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Abstract: In the field of wearable robotics, assistance needs to be individualized for the user to
maximize benefit. Information from muscle fascicles automatically recorded from brightness mode
(B-mode) ultrasound has been used to design assistance profiles that are proportional to the estimated
muscle force of young individuals. There is also a desire to develop similar strategies for older adults
who may have age-altered physiology. This study introduces and validates a ResNet + 2x-LSTM
model for extracting fascicle lengths in young and older adults. The labeling was generated in a
semimanual manner for young (40,696 frames) and older adults (34,262 frames) depicting B-mode
imaging of the medial gastrocnemius. First, the model was trained on young and tested on both
young (R2 = 0.85, RMSE = 2.36 ± 1.51 mm, MAPE = 3.6%, aaDF = 0.48 ± 1.1 mm) and older adults
(R2 = 0.53, RMSE = 4.7 ± 2.51 mm, MAPE = 5.19%, aaDF = 1.9 ± 1.39 mm). Then, the performances
were trained across all ages (R2 = 0.79, RMSE = 3.95± 2.51 mm, MAPE = 4.5%, aaDF = 0.67 ± 1.8 mm).
Although age-related muscle loss affects the error of the tracking methodology compared to the
young population, the absolute percentage error for individual fascicles leads to a small variation of
3–5%, suggesting that the error may be acceptable in the generation of assistive force profiles.

Keywords: wearable device; exoskeleton; muscle dynamics; b-mode ultrasound; aging; neural
networks; fascicle length; muscle architecture

1. Introduction

Wearable robotic devices have demonstrated the potential for assisting and augment-
ing human locomotion in a variety of domains, particularly clinical rehabilitation [1]. The
effectiveness of exoskeleton systems relies on their capacity to address the heterogeneous
needs of different users, while seamlessly adapting to diverse activities in real-world
applications [2]. Parameters such as individuals’ age, muscle strength, and underlying
musculoskeletal conditions must all play a role in how wearable assistive strategies are
designed, implemented, and deployed [3]. To address these needs and fully harness the
potential of assistive technologies in aging, the requirement for adaptation to diverse
populations must be addressed.

Reduced mobility [4], diminished physical function and independence [5], and an
increased risk of falls [6] in older adults are consequences of functional changes related to
the strength of the lower extremity muscles [7]. Studies have shown that the major risk
factor for falls in older adults is related to lower limb muscular weakness [8], due to muscle
composition changes as people age [9]. In particular, changes in muscle quality due to aging
are linked to variations in muscular architecture, such as fascicle length [10]. As a result,
exoskeleton device design should carefully consider the age-related loss in muscle quality
causing a lower capacity to generate muscle force [11] when designing human-in-the-loop
assistive strategies [12].
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Studies have shown that embracing assistive devices in the real world relies on cus-
tomizing the assistance to the individual physiological responses [2,13,14]. One way to
measure the individual physiological response during exoskeleton-assisted walking is
through detecting muscle force generation directly measured using brightness-mode (B-
mode) ultrasound to detect the generated force of a muscle and customize the assistive de-
vice for the individual [12,15]. B-mode imaging has increasingly become the gold-standard
measurement to noninvasively quantify in vivo muscle dynamics, differentiating muscle
architecture regions [16] and estimating muscle force production [17]. In particular, our
previous investigation demonstrated that it is possible to extract muscle-based assistance
(MBA) profiles from offline analysis of B-mode ultrasound images to estimate and design
closed-loop assistance profiles to be proportional to the estimated muscle force [13]. While
the adoption of this imaging modality has proven successful for younger adults [13,18,19],
the practicability of adopting this tool in the older population, where muscles are smaller
and have less well-defined fascicles remains to be determined.

A few investigations have validated the use of B-mode imaging as a valuable tool
to extract muscle architecture in older adults [11,20], emphasizing the drawback of the
time-consuming process of manual identification of fascicles. B-mode measurements
of the muscle architecture have been traditionally quantified by manually finding the
fascicle between the inner and outer aponeurosis [21,22]. However, manual identification
of individual fascicles on multiple image frames can be extremely time-consuming [23–25].

Automatic imaging modalities have emerged, initially focusing on offline fascicle iden-
tification based on pixel intensity to assess the fascicle’s length and orientation [26,27], [28],
but such techniques can be affected by image quality [29]. Semiautomated algorithms, such
as detecting optical flow, present errors in the presence of large movements [30] and can
increasingly drift over time [25,31], which produces unreliable tracking [32]. More recently,
machine leaning-based ultrasound imaging techniques have emerged [16,33,34]. However,
a preliminary attempt to determine muscle architecture from B-mode using a more gen-
eralizable convolutional neural network (CNN) ignored the temporal B-mode states and
was not real-time [16]. This suggests that given the sequential nature of the continuous
muscle recording present in ultrasound imaging, a deep learning model that can process
sequential data would be preferred. Moreover, these automated approaches have not been
validated in older populations, and the practicability of adopting an automated approach
in older populations remains to be determined. Age-related changes in muscle quality
may vary the utility of these automated approaches and the validity of these models is
unknown, particularly when exoskeleton-assisted interventions are based on physiological
parameters extracted with B-mode.

The purpose of this study is to introduce and evaluate an automated approach for
extracting fascicle lengths in young and older adults (Figure 1). The key contributions are:

(a) A ResNet model [35] coupled with long short-term memory (LSTM) units trained and
tested to reliably regress fascicle lengths from continuous ultrasound video recordings
of young and older adults;

(b) A methodology able to process videos of arbitrary length, containing different populations
(young and older adults), walking tasks (incline and decline), and walking velocities;

(c) A fast architecture that lays the foundations for a real-time model capable of executing
tasks reliably in real-world scenarios for an individualized profile in human-in-the-
loop assistive interventions.

The key novelty of the presented approach includes the validation of a real-time
convolutional LSTM that outperforms previous investigations in terms of accuracy in both
young and older adults.

To deliver these contributions, we proceed as follows. In Section 2, the experimental
setup and the pre- and postprocessing of the implemented architectures are explained.
Section 3 discusses the results when estimating fascicle length and pennation angles in
young and older adults with the proposed methodology. The paper concludes with a
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discussion and conclusion, in Sections 4 and 5, of how these results can be applied to
individualize exoskeleton assistance to deliver tailored interventions to older adults.
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Figure 1. The proposed study where an ultrasound probe is placed over the medial gastrocnemius
muscles, the proposed ResNet + 2x-LSTM architecture extracts the fascicles, and then the perfor-
mances of the model are evaluated across different walking speeds of 0.75, 1.25, and 1.5 m/s and
tasks (level ground and incline).

2. Materials and Methods

In this section, B-mode ultrasound image recordings of the muscle fascicles, collected
from young and older adults, were first segmented and labeled and then used to train two
neural networks to identify muscle fascicle lengths. The labeling approach involved the
estimation of fascicle lengths using the affine optical flow algorithm of UltraTrack [25] on
smaller subsegments of the entire B-mode recordings. One single fascicle length (label)
assigned to a given B-mode ultrasound image was used to train a neural network and
enable fascicle length prediction from B-mode ultrasound images. We adopted a supervised
learning strategy for the proposed neural network, which involved giving the neural
networks labels. The inputs to the models were the image-label pairings obtained following
a semiautomated labeling approach to identify fascicle lengths. Then, one model was
trained only on data from young adults and tested on young and older adults, while the
other was trained on both populations’ data and validated to detect muscle fascicles in
young and older adults.

2.1. Participants

A total of nine young participants [n= 9, 3 females and 6 males; age = 29.1 ± 4.04 years
(mean± SD)] and four unimpaired older adults [n = 4, 1 female and 3 males; age = 75.6± 6 years
(mean ± SD)] participated in the study.

All participants reported no previous history of physical or neurological impairment
or disabilities in walking. Inclusion criteria were no severe cognitive deficits [Mini-Mental
State Examination score > 23] [36], one or no falls in the previous months, no major surgery,
no chronic pain or undergoing physical therapy, and no difficulties in daily activities
or walking. The study was conducted according to the guidelines of the Declaration of
Helsinki and approved by the Harvard Longwood Campus Institutional Review Board,
protocol number IRB14-3608s. All methods were carried out in accordance with the ap-
proved study protocol and written informed consent prior to the start of the study was
obtained for all participants.

2.2. Experimental Procedure and Study Design

Each participant walked on a treadmill for four walking tasks, comprising level
ground walking at speeds of 0.75, 1.25, and 1.5 m/s and on a 10% incline at 1.25 m/s. The
heel-strike timestamps were detected using an instrumented treadmill (Bertec, Columbus,
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OH, USA; 1200 Hz) to identify ground reaction forces (GRF). Participants walked while a
low-profile ultrasound transducer (MicrUs, Telemed, Vilnius, Lithuania) was attached to
the left leg. The ultrasound scan captured B-mode ultrasound images at a 113 Hz frame
rate at 512 × 512 resolution (width and height) of the medial gastrocnemius muscle and
soleus muscle. The MicrUs Telemed software allowed us to adjust the ultrasound image
brightness and to normalize across participants during data acquisition. Subjects were
instrumented with a 75 mm wide ultrasound probe with a 6 MHz center frequency. For
the ultrasound probe, we picked a location over the medial gastrocnemius proximal to the
gastrocnemius muscle–tendon junction such that aponeuroses of the gastrocnemius and
soleus were approximately straight lines. As much as possible, the probe was adjusted
to ensure that the fascicles were parallel straight lines and could be observed from one
aponeurosis to the other. The probe was attached using self-adhesive athletic tape (Coban)
to guarantee that it was almost the same for different subjects.

Image frames included a representation on a sagittal plane of the upper and lower
aponeurosis, the soleus muscle, and the medial gastrocnemius muscle (Figure 2). The
dataset consisted of a total of 74,958 image frames: 40,696 collected from young participants
and 34,262 collected from unimpaired older adults. We extracted one single fascicle length
for each image frame.
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Figure 2. Randomly selected representative ultrasound images for (A) older adults and (B) young
adults at 0.75 m/s 0.0◦ level ground.

2.3. Labeling

Manual labeling (e.g., manual fascicle length identification for a single B-mode image)
was combined with semiautomated fascicle length identification using UltraTrack [25]
(Figure 3). Each sequence of a participant walking was segmented based on prerecorded
heel strikes for a total of nine sequences on average for young and fourteen sequences on
average for older adults across all walking tasks.

The segmentation into the smaller session was performed to minimize the spatial
drift brought on by the affine optical and to mimic the gold-standard manual processing
techniques in a sustainable manner. Each sequence of participant walking, containing on
average 1441 image frames, was segmented into 130 image frames on average (chucks).
The extracted chunks, segmented based on GRF heel-strike timestamps, were plotted using
the methodology suggested by Lai et al. [37] to ensure correct labeling (Figure 3).
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Figure 3. Illustration of high-level pipeline showing labeling used in this study. The continuous
B-mode ultrasound recordings are segmented based on prerecorded heel strikes. The individual
chucks are then processed using the affine optical flow algorithm of UltraTrack [25] to extract the
fascicle lengths in millimeters (mm) across time in seconds (s) (in the lower left box). Each segmented
sequence has many fascicle lengths (on average 130 frames in each segmented sequence), which
form the fascicle lengths over time waveforms (left blue box). Finally, to validate the accuracy of the
labeling methodology, the extracted individual segments of fascicles are plotted on top of each other
over the stance phase (in the right box) following the approach proposed by Lai et al. [37].

2.4. Model Design

Considering the nature of the image sequences as visual time series, we used
a long-term recurrent convolutional network (also known as convolution LSTM or
CNN + LSTM) [38,39]. As input, the model took in the 512 × 512 grayscale image frames
and the time series labeled fascicle lengths to perform fascicle length detection. The
architecture was composed of convolutional layers to perform local feature extraction and
regression tasks. As CNNs have no memory of the input, the added LSTM components
enabled both spatial and temporal inference, specifically designed for sequence prediction
(e.g., order of image frames) with spatial inputs (e.g., 2D structure or pixels in an image).

The network architecture comprises (i) a convolutional unit for encoding the spatial
information for each image frame of the ultrasonographic videos in input, (ii) LSTM units
to decode the temporal information, and (iii) a regression unit for the prediction of the
fascicle lengths of interest (Figure 4). The convolutional unit was used to extract a spatial
feature vector from every image frame of the gastrocnemius in the image sequence. A
state-of-the-art architecture was employed for the CNN unit, known as ResNet50 [35]). As
ResNet50 was only capable of handling single images, transforming input pixels into a
vector representation, two LSTM units were used to process the image features. The output
of each LSTM unit was treated as input to the next unit. Finally, the output of the LSTM
unit was regressed to predict the location of fascicles in individual image frames and their
lengths. The model returned a time series prediction for each recording.

A sliding window method was used to allow the model to interpret video inputs of
any duration. The adopted sliding window, as illustrated in the picture sequence, had
overlapping chunks of a predetermined duration based on heel strikes. The neural network
model was then fed to each segment, and a prediction vector pk was returned. The ultimate
target output is determined as

ŷt =
1
K

K

∑
k−1

pk,t
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where pk,t is the prediction for frame t in the kth segment, and K is the total number of
predictions available for each frame, obtained from overlapping segments. A peak detection
algorithm then searched for the local maxima and minima, representing the fascicle lengths
during the gait cycle.
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Figure 4. Schematic of the proposed convolutional neural network with two long short-term memory
(LSTM) units. The individual segmented sequences that are input to the ResNet model [35] are
then processed by two layers of LSTM units. Finally, the sliding window method processed fixed,
overlapped, chunked sequences, generating multiple predictions for each frame. Once the local
minima and the local maxima are identified for overlapping sequences, the average prediction fascicle
length is then reconstructed from each subsegment.

2.5. Model Evaluation

The model was implemented using the TensorFlow 2.0 deep learning framework [40]
and trained on a local GPU. The loss function was the mean squared error (MSE) with the
Adam optimizer initialized with a learning rate of 10−5. The dataset was divided into a
70/30 ratio for training and testing, respectively. The training was executed on 50 epochs,
but early stopping was employed when needed to avoid overfitting, so training continued
until the validation loss plateaued.
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The ResNet + 2x-LSTM model was initially trained and tested on young participants
(young-age-trained model), splitting the dataset for each participant at each walking task
in a manner that both the training and testing were applied to the nine participants, but
on different walking tasks, with 28,488 image frames used for training and 12,208 image
frames used for testing. This model, pretrained on young adults (young-age-trained model),
was also tested on the older adult population to evaluate the generalizability of a generic
architecture trained on young adults and its effectiveness on older adults. The second test
involved the ResNet + 2x-LSTM model training on the entire dataset containing both young
and older adults (all-age-trained model), with 52,471 image frames used for training and
22,487 image frames used for validation. In both instances, data augmentation to prevent
overfitting was used. In particular, spatial cropping between 0 and 10 pixels along each
axis and rotation between −10◦ and 10◦ was adopted.

The inference metrics were the coefficient of determination (R2), root-mean-square
errors (RMSEs) in mm of the fascicle length across participants for the two age groups, and
the mean absolute percentage error (MAPE) with respect to the total fascicle length. As an
additional endpoint, we measured the difference between each labeled target yt and the
timestep prediction ŷt as the average absolute frame difference (aaFD) for each segmented
sequence, measured as

aaFD =
1
N

N

∑
t=1
|yt − ŷt|

where N was the number of events for frame t within the test dataset. Finally, we also
recorded the inference time for the network to output individual segmented fascicle lengths.

3. Results
3.1. Young-Age-Trained Model

The ResNet + 2x-LSTM trained and tested on young participants showed a high level of
correlation of R2= 0.85. The RMSE across tasks for the two age groups was 2.36 ± 1.51 mm
(mean ± SD). To keep a sense of proportion of the actual error with the respect to the
total fascicle length, the MAPE reported how much these errors meant with respect to the
total length of the fascicles, presenting a value of 3.69% on average with respect to the
total fascicle lengths. The average error reported for each subsegment inferred (aaFD) was
0.48 ± 1.10 mm (mean ± SD). The same architecture was also tested on older adults to
evaluate the model’s effectiveness to extract fascicle lengths from a population not seen
in testing. The coefficient of determination was moderate (R2= 0.53), with an increased
RMSE of 4.7 ± 4.66 mm (mean ± SD), MAPE = 5.19%, and aaFD = 1.9 ± 1.39 mm. The
network average detection time was 0.59 ± 1.53 s (s) for detecting each segmented event. A
summary of the R2, RMSE, MAPE, aaFD, and average detection time for this first young-
age-trained model is in Table 1. To improve the performance of the model, the architecture
was retrained on the young and older adult image frames (combined).

Table 1. Comparison of the performances of the two proposed ResNet + 2x-LSTM algorithms for young-
age-trained and all-age-trained models. The table indicates the value of the coefficient of determination
(R2), the root-mean-square error (RMSE) in millimeters (mm), the mean absolute percentage error with
respect to the total length of the fascicles (in %), the average absolute frame difference (aaFD) of the
individual subsegments in mm, and the average detection time (mean in seconds ± SD).

Performance Metrics
Young-Age-Trained All-Age-Trained

Young Older Older

R2 0.85 0.53 0.79
RMSE (in mm) 2.36 ±1.51 4.7 ± 4.66 3.95 ± 2.51

MAPE (%) 3.69 5.19 4.5
aaFD (in mm) 0.48± 1.10 1.9 ± 1.39 0.67± 1.8

Average detection time (s) 0.59 ± 1.53 0.62 ± 0.32
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3.2. All-Age-Trained Model

The ResNet + 2x-LSTM was then retrained and validated with young and older adult
image frames combined. The model presented an increased coefficient of determination
value of 0.79 and an error of 3.95 ± 2.51 mm. The MAPE for older adults was 4.5% and
for the subsegment was aaFD = 0.67± 1.8 mm. The proposed retrained ResNet + 2x-LSTM
presented an average inference time of 0.62 ± 0.32s for detecting each segmented event.
A summary of the R2, RMSE, MAPE, aaFD, and average detection time for this second
training is also illustrated in Table 1 (as the results of the young adults did not improve
with further training, only the results of the older adults are reported for the all-age-trained
model). Figure 5 shows fascicle lengths in output for young and older adults across tasks.
To further investigate the model across velocities and tasks, the MAPE for the two age
groups at different walking tasks is illustrated in Figure 6.

The average time to manually annotate fascicle lengths to generate individual B-mode
ultrasound recordings was 56 ± 13 s (mean ± SD) per segmented fascicle length. The
equivalent time performed by the ResNet + 2x-LST demonstrated an advantage, having an
inference time of 0.62 s for detecting each event.
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Figure 5. Fascicle lengths (in millimeters) versus time (in seconds) in output from the ResNet + 2x-LSTM
algorithm for the all-age-trained model for both young and older adults compared against the
(semiautomated) manual labeling. The time series data show the trends across three tasks, including
level ground at walking speeds of 0.75 m/s (slower), 1.25 m/s at 10% incline, and 1.5 m/s (faster) of
the muscle fascicles regressed from the B-mode ultrasound images.
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Figure 6. Illustration of the mean absolute percentage error (MAPE) in percentage (%) for the fascicle
lengths across participants (young in light green and older in light purple) across the four task
velocities (level ground at walking speeds of 0.75, 1.25, and 1.5 m/s and 10% incline at 1.25 m/s).
The results represent the training performed across participant ages using the ResNet + 2x-LSTM
introduced in the study. The box plots extend from the lower (25th) to upper (75th) quartile values
of the data, with a line at the median value. The whiskers (vertical lines) extend from the box to
show the range of the data, from the minimum to the maximum value. Outliers (data points located
outside the whiskers of the box plot and numerically distant from the rest of the data) are represented
as black dots.

4. Discussion

This study sought to investigate the feasibility of a neural network to automatically
extract fascicle lengths in young and older adults. Fascicle length estimates can be used
to generate profiles tailored to the person in human-in-the-loop assistive strategies. These
strategies have been used on young adults and have the potential to be useful for older
adults who have declines in muscle mass, particularly in the lower extremities [11,20,41].
In automated methods to extract muscle fascicles from B-mode, the literature has mainly
focused on young adults, and to the best of our knowledge, no investigation has specifically
addressed the error of automated tracking methods for individualized assistance in older
adults. We demonstrated (1) the error of an architecture made of a ResNet model combined
with LSTMs for both young and older adults; (2) the generalizability of the all-age-trained
model in terms of tasks, population, and arbitrary video length; (3) the processing speed
that supports physiology-based assistance.

The error of the ResNet + 2x-LSTM algorithm decreased in the all-age-trained model
for older adults but stayed the same in the two tests for young adults. This was likely due
to the reduced fascicle contrast in older adults, which could result in a more challenging
detection task for the model. Although the error of the tracking for older adults increased
compared to the young population, the average fascicle length across participants and tasks
was found to be 54.5 mm; therefore, the variation of 2 mm is small, and may lead to errors
of 3 to 5% in the generated force profiles [13].

This study also addressed the shortage of ultrasonographic training data by devel-
oping a sliding window approach for the ResNet + 2x-LSTM algorithm. This approach
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enabled the inference of smaller subsegments of fascicles of arbitrary lengths. Although
the sliding window is a very popular technique for training processes on CNN [42,43],
the novelty of this research is the combination of the approach to multiple LSTM units for
fascicle length extraction. While the proposed model was trained on fixed-length sequences,
no a priori information was provided in input to the model on the length of the inputs,
suggesting that the model would successfully deal with varying-length inputs and maintain
good performances across participants and tasks. An interesting future direction would
be a segmentation model to automatically obtain the optimal window size for different
ultrasound imaging recordings in terms of recognition, speed, and accuracy.

The time for our automated model, executed on the GPU, was significantly faster
than the human-led process based on the affine optical flow to manually annotate fascicle
lengths. A useful direction for the development of an image analysis interface would
involve a web-based, interactive, real-time platform, which could significantly speed the
annotation process.

This study comes with some limitations. First, we could not analyze our data based
on gender because of the small number of subjects in each class. Second, we acknowledge
the class unbalances related to the number of subjects present in each cluster. However,
the number of frames was almost the same due to longer recordings in the older adult
population. Third, partial manual fascicle detection was used to train the model using
chunks processed via Ultra Track; intrinsic errors due to affine optical flow could have
caused discrepancies in the model. However, given the amount of training data, the perfor-
mance of the proposed ResNet + 2x-LSTM algorithm is well positioned to further evaluate
it against other gold-standard tracking methods (manually) on young and older adults.

In the future, it would be interesting to evaluate the performances of the proposed
model for real-time exoskeleton assistance. Muscle-based assistance may be able to enhance
assistance methodologies and closed-loop controllers to allow real-time dynamic control for
real-world tasks across different populations. Exoskeleton device design should carefully
consider the age-related loss in muscle quality causing a lower capacity to generate muscle
force [11,44,45]. Studies have shown that the major risk factors for falls in older adults are
related to lower limb muscular weakness [8], due to muscle composition changes as people
age [9]. In particular, changes in muscle quality due to aging are linked to variations in
muscular architecture such as fascicle length [10]. This has particular relevance for the
design of exoskeleton devices that should consider the age-related loss in muscle quality,
suggesting that the factor introduced by age differences in muscle architecture can be
considered acceptable when designing human-in-the-loop assistive strategies using in vivo
muscle dynamics. This represents a great potential advantage of the imaging modality, and
the proposed methodology, for real-time assistance. The approach presented here may be
relevant for the design of strategies for fall prevention in older adults.

5. Conclusions

This paper introduces a method for autonomous fascicle length estimation from B-
mode ultrasound in young and older adults. The experimental results illustrate that the
proposed technique can effectively estimate the desired parameters for the two populations.
This research can facilitate the adoption of lower-extremity assistive exoskeleton devices,
addressing the need for assistance profiles tailored to the participant’s needs, specifically
adjusted to the older adult populations. This validation for lower-extremity exoskeletons
may have the potential to improve the physiology-driven applications and support real-
world adoptions for adults with limited mobility during walking.
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