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Abstract

Purpose: 4D Transperineal ultrasound (TPUS) is used to examine female pelvic floor disorders.
Muscle movement, like performing a muscle contraction or a Valsalva maneuver, can be cap-
tured on TPUS. Our work investigates the possibility for unsupervised analysis and classification
of the TPUS data.

Approach: An unsupervised 3D-convolutional autoencoder is trained to compress TPUS vol-
ume frames into a latent feature vector (LFV) of 128 elements. The (co)variance of the features
are analyzed and statistical tests are performed to analyze how features contribute in storing
contraction and Valsalva information. Further dimensionality reduction is applied (principal
component analysis or a 2D-convolutional autoencoder) to the LFVs of the frames of the
TPUS movie to compress the data and analyze the interframe movement. Clustering algorithms
(K-means clustering and Gaussian mixture models) are applied to this representation of the data
to investigate the possibilities of unsupervised classification.

Results: The majority of the features show a significant difference between contraction and
Valsalva. The (co)variance of the features from the LFVs was investigated and features most
prominent in capturing muscle movement were identified. Furthermore, the first principal com-
ponent of the frames from a single TPUS movie can be used to identify movement between the
frames. The best classification results were obtained after applying principal component analysis
and Gaussian mixture models to the LFVs of the TPUS movies, yielding a 91.2% accuracy.

Conclusion: Unsupervised analysis and classification of TPUS data yields relevant information
about the type and amount of muscle movement present.
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1 Introduction

Pelvic floor disorders are common among the female population.1 These disorders, which can
often be linked back to vaginal delivery, tend to (re)appear after menopause. Around one-third of
all women above an age of 40 years report pelvic floor disorders, such as pelvic organ prolapse,
urinal, or fecal incontinence.1 Awareness about risk factors, such as vaginal birth, and incidence
of these disorders is limited even among pregnant women.2 The clinical understanding of these
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disorders has grown in recent years mostly by biomechanical analysis of the pelvic floor levator
ani muscles (LAMs).3 However, this type of analysis is often based on models obtained from
magnetic resonance imaging (MRI) data of a single woman,4–6 which limits generalization to the
wider female population.

4D Transperineal ultrasound (TPUS) is another imaging modality used to assess the pelvic
floor for scientific and diagnostic purposes.7 In 4D TPUS, the forth dimension is the time dimen-
sion; ultrasound volumes are captured in time, with a framerate of ∼2 Hz. It has a few distinct
advantages over MRI: it is easy to acquire, cheap and therefore widely available, making it easy
to collect large datasets.7 Furthermore, it is easy to capture pelvic floor motion, which allows for
in vivo function assessment of the LAM (e.g., strain measurements8). There are two types of
LAMmovement that can be captured using TPUS: the first movement type is muscle contraction
and the second movement type is the Valsalva maneuver (forced expiration with closed air
ways). The latter maneuver raises the abdominal pressure and will therefore stretch the LAM.
Strain measurements can be acquired from both movements, which allows for quantification of
LAM functionality.8 These type of measurements yield a better understanding of pelvic floor
disorders and the effect of different treatments, such as surgery or physical therapy. However,
strain measurements require 3D segmentation of the data, which is time-consuming and is there-
fore only used in a research setting.7–10

The current focus in TPUS literature is on manual selection of one or a few slices within a few
specific frames (often at rest, maximum contraction, and maximum Valsalva), in which relevant
distances and areas are measured.7 Based on these measurements, muscle damage (avulsion) can
be diagnosed and, to some extent, quantified.11–13 Here the state of the muscle is relevant for
assessment. The maximum Valsalva frame is used to investigate the amount of pelvic organ
decent, which is maximized due to the raise in abdominal pressure.14 The frame of maximum
contraction has better tissue contrast and is therefore suitable to diagnose muscle avulsion.15

Identifying the correct movement type and frame within a TPUS movie is time-consuming,
as is obtaining the most basic area and distance measures. Therefore, this is often skipped
in clinical practice.16 Before we can benefit from the large datasets acquired by TPUS and move
toward the use of more complex analysis such as strain measurements, automation of the image
analysis is needed.

In the last decade, deep learning has proven to be a powerful tool in the automation of medi-
cal image analysis.17–19 This also holds for the analysis of TPUS, where promising results were
reported for segmentation of 2D16,20 and 3D data.9,21 Furthermore, most TPUS analysis starts
with the selection of a single nonorthogonal slice (slice of minimal hiatal dimensions). The selec-
tion of this slice was automated on a single frame,22,23 which is a significant step forward in
automating the current clinical analysis of TPUS. However, the selection of the relevant frames
from the TPUS movies is still a manual task.

The aforementioned automation studies all use supervised learning and therefore require
labels for training, which are not easily obtained for TPUS. In this work, we will explore unsu-
pervised learning24 on TPUS data, to benefit from large TPUS datasets without the need for
labeling. We will use convolutional autoencoders25–27 to learn a low-dimensional latent feature
vector (LFV) representation28 of a TPUS frame and apply clustering algorithms29 to find relevant
data clusters. We expect the pelvic floor movement, either contraction or Valsalva, to be a promi-
nent feature of the TPUS movie. Therefore, the goal of this study is to use unsupervised learning
to correctly classify TPUS movies, to further automate TPUS analysis procedures.

2 Methods

2.1 Data

The data used in this study were collected as part of the Gynecological Imaging using 3D
Ultrasound project. Women, who visited a tertiary urogynecological clinic with various pelvic
floor disorders, were included in the dataset, from May 2018 till December 2019. The Medical
Research Ethics Committee of the UMC Utrecht exempted the project from ethical approval
(reference 18/215), because TPUS can be considered part of routine diagnostic procedure and
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standard care. All women signed informed consent forms. This resulted in a heterogeneous
dataset since patients with different pathologies were included.

A Philips Epiq-7 machine with a X6-1 matrix transducer was used for data acquisition. The
volume angle was 90 deg in both azimuthal and elevational direction, postprocessing filters were
set off, the volume scan rate was 2 Hz, and the scan depth was 9 cm. The transducer was covered
with a 2-cm-thick gel pad, which created more a spacing between the patient and the probe,
allowing for the capture of the full LAM within the scanned volume. All scans were acquired
with the patient in supine position, and patients have emptied their bladder before acquisition.
The patients were asked to contract their LAM and to perform a Valsalva maneuver. The maxi-
mum number of volumes that could be captured by the ultrasound system in a single movie was
22 frames. Therefore, both types of muscle movement were recorded separately. The recording
ended after a full contraction cycle (from rest to contraction to rest) or at maximum Valsalva
(from rest to Valsalva) since Valsalva is performed slower than contraction.

The dataset was unsorted, meaning that there are no labels to indicate whether a movie
captured a contraction or Valsalva maneuver. However, the clinical examiner (author C. M.)
followed a specific acquisition order. For each patient, the acquisition preferably started with
contraction and was followed by Valsalva. However, some women confused Valsalva and con-
traction or needed more attempts to perform the maneuvers correctly, making this information
not completely reliable. Based on the experience of the clinical expert (C. M.) who collected the
data, it was estimated that the contraction and Valsalva video were in the expected order of the
data acquisition around 90% of the time. These were the “labels” used in this study, to investigate
whether or not the contraction and Valsalva movement captured is a prominent data feature that
can be detected via unsupervised learning.

2.1.1 Preprocessing and experimental data flow

A frame of the TPUS data has a size of 277 × 352 × 229 voxels but was cropped, around the
volume center, to 192 × 256 × 192 for training of the 3D-convolutional autoencoder (3D-CAE).
The outer part of the data does not contain relevant pelvic floor information, due to the conic
shape of the TPUS volume (see Fig. 1). The intensity values of the images were linearly scaled
between 0 and 1. TPUS movies of 304 patients, with a variety of pelvic floor disorders, were
used in this study. From these movies, the first and last frames were selected, as well as two
additional randomly selected frames within the TPUS movie. The resulting dataset caused
memory problems on the external server used for the training of a 3D-CAE. Therefore, 790
frames were randomly selected from this dataset to train a 3D-CAE (see Sec. 2.2). During train-
ing, a single frame was left out and used as independent validation set to check training progress.
For 22 patients, none of the frames were used. These patient scans were kept separate as an
independent testing set, not to be used in the training and selecting of the best performing
models.

4D TPUS movies having <22 frames were excluded from the next LFV analysis step
(see Secs. 2.3 and 2.4) to make the data uniform for the subsequent analysis steps, which resulted
in a training set of 345 4D TPUS data of 180 patients. Since the clustering classification is
unsupervised and the training set labels are not 100% correct, it was decided to use the training
set both for training and validation, to have the largest possible dataset for identifying clusters.
The independent testing set for classification consisted of 57 4D TPUS data from the 22 testing
set patients not involved in training the 3D-CAE. The clinical expert (C. M.) checked the correct
labels for the testing set, after which more than 2 TPUS data could be used for some patients. For
the LFV analysis, all 4D TPUS frames were converted to LFVs using the 3D-CAE, resulting in
22 × 128 representations of a single 4D TPUS movie. The full work and dataflow of this paper is
visualized in Fig. 1.

2.2 3D Convolutional Autoencoder

Figure 2(a) shows the design of the 3D-CAE used to compress a single TPUS frame into a LFV
and to provide a reconstruction of the original frame as output.30 This design is a trade-off
between network depth, which improves the learning of the network, and the available GPU
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memory. The 3D-CAE compresses a TPUS frame to LFV of 128 elements, which reduces the
dimensionality of the data with a factor 192×256×192

128
¼ 73;728. A Swish-function, with β ¼ 1, was

used as the activation function.31 For the output layer, a clipped Rectified linear unit (ReLU) was
used,32 to scale the output between 0 and 1.

2.2.1 Training

For network and training, Python 3.7.6, with deep learning framework Tensorflow 2.4.0, was
used. The network was trained with the following loss function (L):

EQ-TARGET;temp:intralink-;e001;116;203L ¼ 1

N

XN

i¼1

ðx̂i − xiÞ2 þ γ

����
XM

j¼1

ðy2jÞ − 1

����: (1)

Here xi and x̂i are the i’th input- and output-voxel values, respectively, with N being the total
number of voxels in the TPUS frame. The first part of the loss function is the mean squared error
loss, to minimize the difference between the network input and output. The second part of the
loss limits the M (128) elements of the LFV y [see Fig. 2(a)] from becoming too large, their
quadratic sum is forced toward 1. This enforces the use of all elements within the LFV rather
then the use of a few prominent features, whereas others are not used in the encoding of
the frames. The scaling factor between the two sides of the loss is γ, which was set to be 10−3,

Fig. 1 An overview of the work and data flow presented in this paper. From 304 patients, multiple
TPUS movies, with F frames, are available. Frames are selected from these movies to train a
unsupervised 3D-convolutional autoencoder (3D-CEA) [see Fig. 2(a) for network details]. In this
process, data of 22 patients are not used for network training and left as independent testing set.
4D TPUSmovies of 22 frames are frame-by-frame converted to the latent feature (LF) space using
the encoder of the 3D-CEA to create uniform LF space representations of 22 × 128. This LF
representation of the 4D data is analyzed further. First, analysis of the variance of the LFs and
statistical test are performed to better understand the LF representation learned by the 3D-CAE
(Sec. 3.1). Second, PCA is applied to the LF vectors of single movies and analyze the change
on the first principal axis to analyze the motion of an individual movie (Sec. 3.2). Finally,
unsupervised classification is trained on the LF vectors of the 4D TPUS movies (Sec. 3.3). To
find the best performing classification strategy, the LF vectors of either the four frames of maximum
contraction/Valsalva or full 22 frames are used. Dimensionality reduction is either not applied
or PCA or a 2D-CAE is used to the LF of the frames. For the final identification of data clusters,
K -means clustering and GMM are used.
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after both training and validation loss showed that this number provided a balanced trade-off
between both parts of the loss function. The Adam optimizer33 with a learning rate of 3 × 10−4

was used for training. Due to GPUmemory limitations, the network was trained with a batch size
of 1 TPUS frame. Due to the large training set, the network was only trained for 20 epochs,
which was sufficient for convergence and took around 15 h on our setup. The validation loss
was calculated after every 30’th training step. The model with the lowest validation reconstruc-
tion loss was saved and used for further analysis.

2.2.2 Evaluation of the latent feature space

To evaluate the latent feature space learned by the 3D-CAE, the variance for each feature was
calculated for the entire data set and for the contraction and Valsalva data separately. The vari-
ance provides a measure of the differences present within the dataset for a specific feature. The
covariance matrix of the features was calculated as well to analyze the correlation between
the features.

To evaluate which features play a significant role in capturing contraction and Valsalva infor-
mation, some statistical tests were performed: the first test is the Wilcoxon signed rank sum test
to test if the features significantly change within the movie. Therefore, the LFVs of the first frame
and the frame of maximum contraction or Valsalva were selected and compared. To test for
similarities of the feature means and distributions, the Wilcoxon–Mann–Whitney test and T-test
were used, comparing the latent features of all contraction frames to all Valsalva frames and only
the maximum contraction frames to maximum Valsalva. Since the T-test requires normally
distributed data, this was tested using the Shapiro–Wilk test.

(a) (b)

Fig. 2 The design of (a) the 3D-CAE network and (b) the 2D-CAE. The input of the 3D-CAE is an
4D TPUS frame of sizem × n × o and for the 2D-CAE an LFV representation of 4D TPUS of k × j .
The convolution layers apply a convolution using a 3 × 3ð3×Þ kernel, the filter size is mentioned
above the layers. The max-pooling layer reduces the spatial resolution of the data by a factor 2,
applying a 2 × 2ð2×Þ kernel with stride 2. The flatten layer transforms the 4D or 3D data into a
single vector, whereas the reshape layers perform the opposite operation. The fully connected
operation (Fully conn.) in the center of the network creates the LFV y of 128 elements in the
3D-CAE. In the 2D-CAE, more fully connected operations are applied, the LFV consists of two
elements. The data are spatially upsampled in the decoding part of the network by transposed
convolution layers (Trans. conv.) that are applied using a 3 × 3ð3×Þ kernel and a stride of 2.
The activation functions in the network are the Swish function and the clipped ReLU function for
the output layer. The blocks have the same color as the preceding operation, to visualize the result
of this operation. The network output is trained to reconstruct the network input and therefore has
the same size.
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2.3 Dimensionality Reduction

Using the 3D-CAE, the 4D TPUS data can be compressed to 2D data with a size of 128 × 22.
This is already a significant dimensionality reduction. To further reduce the dimensionality of
the data, principal component analysis (PCA)34 is applied. This can be beneficial for analyzing
the principal variance axes within the dataset or within the movies itself.

2.3.1 Frame difference analysis

Focusing on the first principal axes of the LFVs of a single TPUS movie, the frame differences in
the movie were analyzed. Within a single movie, these differences are mainly caused by muscle
movement. To investigate this movement, PCA was applied to the 22 LFVs of the individual
TPUS movies from the testing set. Each TPUS frame (frame number n) was represented in this
new feature space and has a value on the first principal axis (fn, the value of the first frame is f0).
Subsequently, each frame was represented by value pn, where pn ¼ jfn − f0j, to represent its
distance with respect to the first frame. pn is to be expected to maximize at maximum contraction
or Valsalva. The values of pn were plotted to analyze the frame-to-frame changes within the
TPUS movies.

2.3.2 Dimensionality reduction before clustering

Different types of dimensionality reduction methods were used before clustering algorithms are
applied, to investigate how they influence the final classification success. To start, it is expected
that the difference in the TPUS data between contraction and Valsalva is the largest at maximum
contraction and Valsalva. Therefore, it was checked if only frames containing contraction
and Valsalva are sufficient for correct classification. The frame with the largest pn was identified,
which likely contains the state of maximum contraction or Valsalva. This frame and its
three subsequent frames were selected for further analysis since these frames likely provide
a snapshot of the state of contraction and Valsalva. When the maximum contraction or Valsalva
frame was within the last three frames, the last four frames were selected. The classification
results using the LFVs from these 4 frames were compared to the results of the LFVs from the
original 22 frames.

Next, two dimensionality reduction methods were applied to the 4 or 22 LFVs as a post-
processing step before applying clustering algorithms. First, PCA was applied and the first two
principal components were kept. Second, the benefit of nonlinear dimensionality reduction was
investigated by training an 2D-convolutional autoencoder (2D-CAE) [see Fig. 2(b)] on the 2D
latent feature data. The design of the 2D-CAE is similar to the 3D-CAE design. The input is the
22 or 4 × 128 LFV representation of the TPUS movie. The encoding part compresses this into a
new LFVof two elements. The decoding part reconstructs the original 22 or 4 × 128 LFV TPUS
movie representation. The mean squared error loss was used to train the 2D-CAE, which reduces
the LFV-data of 4- or 22 frames to a LFV of size 2.

2.4 Clustering

Two clustering algorithms were used to identify clusters in the dataset that might allow
classification of the contraction and Valsalva TPUS movies: K-means clustering35 and
Gaussian mixture modeling (GMM).36 Since the difference between contraction and Valsalva
TPUS is the classification task of this work, both methods were applied to identify two clusters.
The default sklearn implementation in Python 3 was used for both methods. This means that
the Elkan37 implementation was used for K-means clustering and independent covariances
were calculated for each cluster in GMM. The clustering algorithms were applied to the
full latent feature space of 22- and 4-frames and to a reduced feature space, which was
lowered in dimension by either applying PCA or the 2D-CAE. The best performing clustering
models were selected based on the lowest training loss, and no separate validation set was
used.
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3 Results and Discussion

The 3D-CAE was saved with a validation mean squared error loss of 7.72 × 10−3. Figure 3
shows slices form a TPUS frame and its reconstruction. Most small details are lost in the recon-
struction, however, the general appearance of the image is preserved. The clinical structures,
such as the muscles, bone, urethra, vagina, and rectum, are still recognizable and preserve their
initial shape. This information is thus successfully captured within the LFV. The conversion of
a single frame into an LFV was around 2 s on a laptop (Macbook Pro 2015).

3.1 Latent Feature Vector Analysis

To obtain a better understanding of the latent feature space learned by the 3D-CAE, the LFVs of
the training set were analyzed for their contribution in storing either contraction or Valsalva
information. Therefore, the (co)variance of the features was analyzed and statistical tests were
performed.

3.1.1 (Co)variance analysis

Figure 4(a) shows the variance of the individual LFV features within the training set. The vari-
ance of all frames, only contraction frames and only Valsalva frames are presented. The variance
allows for identification of prominent features in decoding contraction and Valsalva movement.
Most features show similar variance for the complete dataset as for the Valsalva and contraction
data. However, the features with most variance (33, 47, and 50) also show significant difference
in variance for contraction and Valsalva data. Most notable is feature 47, which shows the most
prominent difference: almost all variance on this element in the dataset seems to be in Valsalva
data, whereas the contraction data barely shows any variance on this element. The tests presented
in Fig. 5 reinforce the idea that this feature mainly captures Valsalva information since all tests
show significant difference except the Wilcoxon ranked sum test comparing the difference
between rest and maximum contraction. Feature 50 shows the largest opposite difference: the
Valsalva variance is approximately two-thirds of the contraction variance. The Wilcoxon ranked
sum test for this feature also shows significance for contraction but not for Valsalva, reinforcing
the idea that this feature is mostly involved in capturing contraction-specific changes. Feature 33
likely captures both movements since the variance of the complete dataset is larger than for both
individual movements. However, the Wilcoxon ranked sum test only shows significance for
Valsalva, which suggests that this feature captures Valsalva specific change.

(a) (b)

Fig. 3 Slices of (a) two original TPUS frames and their reconstruction by the 3D-CAE are shown to
allow visual examination of (b) the reconstruction results. The top row shows an image from the
training set and the bottom row the validation image.
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In Fig. 4(b), the covariance matrix of the LFVs is presented. We will discuss the correlations
with the three most prominent features for which jcovariancej > 0.015, feature 33, 47, and 50.
Feature 33 has the largest variance and is also negatively correlated with a few features that have
relatively high variance (feature 47, 65, 66, and 111), there is a positive correlation with feature
6. Feature 47 has in turn positive correlation with feature 66, 111, and 124. Inspecting these
features in Fig. 4(a) shows that their variation in contraction data is low, this makes it a rea-
sonable assumption that these features (especially 47, 111, and 124) capture variance that is
present in Valsalva movement. This idea is reinforced by the results of the Wilcoxon ranked
sum test. Since feature 33 is negatively correlated with most of these features, it therefore also

(a) (b)

(c)

Fig. 4 (a) The variance within the latent feature elements of all frames in the complete training set
(blue), the frames of contraction data (red) and of Valsalva data (green). (b) The covariance matrix
of the LFVs of all the frames in the trainging set. (c) PCA and K -means clustering are applied to
LFVs of four frames (likely of maximum contraction or Valsalva) from each TPUS movie in the
training set. This plot shows the data points with respect to the first two principal axes, together
with the decision boundary of the K -means clustering (training accuracy 91.6% and testing
accuracy of 91.2%.).
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captures Valsalva movement. Feature 50 has a positive correlation with feature 66 and 119, and
a negative correlation with feature 92.

It is noteworthy that some features (47, 82, 111, and 124) are dominated by variance in the
Valsalva data and barely have any variance in the contraction data. Although features like feature
50 are more dominated by variance related to contraction, they still also contribute significantly
to the variance of the Valsalva data. This can be explained from a clinical understanding of the
images: the LAM are a prominent element of the image and they are smoothly deformed from
contraction to Valsalva (with rest in between), which appears to be captured most dominantly in
feature 33. The deformation of these muscles due to movement might be closely related to
differences in appearance of the muscle within different women.

A larger image transformation occurs in the case of Valsalva. The abdominal pressure is
raised during Valsalva, causing the pelvic organs (e.g., bladder) to descent and enter the TPUS
field of view (especially for pelvic organ prolapse14). Since these objects are not (as prominent)
in view during rest and contraction, it is likely that the features dominated by a large Valsalva
variance capture these image changes.

3.1.2 Statistical analysis

To analyze if the changes observed in all features are significantly different, several statistical
tests were applied. The Shapiro–Wilk tests for all features resulted in p-values <0.05, so the
features were nonnormally distributed. However, since the tests were performed on >8000 data
points, a slight deviation from normality would already yield a significant result. Still the results
of the t-test are presented since most histograms of the features show that they only slightly differ
from normality. In Fig. 5, the p-values of the statistical tests are presented, the majority of the
tests showed significant differences (p < 0.05). Most of these significances still hold, even if a
correction for multiple comparisons would be applied.

The Wilcoxon signed rank sum test compares if there is a significant difference between
frames in a single movie and therefore provides the best indication on features capturing
Valsalva and contraction motion since patient specific features do not change within a single
TPUS movie. Most features (85 for p < 0.05 and 73 for p < 0.01) are significantly involved
in capturing Valsalva specific volume changes. Less features (52 for p < 0.05 and 34 for
p < 0.01) are involved in capturing contraction specific changes. The majority of features
(102 for p < 0.05 and 89 for p < 0.01) are involved in capturing either contraction of
Valsalva changes. Nine features (17, 18, 57, 59, 79, 85, 87, 116, and 127) show no or only
weak significance on all tests and are therefore likely not involved in storing contraction or
Valsalva specific information.

Based on the variance and statistical analysis, it is possible to get a general impression on how
the contraction and Valsalva information is stored by the 3D-CAE in the LFV. Furthermore,

Fig. 5 A visual table of the p-values of the several statistical tests applied to the LFVs. The first
and second row represent the Wilcoxon signed rank sum test of the LFVs of the resp. contraction
and Valsalva data. Testing for a significant difference in a specific feature between the rest frame
and either maximum (max.) contraction or Valsalva frame. The third and forth row show the results
of the Wilcoxon–Mann–Whitney tests, which test the similarity of distributions for all contraction
and Valsalva frames (row 3) and only max. contraction and Valsalva frames (row 4). The results of
the t -test for the same groups are shown in the last two rows, to check for significant changes is
means of contraction and Valsalva.
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prominent features can be distinguished. As enforced by the loss function, all features show
variance and therefore seem to store some relevant reconstruction information. As the statistical
tests show, this results in most features significantly contributing to storing information relevant
for contraction and Valsalva.

3.2 TPUS Motion Analysis

PCA is applied to the 22 LFVs of the individual TPUS movies from the testing set. Each
TPUS frame is represented in a new feature space and has a value (fn) on the first principal
axis, which represents the most variance (on average 73%). From this, pn is calculated and
plotted per movie in Fig. 6 for contraction (a) and Valsalva (b). Contraction TPUS movies were
recorded with the intent to capture the movement from rest to contraction and back to rest again
since this process takes only a few seconds. If the examiner noticed that the process took longer,
the movie was stopped at maximum contraction. Valsalva is performed slower and due to the
maximum recording limit of 22 frames, the procedure was to stop the recording at maximum
Valsalva.

(a)

(b)

Fig. 6 Both plots display the interframe distance (pn ¼ jf n − f 0j) from a given frame (f n) with
respect to the first frame (f 0), on the first principal axis of a TPUS movie. Each line in the plot
represents a single movie of (a) contraction or (b) Valsalva in the testing set.
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These described patterns are visible in these plots: the interframe distance of contraction
starts increasing, peaks, and then decreases to almost zero. For Valsalva, the interframe distance
slowly increases to the maximum at the end of the movie. When these results are visually
compared with muscle movement within the TPUS movie, it appears to correlate very well with
the clinical experts opinion when the muscle starts moving and when maximum contraction or
Valsalva occurs. However, not only all patients are able to perform a proper contraction or
Valsalva, but also the attempts did still generate some movement. Therefore, it is difficult to
distinguish these attempts from proper contraction or Valsalva in these plots.

The possibility to identify maximum contraction and Valsalva is relevant for automating the
analysis of TPUS data. The current clinical manual analysis is performed on the frames where
the LAM are at rest, maximum contraction, and maximum Valsalva. In existing automating
attempts, this frame still needs to be identified manually.16,20 Recently, there has been a success-
ful method to measure LAM strain on TPUS data.8 Since this is still a new procedure, it is
important to validate the measurement with manual identification of maximum contraction
of Valsalva. When deploying this strain analysis method to a larger dataset, it can be beneficial
to compare the results with our PCA movement analysis. Only in the case of a large mismatch in
maximal strain measurement and this PCA identification of maximum contraction or Valsalva,
an expert is necessary to relabel the data, which significantly reduces the analysis time of the
total dataset for this expert.

3.3 Unsupervised Classification

While deploying unsupervised classification (both GMM andK-means clustering) to the training
set, 24 TPUS data were consistently mislabeled. These images were examined by an medical
expert (C. M.) and 14 were originally mislabeled. The other 10 were in principle labeled with the
correct maneuver but were not well performed by the patient. The labels of our training set are
updated based on the clinical experts judgment, making the labels more reliable, however, most
labels of the training set are still based on the assumed acquisition order. As mentioned before,
the labels of the testing set are verified by the expert.

Table 1(a) shows the accuracy of the unsupervised classification, of Valsalva and contraction
TPUS movies, on the training and testing set, after different dimensionality reduction and clus-
tering methods are applied to the LFVs of these movies. The best results for unsupervised clas-
sification are obtained on the LFV of the 4 frames with the most distance on the first principal
axis to the first frame, with most accuracies lying around 90%. Even though the best results on
both testing (91.2%) and training sets (91.9%) are obtained after PCA is applied and GMM is
used for clustering, the results are comparable for all methods applied to 4-frame data. Only
GMM clustering applied to the full feature space of 4-frames performs poorly, it is unclear why
this is the case. Applying PCA as a dimensionality reduction method seems to be sufficient,
whereas the 2D-CAE provides slightly worse results, especially on the testing set. However,
most percentual differences on the 4-frame data only represent a few misclassifications, which
makes it difficult to draw strong conclusions on the best methods. Since the 4-frame data con-
sistently outperforms the 22-frame data, we can conclude that it is beneficial to select frames that
likely to represent maximum contraction and Valsalva in a movie.

Table 1(b) also presents the percentages of correctly labeled contraction and Valsalva data;
this can be considered analogous to the sensitivity and specificity. For the 22-frame classifica-
tions, the contraction and Valsalva data are classified correctly at similar percentages. For the
4-frame classification, the percentage of correctly labeled contraction TPUS is in almost all cases
high (>90%), whereas the results for Valsalva are lower (80% to 85%). The 4-frame data capture
only the extremes of contraction and Valsalva, reducing the noise for this classification task. The
misclasssifcations are likely due to the fact that patients are not always able to perform a proper
Valsalva maneuver.

In Fig. 4(c), the training data and decision boundaries are plotted after application of
PCA and K-means clustering, to provide an insight in how the data distributions appear. Most
misclassifications lay closely to the decision boundary, therefore these data points are likely
examples of weak contractions and Valsalva. This idea is also reinforced by the experts opinion
on the 24 consistently misclassified datapoints.
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3.4 General Discussion

The results presented and discussed in this paper started with the training of the 3D CAE. This
autoencoder was engineered based on general ideas present in the field of image segmentation
(like the design of Unet,30) and optimized to fit on the training server. However, we did not vary
the design to test which design works best for capturing relevant image features. Especially
varying the size of the latent feature space will influence the quality of the reconstruction and
change the amount of relevant information that can be stored. It is, however, difficult to control
the learning of the network, so even training the current network from scratch will yield a differ-
ent latent feature space since the initialization of the network weights is random. This will impact
the LFV analysis presented in this work (Sec. 3.1), with regards to the conclusion for specific
features. However, since this analysis shows that contraction and Valsalva are prominent char-
acteristics with information stored in a majority of the features, the results of the motion analysis
and classification will be reproducible. For this study, we did not investigate the question about
the optimal design since the results on classification were already good and optimizing the

Table 1 (a) The accuracy of K -means clustering (K -means) and GMM in clustering contraction
and Valsalva data in the training and testing set. (b) The percentages of correctly labeled con-
traction (Cont.) and Valsalva (Val.) TPUS data. These measures are analogous to sensitivity and
specificity. The clustering algorithms were provided with data from the LFVs of, respectively, 22
and 4 frames. The clustering algorithms were either applied to the entire LFV space or to a reduced
two component space when PCA or the 2D-CAEwere applied. In table (a), the highest training and
testing accuracies are presented in bold. In table (b), the best combinations are presented in bold.

(a) Accuracy

22 Frames 4 Frames

Train (%) Test (%) Train (%) Test (%)

K -means 83.4 82.5 91.3 91.2

GMM 84.3 86.0 91.3 57.9

PCA K -means 82.3 82.5 91.6 91.2

GMM 80.6 77.2 91.9 91.2

D-CAE K -means 80.6 77.2 91.9 87.7

GMM 80.9 77.2 91.0 84.2

(b) Correctly labeled

22 Frames 4 Frames

Train Test Train Test

Cont. Val. Cont. Val. Cont. Val. Cont. Val.

K -means (%) 82.4 84.7 81.3 84.0 99.4 81.5 96.9 84.0

GMM (%) 85.1% 83.4% 96.9% 72.0% 99.4% 81.5% 100% 4.0%

PCA K -means (%) 83.5 80.9 81.3 84.0 99.4 82.2 96.9 84.0

GMM (%) 76.1 85.9 71.9 84.0% 99.4 82.8 96.9 84.0

D-CAE K -means (%) 76.6 85.4 71.9 84.0 99.4 82.8 90.6 84.0

GMM (%) 78.2 84.1 71.9 84.0 99.4 80.9 87.5 80.0
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design can be a study in itself. The same holds for the loss function, we made the choice for a loss
function that enforces the use of all features for encoding since this allows for capturing image
information in more distinguishable entities. However, one could easily make the opposite
claim that allowing for only a few features to be used provides more distinct features. We did
not investigate which claim is correct. We consider this study a proof-of-concept that can be
optimized.

During training of the network, we only used a single frame as validation set to prevent over-
fitting. For the clustering algorithms, we did not use a validation set but instead used the training
“labels” to select the best model. Both approaches can result in overfitting, however, the results
on the testing set suggest that overfitting did not occur.

For the analysis of the latent feature space, we focused on contraction and Valsalva only since
that is the scope of this paper. This provides, however, limited insight into how change in value of
a specific feature impact the image reconstruction.

Although our pn representation of the frames allowed for the analysis of changes within a
movie, there is no way to discriminate between movement induced by the contraction or Valsalva
and other types of movement generated by the ultrasound examiner or the patient. This makes
this method not completely reliable for identifying maximum contraction or Valsalva.

The strength of this study is that the method is completely unsupervised. The results of the
training set are almost as indicative for the performance as the results for the testing set since the
results on the latter show that overfitting did not occur. There was no specific patient selection so
the heterogeneous dataset represents the variety of patients entering the urogynecological clinic.
We therefore are optimistic that the results can easily be translated to be used in clinical or
research practice.

3.5 Future Work

In this work, we have analyzed the learned TPUS features related to contraction and Valsalva.
However, potentially more relevant information can be acquired from these LFVs. Diagnosing
pathologies like LAM muscle avulsions might be possible based on the information stored
within the LFVs. Analyzing only the first frames will help to remove the contraction and
Valsalva variation within the LFVs and only show interpatient differences. Furthermore, the
information stored in the features can be visually analyzed; when a value of a specific feature
is varied, the TPUS frame can be reconstructed and the effect of this variation can be visually
examined. This might help improve our understanding of the TPUS data itself. To improve
the reliability of the TPUS movie motion analysis, a better profile of feature change during
contraction and Valsalva should be established in order to discriminate this from other sources
of movement.

4 Conclusion

In this work, we presented a 3D-CAE to compress tranperineal ultrasound frames into 128
element LFVs. The information stored in these LFVs proved to obtain relevant information
to further analyze the muscle movement present in the 4D TPUS data. Furthermore, it allowed
for unsupervised classification of 4D TPUS data into the contraction and Valsalva labels with
high accuracy. Applying the methods to medical and research TPUS datasets will significantly
reduce the labeling and frame selection time for experts.
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