysaccharide; MyD88—Myeloid differentiation primary response 88; TLR4—Toll-like re-
ceptor 4; TIRAP—TIR domain containing adaptor protein; TRIF—TIR domain-containing adaptor
inducing IFN-β; TRAM—TRIF related adaptor molecule; IRAK 1/2/4—IL-1R-associated kinases 1/2/4;
TRAF6—TNF-receptor-associated factor 6; NF-κB—nuclear factor kappa-light-chain-enhancer of acti-
vated B cells; c-Myc—Cellular myelocytomatosis.

3.2.2. Deconjugation/Deglucuronidation Pathway in Liver Toxicity

Glucuronidation of several endotoxins is an important part of phase-II conjugation
reaction and is catalyzed by the enzyme UDP glucuronate β-D-glucuronosyltransferase
(UDPGT). The toxins from intestinal bile or liver will form glucuronide conjugates by affix-
ing to glucuronic acid. These conjugates are excreted in the bile and urine or transported
from liver to other tissues [41]. The opposite reaction to this is deglucuronidation, the deac-
tivation and elimination of glucuronide conjugates. This reaction will mediate reabsorption
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of conjugate moieties in liver, instead of its excretion, which will increase liver toxicity.
Deglucuronidation is catalyzed by β-glucuronidase enzyme [42]. Hydrolysis of the glu-
curonide moiety can be carried out by β-glucuronidase present in most tissues, particularly
liver, kidney, spleen, intestinal epithelium, and endocrine and reproductive organs [43].
Thus, circulating inactive glucuronyl conjugates that are destined for excretion are now
recognized as potential toxins at the target tissues. Thus, inhibition of β-glucuronidase
activity in the liver can be a hepatoprotective mechanism, thus preventing liver damage
due to toxicity. The schematics of this pathway are represented in Figure 2B.

3.2.3. Hepatic Apoptosis Pathway in Liver Toxicity

One of the key hepatotoxic mechanisms is hepatic apoptosis, which is mediated by
TNF-α or Fas through mitochondrial activation pathways [44]. In hepatocytes, factors
such as acute ethanol administration may initiate apoptosis by increasing the amount of
Fas protein expression. Upon binding to its death receptor, Fas undergoes oligomeriza-
tion [45]. This leads to the recruitment of cytoplasmic adapter protein Fas-associated death
domain (FADD). FADD contains a death effector domain which mediates the recruitment
of caspase 8 and caspase 10. Activated caspase 8 and caspase 10 cleave the pro-apoptotic
BH3 interacting domain (Bid) protein. This truncated Bid is translocated to mitochondria
inducing release of cytochrome c from mitochondria. The cytosolic cytochrome c binds
to apoptosis-activating factor-1 (Apaf-1), facilitating recruitment of caspase 9 in a protein
complex. This apoptosome activates effector caspases such as caspase 3 and 7, which in
turn bring about apoptosis-mediated liver damage [45,46] via cleaved poly (ADP-ribose)
polymerase (cPARP). A brief schematic of this pathway is represented in Figure 2C.

3.2.4. β-Glucuronidase Synthesis Pathway in Liver Toxicity

Higher activity of β-glucuronidase promotes deconjugation of endotoxins and the
formation of calcium bilirubinate in liver, which in turn increases hepatotoxicity-mediated
liver damage [13,47]. Lipopolysaccharide (LPS), a major endotoxin from gram-negative
bacteria induces, increased expression of endogenous β-glucuronidase in hepatocytes and
intrahepatic biliary epithelial cells [13]. The LPS signaling proceeds via its binding to TLR4
and subsequent dimerization of TLR4. Homodimerized TLR4 induces the recruitment of
adaptor proteins containing Toll/interleukin-1 receptor-like (TIR) domains. The engage-
ment of adaptor molecules, such as myeloid differentiation primary response protein 88
(MyD88), TIR domain containing adaptor protein (TIRAP), TIR domain-containing adaptor
inducing IFN-β (TRIF), and TRIF related adaptor molecule (TRAM), stimulates the recruit-
ment of IL-1R-associated kinases (IRAKs). The formation of a complex of IRAK4, IRAK1,
IRAK2, and TNF-receptor-associated factor 6 (TRAF6) leads to dissociation and activation
of TRAF6. Activation of TRAF6 leads to activation of c-Myc gene via NFkB, which in
turn induces the expression of β-glucuronidase. This molecular pathway is illustrated in
Figure 2D.

3.3. Simulation Results

The effect of GA was tested on four molecular pathway models, and the results are
discussed in detail below.

3.3.1. Effect of Glucaric Acid on ROS Production

The effect of GA was simulated on ROS production pathway by estimating the ROS
levels in hepatocytes over a period of two days. ROS levels were induced by alcohol toxicity
in the simulations. GA supplementation levels used in the simulations were 0, 1.8, and
26 mg. Under control conditions, the system was assumed to be in a state of alcohol induced
liver toxicity condition with no GA supplementation, and the ROS levels were estimated
to be 70 nM. Increasing the GA supplementation to 1.8 mg led to a significant decrease in
ROS levels of 16 nM at the end of simulation period, as shown in Figure 3A. These results
substantiate the role of GA as hepatoprotective via lowering ROS. ROS production is
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implicated in promoting expression of proinflammatory cytokines that cause liver damage
and liver toxicity [17,18]. An increase in GA supplementation to 26 mg, 52 mg, and 120 mg
did not lower ROS levels any further.
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Figure 3. Effect of GA on liver toxicity pathways. (A) Effect of GA on ROS levels. GA supplementation
led to reduction in reactive oxygen species concentrations compared to control. (B) Effect of GA on
glucuronide deconjugates levels. GA supplementation led to reduction in glucuronide deconjugate
concentrations compared to control. (C) Effect of GA on cPARP levels. GA supplementation led
to a reduction in cPARP concentrations compared to control. (D) Effect of GA on β-glucuronidase
levels. GA supplementation led to reduction in β-glucuronidase concentrations compared to control.
GA—Glucaric acid; ROS—Reactive oxygen species; cPARP—cleaved poly (ADP-ribose) polymerase.

3.3.2. Effect of Glucaric Acid on Deconjugation/Deglucuronidation

The effect of GA was simulated on the deconjugation pathway by estimating the
glucuronide deconjugate levels in the bile over a period of two days. Simulations were
conducted for GA supplementation levels of 0, 26 mg, and 52 mg. Under control con-
ditions, the system was assumed to be in an infectious state with elevated endotoxin
levels with no glucaric acid supplementation, and the glucuronide deconjugate levels
were estimated to be 4.9 × 10−3 nM. Increasing the GA supplementation to 26 mg led
to a significant decrease in glucuronide deconjugate levels to 1.7 × 10−5 nM at the end
of the simulation period, as shown in Figure 3B. These results indicate that GA plays a
hepatoprotective role by lowering glucuronide deconjugate levels, which are implicated
in promoting liver toxicity and subsequent liver damage [19,48]. This can be attributed
to GA’s inhibition of β-glucuronidase which catalyzes the deconjugation of endotoxin-
glucuronic acid complexes. An increase in GA supplementation to 52 mg further lowered
glucuronide deconjugate levels to 8.9 × 10−6 nM. GA supplementation of 1.8 mg did not
lower glucuronide deconjugate levels as compared to the control value. A further increase
in GA supplementation to 52 mg did not lower glucuronide deconjugate levels any further.
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3.3.3. Effect of GA on Hepatic Apoptosis

GA was shown to have a negative regulatory effect on the activation of pro-apoptotic
Caspase-8 by increasing the Bcl-2 to Bax ratio [12]. To analyze the effect of GA on hepatic
apoptosis, we estimated cPARP (a marker of apoptosis) levels at varying GA levels over a
period of two days. Under control conditions, the system was assumed to be in an infectious
state with elevated pro-inflammatory cytokines simulating a pro-apoptotic environment
with estimated cPARP levels of 1217 nM. As shown in Figure 3C, GA dose-dependently
lowered cPARP levels to 1211, 1208, and 1202 nM for GA supplementation of 26, 52, and
120 mg, respectively. These results show a moderate but consistent effect on lowering of
cPARP, indicating a moderate role for GA in reducing hepatic apoptosis. The GA dose level
of 1.8 mg did not reduce the cPARP level compared to the control value.

3.3.4. Effect of GA on β-Glucuronidase Synthesis

The effect of GA was simulated on the β-glucuronidase synthesis pathway by estimat-
ing the β-glucuronidase levels in the hepatocyte over a period of two days. Simulations
were conducted for GA supplementation levels of 0, 26 mg, and 52 mg. Under control
conditions, the system was assumed to be in an infectious state with elevated endotoxin
levels with no GA supplementation, and the β-glucuronidase levels were estimated to
be 4.75 nM. Increasing the GA supplementation to 26 mg led to a significant decrease in
β-glucuronidase levels to 1.19 nM at the end of simulation period, as shown in Figure 3D.
These results indicate that GA plays a hepatoprotective role by lowering β-glucuronidase
levels, which is implicated in promoting the accumulation of toxins and subsequent liver
damage [13,47,49]. A further increase in GA supplementation to 52 mg did not lower ROS
levels any further.

4. Discussion

A systems biology approach was used to uncover mechanisms of how metabolites of
glucaric salts may modulate molecular pathways of liver detoxification, as illustrated in
Figure 4.
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These molecular mechanisms using CytoSolve were integrated to develop a compu-
tational framework for performing in silico experiments to quantify the effects of GA on
specific biomarkers of liver toxicity across four major mechanisms, which, to our knowl-
edge, is the first study of its kind to have applied such a computational system biology
approach. Our results show that the metabolite of glucarate salts, GA, mitigate liver
toxicity by: (1) reducing ROS production in hepatocytes, (2) lowering hepatic apoptosis,
(3) reducing β-glucuronidase in hepatocytes, and (4) reducing glucuronide deconjugate
levels in the bile.

Previous studies have shown that GA affects Fenton reaction, a critical step in forma-
tion of ROS such as H2O2 and hydroxyl radical, by chelating Fe3+ [50]. Our results show
that GA supplementation significantly reduced the ROS production via lowering the ROS
levels in hepatocytes. These results are consistent with those reported by Subramanian
and Madras [50], and furthermore explain the mechanism behind the hepatoprotective
effects of GA.

GA has been shown to competitively inhibit β-glucuronidase, which, in the gut lumen,
promotes toxicity and generates carcinogenic substances [51]. In this study, we have shown
that supplementation of GA significantly reduces the deconjugation of toxic substances
and consequently lowers the toxicity in liver in a dose-dependent manner. DSL, a GA
metabolite, has been shown to effectively inhibit the transcription factor NF-kB, which
enables the expression of hepatotoxic β-glucuronidase [13,47]. Results from this study
indicate a significant reduction in β-glucuronidase with increased supplementation of GA.

The study herein models the effect”of G’ at the cellular level. Given the main purpose
of this study is to derive a molecular mechanistic understanding of GA’s presence on liver
detoxification, the in silico predications herein provide guidance for future in vitro and
in vivo studies.

5. Conclusions and Future Work
5.1. Conclusions

In conclusion, to our knowledge, this is the first study of its kind that identifies the
critical mechanisms of action behind the mitigation of liver toxicity by GA observed in
experimental studies. Results from this study show that GA mitigates liver toxicity by
downregulating ROS production, suppressing the deconjugate accumulation, inhibiting
hepatic apoptosis, and reducing β-glucuronidase synthesis. Additionally, this study pro-
vides a framework for future research to further our understanding of how other nutrients
can individually, or in combination with GA, support liver detoxification and improve
muscle health, as well as other liver pathologies such as hepatitis, cirrhosis of liver, and
non-alcoholic steatohepatitis.

5.2. Future Work

While the current model provides mechanistic explanation for experimental observa-
tions [12,13,17,18,47,49], future in vitro or in vivo experimental studies can serve to further
strengthen the conclusions from this study. Additionally, the liver toxicity model is currently
based on four pathways: ROS production pathway, deconjugation/deglucuronidation
pathway, hepatic apoptosis pathway, and β-glucuronidase synthesis. The modular compu-
tational framework afforded by the study allows for ongoing expansion and integration
of other relevant pathways. For example, the molecular pathway of liver toxicity induced
by mitochondrial dysfunction [52] could be integrated to expand the liver toxicity model
and enhance its robustness. The interactions of derivatives of GA such as DSL can also be
explored in future work.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15030733/s1, Supplementary File S1: CytoSolve®Operating
Guide Protocol Summary; Supplementary File S2: CytoSolve Computational Modeling of Liver
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Detoxification Pathways; Supplementary File S3: Medical Subject Heading (MeSH) Keywords.
Refs. [49,53–97] are cited in supplementary materials.
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