Skip to main content
. 2023 Jan 26;23(3):1387. doi: 10.3390/s23031387
Algorithm 1 Greedy selection of the measured buses

Input:

(1)  Laplacian matrix, L, and noise covariance matrix, R

(2)  Number of buses with sensors, q

(3)  Regularization parameter, μ

Output: Subset of q buses, S
  • 1:
    Initialize the bus subset S(0)= and the iteration, i=0
  • 2:
    whilei<qdo
  • 3:
       Update the set of available locations, L=VS(i)
  • 4:
       Find the optimal bus to add:
    wopt=argminwLTr({K˜(S(i)w},μ)R(S(i)w)K˜T({S(i)w},μ)), (43)
    where K˜ is defined in (27) with HV,V¯=LV,V¯
  • 5:
       Update the subset of buses, S(i+1)S(i)wopt, and the iteration, ii+1
  • 6:
    end while
  • 7:
    Update the chosen subset of buses: S=S(i)