Skip to main content
. 2023 Jan 19;23(3):1161. doi: 10.3390/s23031161

Table 9.

Machine Learning Models’ Settings.

Models Parameters
NB useKernelEstimator: False
useSupervisedDiscretization: True
LR ridge = 108
useConjugateGradientDescent: True
MLP learning rate = 0.1
momentum = 0.2
training time = 200
kNN k = 3
Search Algorithm: LinearNNSearch
with Euclidean
cross-validate = True
RF breakTiesRadomly: True
numIterations = 500
storeOutOfBagPredictions: True
RotF classifier: Random Forest
numberOfGroups: True
projectionFilter: PrincipalComponents
AdaBoostM1 classifier: Random Forest
resume: True
useResampling: True
Stacking classifiers: Random Forest and Naive Bayes
metaClassifier: Logistic Regression
Voting classifiers: Random Forest and Naive Bayes
combinationRule: average
of probabilities
Bagging classifiers: Random Forest
printClassifiers: True
storeOutOfBagPredictions: True