Table 9.
Machine Learning Models’ Settings.
| Models | Parameters |
|---|---|
| NB | useKernelEstimator: False useSupervisedDiscretization: True |
| LR | ridge = useConjugateGradientDescent: True |
| MLP | learning rate = 0.1 momentum = 0.2 training time = 200 |
| kNN | k = 3 Search Algorithm: LinearNNSearch with Euclidean cross-validate = True |
| RF | breakTiesRadomly: True numIterations = 500 storeOutOfBagPredictions: True |
| RotF | classifier: Random Forest numberOfGroups: True projectionFilter: PrincipalComponents |
| AdaBoostM1 | classifier: Random Forest resume: True useResampling: True |
| Stacking | classifiers: Random Forest and Naive Bayes metaClassifier: Logistic Regression |
| Voting | classifiers: Random Forest and Naive Bayes combinationRule: average of probabilities |
| Bagging | classifiers: Random Forest printClassifiers: True storeOutOfBagPredictions: True |