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Abstract

Objective: Prior studies identified SNPs associated with physical activity (PA) level in a natural 

environment and intervention study: rs978656-DNAPTP6, rs10887741-PAPSS2, rs7279064-

C18orf2, and rs6265-BDNF. Using the 4 SNPs’ polygenic score (PGS), we examined whether 

PGS moderate a lifestyle intervention’s effect on changes in PA level and cardiorespiratory fitness 

(CRF).

Methods: This is a secondary analysis of Look AHEAD, a multi-center randomized controlled 

trial designed to test the health benefits of a lifestyle intervention among 2,675 participants with 

overweight/obesity and type 2 diabetes (ages 45–76). Using linear mixed effects models, level of 

PA (Paffenbarger PA questionnaire) and treadmill-assessed CRF were each regressed on 4 SNPs’ 

PGS, study time (baseline, year1, and year4), intervention arm, and interactions between the 

three. Models adjusted for age, sex, body mass index, ancestry principal components (population 

stratification), and study sites, with Bonferroni corrections for multiple testing (alpha<0.005). 

Effect modification by age was examined.
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Results: PGS was not predictive of change in CRF or PA level in response to intervention. In 

analyses without PGS×intervention×time, the relationships between PGS and PA phenotypes were 

modified by age (p-interaction=0.048 for CRF and 0.058 for PA), such that one unit increase in 

PGS was associated with 24 kcal·week−1 more in moderate intensity PA and 0.004 MET higher 

CRF only among older groups (age>55 year for CRF, >60 year for PA level).

Conclusion: The effects of the intervention on PA and CRF were not moderated by the 4 SNPs. 

Future studies with extended SNP list should confirm the findings on effect modification by age.
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INTRODUCTION

Over the past seventy years, biomedical and epidemiological research has shown that regular 

physical activity (PA) is critical for physical and mental health (1–3). However, only half 

(51.6%) of US adults meet the national guidelines of expending 500–1000 metabolic 

equivalent (MET) minutes (~1000kacl) per week through PA (4). In particular, a sharp 

decline in PA is observed after age 45–50 (5–7). Thus, enhancing PA rate among middle-

aged adults has high public health relevance.

It is widely accepted that low rates of PA stem primarily from environmental factors, such as 

cars and elevators that have allowed people to move less (8, 9) but individuals respond 

differently to exogenous stimuli (e.g., obesogenic environment) due to an endogenous 

factors, such as age and sex (8). Similarly, a substantial proportion of variance in PA 

behavior is accounted for by genomic variability. A large body of behavioral genetics 

research indicates that genomic factors can predict a substantial proportion of variance in PA 

(30–78%), exercise participation (48–71%), and sports participation (35–83%), as evidenced 

by twin studies (10–15). Given the nontrivial contribution of genomic factors in predicting 

variance in PA (~30%), it deserves to be considered in more detail.

Human genetics research identifying the specific genetic variants, or single nucleotide 

polymorphisms (SNPs), associated with PA has been stagnant in the past decade since 

De Moor, Liu (16) identified 37 SNPs clustered near 3 genes (DNAPTP6, PAPSS2, and 

C18orf2), chiefly due to lack of studies with sufficiently large sample sizes. In recent years, 

however, the field has observed an emergence of genome-wide association studies (GWAS) 

from large cohorts. These include, but are not limited to, the UK Biobank (17, 18), Japan 

Multi-Institutional Collaborative Cohort (19), as well as aggregation of Framingham Heart 

Study, Women’s Health Initiative and Jackson Heart Study (20). More GWAS are expected 

to come through Precision Medicine Initiative cohorts (e.g., “All of Us” and “Million 

Veterans Program”). To this effect, it is reasonable to be optimistic that researchers may 

soon identify which SNPs are associated with PA in the natural environment.

While naturally occurring PA level at a single time point is the most widely used PA 

phenotype in large GWAS, these phenotypes are considered relatively shallow as they yield 

insufficient knowledge regarding how we can use genomic data to change PA behavior, 
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and ultimately the public’s health. A study using a deeper phenotype, such as changes in 

PA level or PA-related health outcomes in response to an intervention, can provide more 

useful information for increasing PA rate. For example, in a randomized controlled PA 

promotion trial, a SNP near Brain derived neurotropic factor gene (BDNF), moderated the 

efficacy of a PA promotion intervention on PA level (21), such that the A allele carriers 

engaged in more PA than the GG homozygotes randomized to the PA promotion arm, 

but not in the control group. This study highlights the possibility of using genomic data 

for personalized interventions for PA interventions. However, the major weakness of this 

intervention research is the small sample size (n<300), and the candidate gene approach, 

which has shown a low replication rate (22).

Taken together, investigating the genetic influence on changes in PA level and PA-related 

health outcomes using a large sample size with GWAS-identified SNPs adds significant 

evidence to the existing body of literature on the genetic basis of PA.

Thus, the objective of the present study is to examine whether genetic variations moderate 

a lifestyle intervention’s effect on changes in PA level and cardiorespiratory fitness (CRF) 

using a large data set (n=2,675). To quantify genetic variation, we computed a polygenic 

score (PGS) by adding the number of effect alleles that predispose individuals to be more 

physically active from four SNPs1—three from the GWAS of PA (i.e., G of rs978656, T of 

rs10887741, G of rs7279064) and one from the intervention study (i.e., A of rs6265)—with 

weights equal to the published per-allele effects (Table S1, Supplemental Digital Content). 

We used data from the Action for Health in Diabetes (Look AHEAD) trial, a multi-center 

randomized controlled trial designed to test the health benefits of a lifestyle intervention 

among participants with overweight/obesity and type 2 diabetes (ages 45–76). The central 

hypothesis is that those who are genetically predisposed to high PA (based on PGS of the 4 

SNPs) may respond better to a PA promotion intervention than those who are prone to low 

PA.

METHODS

Study Cohort

We used data from Look AHEAD participants. The primary objective of the Look AHEAD 

trial was to assess the long-term effects (up to 11.5 years) of an intensive lifestyle 

intervention (ILI) in individuals with overweight and obesity as well as type 2 diabetes. The 

baseline characteristics of the Look AHEAD participants as well as the design and methods 

have been reported elsewhere (23). Briefly, Look AHEAD, which started in June 2001, was 

a randomized controlled trial investigating the efficacy of an ILI on cardiovascular outcomes 

compared to diabetes support and education (DSE). Both ILI and DSE groups received one 

session of education on cardiovascular risk factors and diabetes. The Look AHEAD trial was 

approved by local Institutional Review Boards, including genetic analyses. The current data 

analysis was approved by the Miriam Hospital Institutional Review Board.

1After receiving relevant genotype data from Look AHEAD team, four additional GWAS of PA came out from UK Biobank (17, 18), 
Japan Multi-Institutional Collaborative Cohort (19), as well as aggregation of Framingham Heart Study, Women’s Health Initiative 
and Jackson Heart Study (20), which were not included in this study.

Lee et al. Page 3

Psychosom Med. Author manuscript; available in PMC 2023 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The flow diagram illustrating the study sample is presented in Figure 1. From 2001 to 

2004, the Look AHEAD trial enrolled 5,145 ethnically diverse subjects with overweight and 

obesity as well as type 2 diabetes between the age of 45–76 years from 16 centers (24). 

Of these, 1,038 did not provide genetic consent to be included in a genetic ancillary study, 

including all participants from three Southwest American Indian sites, 10 withdrew consent 

for genotyping and 60 were identified to have no or a low concentration of DNA. This left 

4,037 individuals, of which, 3,905 provided genetic samples that were characterized on the 

Illumina CARe iSelect (IBC) that passed genotyping quality control procedures, and 4,047 

did so for the Metabochip. Together, 3,676 subjects contributed DNA samples on both the 

IBC and Metabochip, and 3,649 participants were successfully genotyped for all the four 

SNPs that were examined in the present study. Out of a total of 17 study sites, the Look 

AHEAD team collected self-reported PA data in eight study sites at baseline, year 1, and 

year 4. Using data from these 3,649 participants, two data sets were created for analysis: 

1) the sample with complete data for both self-reported PA at baseline, year 1, year 4 and 

covariates (n=1,719), and 2) the sample with complete data for CRF at baseline, year 1, year 

4, and covariates (n=2,675).

Main outcome measures

Self-reported PA was assessed using the Paffenbarger PA Questionnaire (25), which 

estimates weekly energy expenditure (kcal·week−1) from moderate intensity PA (e.g., 

climbing stairs, walking, and other fitness, sport, and recreational activities).

CRF was operationalized as the estimated metabolic equivalent (MET) level based on the 

treadmill workload (i.e., speed and grade) achieved at the point of termination of the graded 

exercise treadmill test. At baseline, a maximal graded exercise test was used and at years 1 

and 4 a submaximal graded exercise test (i.e., 80%) was used. Additionally, at baseline, data 

were recorded on the MET value at 80% of maximum heart rate (=220-age), to correspond 

with data collected at follow-up time points. Participants were instructed not to exercise 

on their own before the graded exercise test and not to drink alcohol 24 hours prior to the 

testing.

Weight and height were measured by study staff and BMI calculated, and blood samples 

were collected for DNA extraction.

Genotyping

The IBC chip is a gene-centric 50,000-SNP array designed to assess potentially relevant 

loci across a range of cardiovascular, metabolic, and inflammatory syndromes (26). The 

Metabochip is a custom genotyping array that provides accurate genotyping of nearly 

200,000 SNPs chosen based on GWAS meta-analyses of cardiovascular disease and diabetes 

risk traits (27). IBC chip genotyping was carried out at the Children’s Hospital of 

Philadelphia, and Cardio-Metabo chip genotyping was carried out at Center for Inherited 

Disease Research at Johns Hopkins University. On both platforms, the Look AHEAD study 

team excluded participants with failed genotyping, sex inconsistency, or familial relatedness 

(kinship coefficient > 0.025). SNP assays failing on an individual DNA sample indicates 

a poor-quality DNA sample. Thus, SNPs with a genotyping call rate less than 95% in 
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any ethnic group (i.e., samples with low genotype frequency) were also excluded. After 

quality control procedures, the mean genotyping success rate per SNP was greater than 

99.9%. Consistent with prior Look AHEAD publications (28) and data from other studies 

(27), SNPs not directly represented on either the IBC chip or the Cardio-Metabo chip were 

replaced by proxies (r2 ≥ 0.90) using phased genotype data from the 1000 Genomes Project 

and the SNP Annotation and Proxy Search tool (29) (see Table S1, Supplemental Digital 

Content).

SNP selection and Polygenic Score

The four SNPs examined in the proposed research are derived from two prior studies. The 

first SNP, rs6265, is identified from a randomized controlled PA promotion trial (21), in 

which an interaction between the rs6265 genotype and the efficacy of a PA promotion 

intervention was observed. Rest of the three SNPs are from the only previous GWAS 

that we were aware of when the present team obtained data from Look AHEAD (16). 

Specifically, De Moor, Liu (16) identified 37 SNPs clustered in three genomic regions (i.e., 

2q33.1, 10q23.2, and 18p11.32), and we selected one SNP from each region: rs978656 

near DNAPTP6, rs10887741 near PAPSS2, rs7279064 near C18orf2. Because two of the 

GWAS-identified SNPs were not in Cardio-Metabo chip or IBC chip, we examined proxy 

SNPs (see Table S1, Supplemental Digital Content), which were identified using the SNP 

Annotation and Proxy Search tool (29).

To examine cumulative effects of the 4 SNPs, we computed a PGS by adding the number 

of effect alleles that predispose individuals to be more physically active from four SNPs 

(G of rs978656, T of rs10887741, G of rs7279064, and A of rs6265) with weights equal 

to the published per-allele effects (see Table S1). To calculate per-allele-effects, odds ratios 

reported in the GWAS were used (i.e., > 4 metabolic equivalents-hours per week), in which 

a binary PA variable was used as the dependent variable. The genotype from each of the four 

SNPs were coded as 0, 1, or 2 in accordance with the number of effect alleles. Then, each 

SNP was weighted by its effect size based on the assumption that all SNPs have independent 

effects—and an additive effect of each allele within each SNP—on PA phenotypes. The 

highest possible value of the PGS is 10.8 (i.e., having two effect alleles for all four SNPs), 

while the lowest score is zero.

Statistical Analysis

To control for admixed study population, all IBC SNPs were examined by principal 

component analysis using the EIGENSTRAT algorithm (30) as implemented in Golden 

Helix version 7.1 (Bozeman, MT, USA). Principal component analysis results indicated that 

the majority of the variance among the multi-racial Look AHEAD cohort was accounted 

for by the first two principal components, which agreed with self-reported race/ethnicity 

in distinguishing Caucasians from African-Americans, and Hispanics from these other 2 

groups (31).

Using a series of longitudinal linear-mixed models, we assessed the effect of PGS on 

PA phenotypes by treatment arm over time. Baseline PA phenotypes as well as treatment 

response (i.e., change in PA phenotypes from pre- to post-intervention) can be influenced by 
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the SNPs. Therefore, baseline was modeled as the first time point in longitudinal analyses 

(32). In the model, we adjusted for baseline PA, time, treatment group, and genetic variation, 

as well as all one, two and three-way interactions between treatment, time and genetic 

variation. A Bonferroni correction was used to account for multiple comparisons of 10 tests, 

i.e., 5 (PGS + 4 SNPs) × 2 phenotypes. Thus, p-values below 0.005 (=0.05/10 tests) were 

considered statistically significant. Finally, Paffenbarger PA variables included some zero 

values (n=499), and since the linear-mixed models cannot include zero values as outcome 

variables, these zero were changed to one. We then performed sensitivity analyses excluding 

the 499 participants who reported zero for Paffenbarger PA.

Power analysis was computed a priori using G*Power (33). With 1,719 participants and 6 

predictors (PGS, age, sex, BMI, study site, and population stratification) in the self-reported 

PA data set, there was 80% power to detect r2 of 0.00511 or 95% power to detect r2 of 

0.007955. With 2,675 participants and 6 predictors (PGS, age, sex, BMI, study site, and 

population stratification) in the CRF data set, there was 80% power to detect r2 of 0.008 or 

95% power to detect r2 of 0.0122.

We conducted several secondary analyses. A wealth of research on PA determinants has 

consistently shown that age is a strong determinant of PA (8, 34). Thus, to test potential 

effect modification by age in the association between PGS and PA phenotypes, we included 

PGS × age in the linear mixed models. We also examined each SNP individually × time × 

intervention, controlling for all covariates. All four SNPs were in separate chromosomes. 

Hardy Weinberg Equilibrium was determined using χ2 (Rodriguez, Gaunt, & Day, 2009). 

For analyses for individual SNPs (but not PGS), when minor allele frequency was below 

20%, the minor allele homozygotes were combined with the heterozygotes type, resulting 

binary variables: dominant in effect allele A (e.g., AA/AB vs. BB) or recessive in effect 

allele A (e.g., AA vs. AB/BB). Except rs10887741, minor allele frequencies of all three 

SNPs (rs6265, rs7279064, and rs978656) were below 20%. Thus, these three SNPS were 

examined as binary variables: rs6265 (GG vs AA/GA), rs7279064 (TT vs GG/TG), and 

rs978656 (AA/GA vs GG). All analyses were adjusted for age, sex, BMI, study site, 

and population stratification. All analyses were performed in R statistical software (35). 

Longitudinal mixed effect models were performed using nlme package (36).

RESULTS

Descriptive Statistics

Participant characteristics are summarized in Table 1a and 2b. Individuals were evenly 

distributed between the intervention arms, with respect to age, sex, and ethnicity. Generally, 

compared to those who provide their self-reported PA data, those who did not were more 

frequently Hispanic (10.3% vs 3.8%; p<0.001), had lower BMI (35.95 ± 5.84 kg.m−2 vs. 

36.47 ± 6.13 kg.m−2; p=0.01), and higher PGS (5.45 ± 1.64 vs. 5.30 ± 1.63; p=0.005). 

Compared to those who provided CRF, those who did not, had higher BMI (37.18 ± 6.43 

kg.m−2 vs. 35.84 ± 5.77 kg.m−2; p<0.001), were older (59.98 ± 7.23 years vs. 58.81 ± 

6.67; p<0.001), and were less frequently assigned to the treatment arm (47.1% vs 51.1%; 

p=0.037). The slightly higher PGS in ILI group came out statistically significant in Table 

1b (n=2,675) but not Table 1a (n=1,719), which is likely due to the larger sample size. 
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Genotype distribution of all studied SNPs in this population confirmed the HWE assumption 

(p>0.001, see Table S1, Supplemental Digital Content). Minor allele frequencies of all four 

SNPs are summarized in Table S1.

Genetic Associations with Self-Reported Physical Activity Questionnaire

PGS was not associated with baseline PA level in multivariate or bivariate analyses. The 

linear mixed models initially included two and three-way interactions between treatment, 

time, and PGS (PGS × intervention and PGS × intervention × time). However, the 

interaction terms were not statistically significant in any model (Table 2a), indicating that, in 

response to randomization to lifestyle intervention, PGS was not related to rate of change in 

PA level or PA level across time.

In a model with main effects only, PGS was not associated with PA level across time 

(p=0.79). Further analysis indicated that age was a nearly significant moderator of the 

association between PGS and PA level (p-interaction=0.058). Specifically, among those 

age>60 years of age, a one unit increase in PGS was associated with expending an average 

of 24 kcal∙week−1 more in moderate intensity PA (p=0.34). Conversely, among those age≤60 

years of age, a one unit increase in PGS was associated with an average of 19 kcal∙week−1 

less in moderate intensity PA (p=0.28).

Models of self-reported PA indicated that the interaction terms for each individual SNP was 

not significant (p>0.1) (Table S2a, Supplemental Digital Content). For sensitivity analyses, 

we performed the same analyses among the subsample of participants who reported at least 

some PA at baseline, year 1, or year 4. That is, those who reported zero for self-reported PA 

(n=499) were removed, and the overall pattern remained the same.

Genetic Associations with Cardiorespiratory Fitness

PGS was not associated with baseline CRF in multivariate or bivariate analyses. The linear 

mixed models initially included two and three-way interactions between treatment, time, and 

PGS (PGS × intervention and PGS × intervention × time). However, the interaction terms 

were not statistically significant in any model (Table 2b), indicating that, in response to 

randomization to lifestyle intervention, PGS was not related to rate of change in CRF level 

or CRF level across time.

In a model with main effects only, CRF was not associated with PA level across time 

(p=0.28). However, similar to PA level, age appeared to modify the association between PGS 

and CRF (p-interaction=0.048). Specifically, among those age>55 years of age, a one unit 

increase in PGS was associated with 0.004 MET higher CRF (p=0.04). Conversely, among 

those age≤55 years of age, one unit increase in PGS was associated with 0.03 MET lower 

CRF (p=0.23).

In individual SNP analysis, there was a significant three-way interaction between rs978656, 

time and intervention (p=0.04). Thus, we stratified the data by the rs978656 SNP to see 

whether intervention effects differ by the genotype. Among A allele carriers of the rs978656 

SNP (i.e., low PA prone group), intervention participants had significantly higher CRF at 

year 1 (b=1.14) and year 4 (b=.52) compared to participants in the control group. Among 
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GG homozygotes of the rs978656 SNP (high PA prone group), intervention participants also 

had significantly higher CRF at year 1 (b=0.73) and year 4 (b=.31) compared to control, 

but with a lower magnitude of difference between the intervention versus control conditions. 

However, this interaction did not persist following Bonferroni correction (alpha<0.005). 

Figure S1a shows the CRF trajectory by intervention group among GG homozygotes (high 

PA prone group), and Figure S1b shows the same graph among the T allele carriers. The 

interaction terms for rest of the three SNP (SNP × intervention time) was not significant 

(p>0.1) (Table S2a, Supplemental Digital Content).

DISCUSSION

In a multi-center randomized controlled trial designed to test the health benefits of a lifestyle 

intervention among 2,675 participants with overweight/obesity and type 2 diabetes (ages 45–

76), higher PGS was not related to higher rate of change in PA- or CRF-level, or maintaining 

higher PA- or CRF-level across time, in response to randomization to lifestyle intervention.

Age emerged as an effect modifier in the secondary analyses in both PA level and CRF. PA 

tends to decline as age increases (44), with a more progressive decline in PA after age 45–50 

(5, 6). This phenomenon has a strong biological basis that extends to nonhumans (45), and 

empirical evidence suggests that, compared to younger adults, the PA levels of middle-aged 

adults are more strongly associated with environmental factors such as socioeconomic status 

(21) and randomization to PA promotion intervention (22). Combined with the present 

findings, genetic and social predispositions appear to manifest more saliently among those 

who are older, with the directions consistent with prior research (i.e., lower PA is related 

to lower socioeconomic status as well as lower PA-prone genetic factors). However, these 

post-hoc analyses should be considered as preliminary results for hypothesis generation, and 

future replications studies are needed.

In individual SNP analyses, one SNP near DNAPTP6 gene, rs978656, emerged as a 

moderator of the lifestyle intervention, such that CRF increase was higher in A-allele-

carriers of rs978656 (low PA prone group) vs. GG homozygotes (high PA prone group). 

The biological functions of the proteins coded by DNAPTP6 gene—also known as 

spermatogenesis associated serine rich 2-like (SPATS2L)—are largely unknown. However, 

our finding is comparable with one of the recent GWAS of PA by Hara, Hachiya (19) who 

conducted two-stage genome-wide association analyses using discovery (n = 13,980) and 

replication (n = 2,036) samples among Japanese adults. The authors found that rs12612420 

in DNAPTP6 (i.e., proxy SNP rs978656; Table S1) is associated with self-reported leisure 

time PA level. Of note, in present study, the rs978656 in DNAPTP6 was associated with 

CRF, but not PA level. Triangulating the observations from the present and prior studies, 

DNAPTP6 SNP may influence capacity to perform PA (e.g., CRF), which may in turn 

influence behavior (e.g., PA rate). However, these are based on speculation and future 

research examining the biological function of DNAPTP6 with respect to PA phenotypes is 

needed. The rest of the 3 SNPs examined (i.e., rs10887741-PAPSS2, rs7279064-C18orf2, 

and rs6265-BDNF) did not moderate the effect of lifestyle intervention on CRF or PA level. 

Although the SNPs we examined are selected from the only GWAS of PA that was available 

at the time of the present study, these SNPs were not robustly replicated in a subsequent 
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well-powered GWAS of PA (e.g., UK biobank). Future studies incorporating the recently 

identified PA-related SNPs from the larger, more recent GWAS (17–20) warrant future 

investigation.

There are several limitations to the present study. Many participants were missing CRF data 

at follow-up. Since the major causes of missing CRF data at follow-up were inability or 

unwillingness to do the test (37), these data are not missing at random. The sample size 

is considered small compared to most GWAS in this post-genomic era. However, Look 

AHEAD is the largest genetic study that examined a deep phenotype, such as change in 

PA and CRF change in response to a randomization to a lifestyle intervention. Self-reported 

PA is susceptible to biases (36), is known to be unreliable unless restricted to salient 

re-callable activities (e.g., gyms visits), and there were no measures of reproducibility and 

validity regarding the Paffenbarger questionnaire in our sample. However, the Paffenbarger 

PA questionnaire is a well-validated and reliable method for assessing leisure-time PA. 

There are several strengths of the present study. This is the largest study to examine genetic 

predictors of PA level and CRF change over time. Moreover, there are methodological 

advantages to focusing on PA change in response to an intervention, as it constitutes a more 

fine-grained phenotype compared to naturally occurring PA behavior, a phenotype that is 

typically used in the GWAS approach. In addition, variations in environmental factors are 

significantly reduced when the outcome is PA change in response to lifestyle intervention. 

This is because the latter outcome controls access to a PA intervention. Finally, given that 

participants were recruited from 16 centers across the US, the present findings have strong 

generalizability for middle-aged adults with type 2 diabetes in the US.

We recommend future studies to take a similar approach with more SNPs. The low number 

of SNPs is determined by the progress of genomic research on PA behavior, which has 

been stagnant in the past decade. However, in this post-genomic era, genetic epidemiology 

research is evolving rapidly, with four GWAS being published in 2018 (17–20)—9 years 

after the first GWAS of PA came out (16) and a year after the present study received 

genotype data from Look AHEAD team. Advanced technology such as next-generation 

sequencing and wearable devices (e.g., accelerometer), along with federal enterprise such 

as NIH’s precision medicine initiative cohort (“All of Us”) and Millions Veteran Program, 

will likely accelerate the discoveries of SNPs that are associated with PA. With an enhanced 

number of SNPs, future PA promotion studies may be able to predict how genomic factors 

influence PA phenotypes (i.e., PA rate and CRF) over the years. To improve upon predicting 

PA level from increasing PA level, future studies examining deeper PA phenotypes—such as 

the trajectory of PA in a longitudinal cohort study, changes in PA phenotypes in response to 

an intervention, intermediate phenotypes (or endophenotypes)—are needed. Taken together, 

future studies incorporating the recently identified PA-related SNPs from larger GWAS (17–

20) using various deeper PA phenotypes warrant future investigation.

CONCLUSION

In summary, an individual difference in PA phenotypes in response to a PA promotion 

intervention was not observed. The genetic predisposition to PA level of CRF may be 

moderated by age, which should be confirmed by future studies. Finally, future studies 
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incorporating the recently identified PA-related SNPs from larger GWAS using various 

deeper PA phenotypes warrant future investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow diagram of subject inclusion and exclusion
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Table 1a.

Population Characteristics in Look AHEAD Genetic Sub-cohort for those completed Self-reported Physical 

Activity Questionnaire (n=1,719)

Characteristic Total
(n=1,719)

DSE
(n=845)

ILI
(n=874)

Women (%) 968 (56.3) 482 (57.0) 486 (55.6)

Ethnicity (%)

African American/Black 314 (18.3) 156 (18.5) 158 (18.1)

 American Indian/Alaskan native 9 (0.5) 3 (0.4) 6 (0.7)

 Asian/Pacific Islander 6 (0.3) 2 (0.2) 4 (0.5)

 White 1,288 (74.9) 621 (73.5) 667 (76.3)

 Other 102 (6.0) 63 (7.5) 40 (4.4)

 Hispanic (%) 65 (3.8) 42 (5.1) 22 (2.5)

rs6265 near BDNF (%)

 GG 1,219 (70.9) 593 (70.2) 626 (71.6)

 GA 451 (26.2) 232 (27.5) 219 (25.1)

 AA 49 (2.9) 20 (2.4) 29 (3.3)

rs7279064 near C18orf2 (%)

 TT 853 (49.6) 436 (51.6) 417 (47.7)

 TG 695 (40.4) 332 (39.3) 363 (41.5)

 GG 171 (9.9) 77 (9.1) 94 (10.8)

rs978656 near DNAPTP6 (%)

 AA 58 (3.4) 29 (3.4) 29 (3.3)

 GA 452 (26.3) 223 (26.4) 229 (26.2)

 GG 1,209 (70.3) 593 (70.2) 616 (70.5)

rs10887741 near PAPSS2 (%)

 CC 237 (13.8) 120 (14.2) 117 (13.4)

 TC 760 (44.2) 374 (44.3) 386 (44.2)

 TT 722 (42.0) 351 (41.5) 371 (42.4)

Age (year) 59.18 ± 6.85 59.14 ± 6.82 59.22 ± 6.87

Body mass index (kg·m−2)

 Baseline 36.47 ± 6.13 36.46 ± 6.01 36.47 ± 6.25

 Year 1 34.64 ± 6.32 36.18 ± 6.10
33.15 ± 6.17 

a

 Year 4 35.31 ± 6.43 36.04 ± 6.37
34.80 ± 6.42 

a

Self-reported Physical Activity (kcal·week−1)

 Baseline 867.42 ± 1169.982 859.77 ± 1244.72 874.81 ± 1093.19

 Year 1 1,388.70 ± 1573.15 986.99 ± 1419.66
1,777.09 ± 1616.19 

a

 Year 4 1,098.71 ± 1346.63 933.53 ± 1198.05
1,240.71 ± 1461.02 

a

Polygenic Score of Physical Activity 5.30 ± 1.63 5.25 ± 1.16 5.34 ± 1.65

Abbreviations: BMI, body mass index; DSE, diabetes support and education; ILI, intensive lifestyle intervention; PGS, polygenic score; 
DNAPTP6, DNA polymerase trans activated protein 6 gene; PAPSS2, 3’-phosphoadenosine 5’-phosphosulfate synthase 2 gene; C18orf2, 
chromosome 18 open reading frame 2 gene; and BDNF, Brain Derived Neurotropic Factor gene
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a
p<0.001 (DSE vs ILI)
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Table 1b.

Population Characteristics in Look AHEAD Genetic Sub-cohort for those completed Cardiorespiratory Fitness 

test (n=2,675)

Characteristic Total
(n=2,675)

DSE
(n=1,308)

ILI
(n=1,367)

Women (%) 1480 (55.3) 709 (54.2) 771 (56.4)

Ethnicity (%)

 African American/Black 416 (15.6) 198 (15.1) 218 (15.9)

 American Indian/Alaskan native 10 (0.4) 3 (0.2) 7 (0.5)

 Asian/Pacific Islander 23 (0.9) 9 (0.7) 14 (1.0)

 White 1,989 (74.4) 975 (74.5) 1,014 (74.2)

 Other 237 (8.9) 132 (9.4) 114 (8.3)

 Hispanic (%) 186 (7.8) 94 (7.2) 92 (6.7)

rs6265 near BDNF (%)

 GG 1,889 (70.6) 928 (70.9) 961 (70.3)

 GA 704 (26.3) 340 (26.0) 364 (26.6)

 AA 82 (3.1) 40 (3.1) 42 (3.1)

rs7279064 near C18orf2 (%)

 TT 1,279 (47.8) 652 (49.8) 627 (45.9)

 TG 1,097 (41.0) 522 (39.9) 575 (42.1)

 GG 299 (11.2) 134 (10.2) 165 (12.1)

rs978656 near DNAPTP6 (%)

 AA 83 (3.1) 42 (3.2) 41 (3.0)

 GA 712 (26.6) 346 (26.5) 366 (26.8)

 GG 1,880 (70.3) 920 (70.3) 960 (70.2)

rs10887741 near PAPSS2 (%)

 CC 335 (12.5) 176 (13.5) 159 (11.6)

 TC 1,118 (44.4) 577 (44.1) 611 (44.7)

 TT 1,152 (43.1) 555 (42.4) 597 (43.7)

Age (year) 58.81 ± 6.67 58.73 ± 6.59 58.89 ± 6.74

Body mass index (kg·m−2)

 Baseline 35.84 ± 5.77 35.72 ± 5.57 35.94 ± 5.96

 Year 1 34.00 ± 5.96 35.42 ± 5.68
32.64 ± 5.92 

a

 Year 4 34.79 ± 6.10 35.32 ± 5.97
34.29 ± 6.19 

a

Cardiorespiratory Fitness (MET)

 Baseline 5.21 ± 1.53 5.20 ± 1.55 5.21 ± 1.51

 Year 1 5.86 ± 1.87 5.45 ± 1.66
6.25 ± 1.97 

a

 Year 4 5.25 ± 1.70 5.09 ± 1.59
5.40 ± 1.77

a

Polygenic Score of Physical Activity 5.38 ± 1.64 5.31 ± 1.64
5.44 ± 1.65 

b

Abbreviations: BMI, body mass index; DSE, diabetes support and education; ILI, intensive lifestyle intervention; PGS, polygenic score; 
DNAPTP6, DNA polymerase trans activated protein 6 gene; PAPSS2, 3’-phosphoadenosine 5’-phosphosulfate synthase 2 gene; C18orf2, 
chromosome 18 open reading frame 2 gene; and BDNF, Brain Derived Neurotropic Factor gene
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a
p<0.001 (DSE vs ILI)

b
p=0.042 (DSE vs ILI)
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Table 2a.

Linear Mixed Effect Models: Self-reported Physical Activity regressed on Polygenic Score of Physical 

Activity

ß 95% CI p-value

Total sample

Model with no interaction term PGS −4 −33 ~ 25 0.79

Model with 2-way interaction term PGS*intervention −31 −88 ~ 26 0.28

Model with 3-way interaction term PGS*intervention*year1 −22 −107 ~ 64 0.62

PGS*intervention*year4 −13 −103 ~ 77 0.77

Effect modification: age

Model with 2-way interaction term PGS*age 4 0 ~ 8 0.05

Model with 3-way interaction term PGS*intervention*age −4 −12 ~ 5 0.39

Model with 4-way interaction term PGS*intervention*year1*age 11 −1 ~ 24 0.08

PGS*intervention*year4*age −2 −14 ~ 12 0.81

PGS, polygenic score; 1 unit increase in PGS roughly equates to one additional effect allele for higher physical activity. All models were controlled 
for age, sex, baseline body mass index, principal component 1 and principal component 2, and study sites as well as all subcomponents of the 
interaction terms (e.g., PGS*age included PGS and age separately).
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Table 2b.

Linear Mixed Effect Models: Cardiorespiratory Fitness regressed on Genetic Score and Individual Single 

Nucleotide Polymorphism

ß 95% CI p-value

Total sample

Model with no interaction term PGS 0.016 −0.013 ~ 0.044 0.28

Model with 2-way interaction term PGS*intervention −0.030 −0.087 ~ 0.027 0.31

Model with 3-way interaction term PGS*intervention*year1 −0.023 −0.080 ~ 0.035 0.44

PGS*intervention*year4 0.021 −0.042 ~ 0.084 0.50

Effect modification: age

Model with 2-way interaction term PGS*age 0.004 0.00 ~ 0.008 0.05

Model with 3-way interaction term PGS*intervention*age 0.002 −0.006 ~ 0.010 0.63

Model with 4-way interaction term PGS*intervention*year1*age 0.004 −0.004 ~ 0.012 0.35

PGS*intervention*year4*age −0.003 −0.013 ~ 0.005 0.48

PGS, polygenic score; 1 unit increase in PGS roughly equates to one additional effect allele for higher physical activity. All models were controlled 
for age, sex, baseline body mass index, principal component 1 and principal component 2, and study sites as well as all subcomponents of the 
interaction terms (e.g., PGS*age included PGS and age separately).
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