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Construction and validation 
of a cuproptosis‑related lncRNA 
signature for the prediction 
of the prognosis of LUAD and LUSC
Yu Wang 1,2, Xu Xiao 3 & Yan Li 1,4,5*

Lung cancer is one of the most prevalent malignant tumors worldwide, with lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC) accounting for the majority of cases. Cuproptosis, 
tumor immune microenvironment (TIME) and long non-coding RNA (lncRNA) have been 
demonstrated to be associated with tumorigenesis. The objective of the present study was to develop 
a novel cuproptosis-related lncRNA signature to assess the association between cuproptosis and 
TIME in patients with LUAD or LUSC and to predict prognosis. Based on the outputs of the least 
absolute shrinkage and selection operator regression model, a cuproptosis-related lncRNA signature 
was developed. Kaplan–Meier survival curves were generated to confirm the predictive ability of the 
signature. Univariate and multivariate analysis was also performed to determine the association 
between overall survival and this signature and other clinical characteristics, and a nomogram was 
created. Additionally, the relationship between the signature, TIME, tumor mutation burden and m6A 
methylation was established. The results of the present study revealed that 8 cuproptosis-related 
lncRNAs were associated with the prognosis of patients with LUAD and LUSC. This novel cuproptosis-
related lncRNA signature is associated with TIME and m6A methylation in LUAD and LUSC and can 
predict prognosis with accuracy.

Lung cancer has become the most common malignant tumor worldwide and is associated with both high mor-
bidity and mortality according to the GLOBOCAN 2018 statistics1. Furthermore, non-small cell lung cancer 
(NSCLC) accounts for > 85% of lung cancer cases2. The most common histologic subtypes of NSCLC are lung 
squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD)3. Additionally, as lung cancer has complex 
molecular mechanisms, targeted therapies may be ineffective for some patients, posing a significant challenge 
for lung cancer treatment4. Therefore, identifying novel biomarkers for LUAD or LUSC is critical to help develop 
therapeutic decisions and guide individualized prognostics.

Copper homeostasis is crucial for numerous physiological processes as an essential cofactor. Tsvetkov et al. 
discovered a novel mode of cell death known as ‘copper-dependent cell death’ (termed cuproptosis). Cuproptosis 
is characterized as a copper-triggered modality of mitochondrial cell death and is a type of nonapoptotic cell 
death pathway. The pathogenic mechanism of cuproptosis is that direct copper binding to lipidated tricarboxylic 
acid (TCA) cycle components results in the loss of iron-sulfur cluster proteins and lipid acylated protein aggrega-
tion, which in turn causes proteotoxic stress and cell death5. Cuproptosis may contribute to the modulation of 
several illnesses, including cancer. However, it is still unclear if cuproptosis is associated with LUAD or LUSC.

Long non-coding RNAs (lncRNAs), which are defined as transcripts with a length > 200 nucleotides and little 
to no ability to code for proteins, have a variety of functions in controlling the expression levels of proteins in 
different types of human malignancies6. Enhanced lncRNA function or expression may serve a significant role 
in a variety of cancer-related diseases7. lncRNA influences numerous biological processes through a variety of 
mechanisms, including cell proliferation, cell differentiation, metastatic progression, proliferation or apoptosis, 
sex-chromosome dosage compensation, the maintenance of genome stability, and the stemness and modula-
tion of metabolism8–10, particularly in cancer. Emerging evidence suggests that cuproptosis may be regulated by 
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several lncRNAs. According to the research of Liu et al., LINC01232 upregulates RAB22A through interaction 
with microRNA-204-5p to induce clear cell renal cell carcinoma11. Cuproptosis-associated lncRNAs may be asso-
ciated with head and neck squamous cell carcinoma12, cutaneous melanoma13, oral squamous cell carcinoma14 
and other cancer types15,16. There are some researches shows lncRNAs can influent cuproptosis in LUAD17,18. 
However, at present, it is unclear how cuproptosis-associated lncRNAs affect tumor immunity (TIME) and the 
prognosis of LUAD and LUSC at the same time.

In the present study, a novel predictive model for patients with LUAD and LUSC was developed based on 
cuproptosis-related lncRNAs. Patients with LUAD and LUSC may benefit from the ability of the model to forecast 
the long-term prognosis and provide tailored treatment methods.

Materials and methods
Expression data and clinical information of patients.  The Cancer Genome Atlas (TCGA) database 
(https://​portal.​gdc.​cancer.​gov/) was used to gather the clinical features and transcriptome information of the 
LUAD and LUSC samples. A total of 1041 lung cancer tissues and 108 normal tissues were included in the sam-
ples of transcriptome data. A total of 1002 patients with LUAD or LUSC provided the clinical data. Perl (https://​
www.​perl.​org, version 5.32.1) was used to collate the clinical details.

Differentially expressed cuproptosis‑related lncRNAs.  A total of 19 genes were selected to be 
cuproptosis-related genes (NFE2L2, NLRP3, ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, LIPT2, DLD, 
DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH and DLST). A total of 16,773 lncRNAs were deter-
mined using the transcriptome data of 1149 LUAD or LUSC samples. The cuproptosis-related lncRNAs were 
extracted using the R package ‘limma’ according to the threshold (coefficient > 0.4 and P < 0.001). This progress 
was visualized as a Sankey diagram (Fig. 1). The details of the association between cuproptosis-related lncRNAs 
and cuproptosis genes are shown in Table S1. The Sankey diagram was created using the R packages ‘dplyr’, ‘ggal-
luvial’ and ‘ggplot2’.

Construction and assessment of the accuracy of the cuproptosis‑related lncRNA signa‑
ture.  The 501 training samples and 501 validation samples from the 1002 tumor samples acquired from 
TCGA were randomly divided into two groups. Table 1 shows all sample information. The risk signature was 
created using the Training Set. The validity of the prognosis was tested using the Validation Set and the Entire 
Set. From the entire set of cuproptosis-related lncRNAs, 133 were selected for univariate Cox proportional haz-
ard regression analysis and were found to be significantly associated with the overall survival (OS) of patients 
with lung cancer (P < 0.05; Table S2). A total of 8 lncRNAs were employed to create the prognostic signature of 
patients with lung cancer, and the 133 cuproptosis-related prognostic lncRNAs were subjected to a least absolute 
shrinkage and selection operator (LASSO) test and multivariate analysis to reduce error rates (Fig. 2). The risk 
score was calculated as follows: [Expression level of Gene 1] + [Expression level of Gene 2] + [Expression level 
of Gene n] + [Expression level of Gene n] coefficient. The aforementioned algorithm was used to determine the 
risk scores of the patients. The median of the risk scores was used to divide the patients into high- and low-risk 
groups. The Kaplan–Meier survival curves, c-index, principal component analysis (PCA) and receiver operating 
characteristic (ROC) curves were used to compare the patient survival rates in the low- and high-risk groups 
using the ‘survival’, ‘survminer’, ‘rms’, ‘pec’ and ‘timeROC’ R packages to confirm the accuracy of this signature.
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Figure 1.   Sankey diagram showing the association between 1138 cuproptosis-related lncRNAs and 19 
cuproptosis genes. lncRNA, long non-coding RNA.
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Construction of the nomogram.  The nomogram and calibration curve were constructed using the R 
packages ‘survival’, ‘regplot’ and ‘rms’. The nomogram predicted the 1-year, 3-year and 5-year survival rates based 
on the risk score and other clinical factors.

Analyses of functional enrichment.  Using the R packages ‘clusterProfiler’, ‘org.Hs.eg.db’, ‘enrichplot’, 
‘ggplot2’, ‘RColorBrewer’, ‘dplyr’, ‘ggpubr’ and ‘ComplexHeatmap’, two types of functional enrichment analyses, 
Gene Ontology (GO; http://​www.​geneo​ntolo​gy.​org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG; 
http://​www.​genome.​jp/​kegg/) analyses, were performed. Based on the threshold (P < 0.05), GO terms and KEGG 
signaling pathways were determined to be enriched.

Analysis of tumor mutation burden (TMB).  TMB data were saved in the mutation annotation format 
and retrieved from TCGA (https://​portal.​gdc.​cancer.​gov/). The R packages ‘TCGAmutations’ and ‘maftools’ 
were used to perform TMB analysis.

Analysis of TIME.  The immune infiltration of cells was calculated using TIMER, CIBERSORT, CIBER-
SORT-ABS, QUANTISEQ, MCP-counter, XCELL and EPIC algorithms. The immune function analysis and 
immune checkpoints were calculated using the R packages ‘GSEABase’ and ‘limma’, respectively.

Analysis of m6A methylation.  The 12 m6A methylation-related genes were selected based on previous 
studies19,20. The R packages ‘limma’, ‘reshape2’, ‘ggplot2’ and ‘ggpubr’ were applied to compare the expression 
levels of 12 genes and draw the plot.

Statistical analysis.  The R package ‘survival’ was used to perform univariate and multivariate Cox regres-
sion calculations in order to validate the prediction of the signature and clinicopathological variables. Differ-
ences between clinical characteristics were identified using an independent t-test by SPSS 22.0 statistical soft-
ware (IBM Corp.). P < 0.05 was considered to indicate a statistically significant difference. All of R packages used 
in current article were performed by R software (https://​www.r-​proje​ct.​org/, R version 4.2.1).

Results
Construction of the cuproptosis‑related lncRNA signature.  A total of 19 genes were selected to 
be cuproptosis genes based on earlier research5,16. The transcriptome data were downloaded for the LUAD and 
LUSC cohorts in TCGA and were divided into mRNAs and lncRNAs. Subsequently, a correlation test was per-

Table 1.   Clinical information of the entire set, training set and validation set. TCGA​ The Cancer Genome 
Atlas.

Variables Group
Entire set
(n = 1002)

Training set
(n = 501) Validation set (n = 501) P-value

Age

 ≤ 65 428 (42.71%) 220 (43.91%) 208 (41.52%) 0.5896

 > 65 558 (55.69%) 276 (55.09%) 282 (56.29%)

Unknow 16 (1.6%) 5 (1%) 11 (2.2%)

Gender
Female 401 (40.02%) 195 (38.92%) 206 (41.12%) 0.5191

Male 601 (59.98%) 306 (61.08%) 295 (58.88%)

Stage

Stage I 514 (51.3%) 262 (52.3%) 252 (50.3%) 0.6556

Stage II 279 (27.84%) 135 (26.95%) 144 (28.74%)

Stage III 164 (16.37%) 86 (17.17%) 78 (15.57%)

Stage IV 33 (3.29%) 14 (2.79%) 19 (3.79%)

Unknow 12 (1.2%) 4 (0.8%) 8 (1.6%)

T stage

T1 283 (28.24%) 154 (30.74%) 129 (25.75%) 0.0919

T2 559 (55.79%) 262 (52.3%) 297 (59.28%)

T3 115 (11.48%) 65 (12.97%) 50 (9.98%)

T4 42 (4.19%) 20 (3.99%) 22 (4.39%)

Unknow 3 (0.3%) 0 (0%) 3 (0.6%)

M stage

M0 745 (74.35%) 369 (73.65%) 376 (75.05%) 0.6456

M1 32 (3.19%) 14 (2.79%) 18 (3.59%)

Unknow 225 (22.46%) 118 (23.55%) 107 (21.36%)

N stage

N0 643 (64.17%) 337 (67.27%) 306 (61.08%) 0.1652

N1 223 (22.26%) 102 (20.36%) 121 (24.15%)

N2 111 (11.08%) 51 (10.18%) 60 (11.98%)

N3 7 (0.7%) 5 (1%) 2 (0.4%)

Unknow 18 (1.8%) 6 (1.2%) 12 (2.4%)

http://www.geneontology.org/
http://www.genome.jp/kegg/
https://portal.gdc.cancer.gov/
https://www.r-project.org/
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formed to extract cuproptosis-related lncRNAs based on the threshold (coefficient > 0.4 and P < 0.001). Finally, a 
total of 1138 lncRNAs were associated with cuproptosis and were determined to be cuproptosis-related lncRNAs 
(Fig. 1, Table S1).

The clinical data of 1002 patients with lung cancer were downloaded from TCGA as an entire set to identify 
the cuproptosis-related lncRNAs that were associated with patient prognosis. The clinical characteristics of 
these 1002 samples are shown in Table 1. Subsequently, the entire set (n = 1002) was randomly divided into 
a training set (n = 501) and a validation set (n = 501). Univariate analysis was performed on the training set, 
which determined that 133 cuproptosis-related lncRNAs were significantly associated with the prognosis of 
patients with lung cancer (P < 0.05, Fig. S1, Table S2). To minimize the error rate, LASSO analysis and multi-
variate analysis were performed. Finally, 8 cuproptosis-related prognostic lncRNAs were extracted (Fig. 2A,B). 
In multivariate Cox regression analysis, the risk score was created by linearly combining the expression lev-
els of the 8 cuproptosis-related prognostic lncRNAs, weighted by their relative coefficient (Fig. 2D, Table 2) 
as follows: Risk score = (− 1.495239459 * AL133445.2) + (− 0.284516815 * LINC02635) + (− 0.195045442 
* AC026355.2) + (0.563925195 * OGFRP1) + (− 1.031936125 * AL161757.2) + (− 1.105927746 * PTPRG-
AS1) + (− 0.361962738 * RPARP-AS1) + (− 0.868805559 * AC092127.2). Figure 2C shows the relationships 
between the 19 cuproptosis genes and 8 cuproptosis-related prognostic lncRNAs.
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Figure 2.   Construction of the cuproptosis-related lncRNA signature. (A) Confidence intervals are displayed for 
each lambda. (B) Partial likelihood deviation for various variable counts. The independent variable’s coefficient 
is represented by the vertical axis, while the independent variable’s log value is represented by the horizontal 
axis. (C) Correlations between signature lncRNAs and cuproptosis-related genes. (D) Multivariate Cox 
regression analysis of 8 signature lncRNAs. lncRNA, long non-coding RNA.
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Cuproptosis‑related lncRNA signature and the survival of patients with LUAD and 
LUSC.  According to the median risk score, patients in the training set, validation set and full set were divided 
into high- and low-risk groups (Fig. 3A–C). The findings of the present study demonstrated that patients in the 
low-risk group had a longer OS time than those in the high-risk group (p < 0.05; Fig. 3D–F). Additionally, the 
low-risk patients in the training set and entire set exhibited longer PFS than those patients with high risk scores 
(P < 0.05, Fig. 3G,I). However, the patients in the validation set did not show the same trend (P > 0.05, Fig. 3H).

Cuproptosis‑related lncRNA signature as an independent prognostic factor in patients with 
LUAD and LUSC.  To determine if the cuproptosis-related lncRNA signature may serve as an independent 
predictor of the survival of patients with lung cancer, univariate (Fig. 4A) and multivariate (Fig. 4B) analyses 
of the risk score, OS and other clinical indicators were performed (Table 3). The results of multivariate analysis 
performed on the entire set suggested that the risk score and T stage may act independently as prognostic indi-
cators for patients with lung cancer (P < 0.05). Furthermore, the accuracy of the cuproptosis-related lncRNA 
signature was examined using time-dependent ROC curves (Fig. 4C). The under regions of the training set for 
1-year, 3-year and 5-year survival were 0.704, 0.700 and 0.725, respectively, demonstrating the potential predic-
tive value of the cuproptosis-related lncRNA signature for patients with lung cancer. Additionally, using the data 
from the validation set (Fig. 4D) and the complete set, similar ROC curves were created (Fig. 4E). The present 
study also compared the predictive ability of the risk score with the other clinical characteristics in the training 
set (Fig. 4F), validation set (Fig. 4G) and entire set (Fig. 4H) using ROC curves. The under areas of the risk score 
were larger than those of the other clinical factors in the different sets. The c-index of the risk score was greater 
than that of the other clinical factors (Fig. 5C). In order to produce a precise tool to assess the survival of patients 
with lung cancer, a nomogram was also created in line with the risk score and the aforementioned clinicopatho-
logical indicators (Fig. 5A). In particular, the calibration curves of the prognostic nomogram indicated that the 
predicted and actual survival rates at 1, 3 and 5 years were generally consistent (Fig. 5B). The cuproptosis-related 
lncRNA signature had a high level of predictive power according to all results.

Predictive ability of the cuproptosis‑related lncRNA signature in different clinical sub‑
groups.  To explore if the predictive ability of the cuproptosis-related lncRNA signature could be affected 
by clinical factors, three common clinical characteristics (stage, age and sex) were selected as criteria to divide 
patients into different subgroups (stage I-II and III-IV; age < 65 and ≥ 65  years; female and male; LUAD and 
LUSC). The findings showed that all subgroups of high-risk patients had worse OS (P < 0.05; Fig. 6A–H), which 
illustrated that the predictive ability of the present signature was stable in all these subgroups. PCA was used to 
detect the grouping ability of the cuproptosis-related lncRNA signature. According to all genes (Fig. 6I), cuprop-
tosis-related genes (Fig. 6J) and cuproptosis-related lncRNAs (Fig. 6K), no significant differences were found. 
However, the high- and low-risk patients could be successfully differentiated by 8 cuproptosis-related lncRNAs 
(Fig. 6L). Therefore, the cuproptosis-related lncRNA signature could classify high-risk patients with lung cancer 
in different clinical factor subgroups.

Cuproptosis‑related lncRNA signature and immune cell infiltration.  In terms of the mechanism 
via which the cuproptosis-related lncRNA signature was associated with the prognosis of patients with lung 
cancer, 155 genes were differentially expressed in high- and low-risk samples according to the criteria (log fold 
change > 1, FDR < 0.05, Table S3). Two types of functional enrichment analyses, GO analysis and KEGG analysis, 
were performed. The GO analysis illustrated that most differently expressed genes were enriched in ‘antimicro-
bial humoral response’, ‘antibacterial humoral response’ and ‘antimicrobial humoral immune response mediated 
by antimicrobial peptide’ (Fig. 7A). The KEGG analysis21–23 demonstrated that ‘AGE-RAGE signaling pathway’, 
‘Focal adhesion’ and ‘Drug metabolism—other enzymes’ were enriched by differently expressed genes (Fig. 7B). 
TIME, TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCP-counter, XCELL and EPIC were used to 
calculate the relative proportion of immune cell infiltration in lung cancer to ascertain the roles of the aforemen-
tioned signature. The differently infiltrated immune cell types between the two groups are shown in Fig. 7C and 
Table S4 (P < 0.05).

Table 2.   Coefficients and multivariable Cox model results of 8 lncRNAs in the cuproptosis-related prognostic 
signature.

Id Coef HR HR.95L HR.95H P-value

AL133445.2 − 1.495239459 0.224194913 0.080584712 0.623733182 0.004181331

LINC02635 − 0.284516815 0.752377704 0.627776666 0.901709542 0.002070143

AC026355.2 − 0.195045442 0.822797268 0.668100262 1.013313993 0.066431958

OGFRP1 0.563925195 1.757557735 1.319616711 2.340838188 0.00011492

AL161757.2 − 1.031936125 0.356316419 0.137966465 0.920233699 0.03303303

PTPRG-AS1 − 1.105927746 0.330903745 0.132078602 0.829031253 0.018270484

RPARP-AS1 − 0.361962738 0.696308313 0.522736813 0.927513148 0.013347615

AC092127.2 − 0.868805559 0.419452261 0.193185792 0.910730531 0.028066597
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Cuproptosis‑related lncRNA signature and immune cell functions and checkpoints.  To further 
explore the association between the cuproptosis-related lncRNA signature and the immune system, single-sam-
ple Gene Set Enrichment Analysis (ssGSEA) was used to investigate the differences in immune function between 
high- and low-risk patients. The results of ssGSEA demonstrated significant differences in ‘APC_co_stimula-
tion’, ‘cytokine receptor (CCR)’, ‘MHC_class_I’, ‘Parainflammation’ and ‘Type_II_IFN_Reponse’ (Fig. 8A). Addi-
tionally, 24 types of immune checkpoint expression levels were compared between high- and low-risk patients 
(Fig. 8B). The results illustrated that all 24 immune checkpoints were expressed differently in high- and low-risk 
patients, which demonstrated that the cuproptosis-related lncRNA signature had the ability to predict immune 
checkpoint responses.
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Figure 3.   Prognosis of patients with lung cancer is accurately predicted by a cuproptosis-related lncRNA 
signature. The 8 cuproptosis-related lncRNAs were expressed in low- and high-risk groups in the training set 
(A), validation set (B) and entire set (C), with respect to risk score distribution, survival status and expression. 
K-M survival curve analyses of OS of patients with lung cancer in the training set (D), validation set (E) and 
entire set (F). K-M survival curve analyses of PFS of patients with lung cancer in the training set (G), validation 
set (H) and entire set (I). K-M, Kaplan–Meier; lncRNA, long non-coding RNA; OS, overall survival; PFS, 
progression-free survival.
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Figure 4.   Forest diagrams of univariate (A) and multivariate (B) Cox regression analyses illustrate that the 
risk score is an independent prognostic factor in lung cancer. The ROC curves of the 1-year, 2-year and 5-year 
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Cuproptosis‑related lncRNA signature and TMB.  TMB serves as a biomarker for prognosis and 
immunotherapy according to prior study24. As a result, the link between TMB and the aforementioned signature 
was examined in the current investigation. Figure 9A,B show the mutant genes in the two groups. Additionally, 
the TMB in the high-risk group and that in the low-risk group were contrasted. The results of the present study 
revealed a favorable relationship between TMB and the risk score (P < 0.05; Fig. 9C). The OS was compared 
between the high-TMB and low-TMB groups after the samples were further divided into these two groups 
(P < 0.05; Fig. 9D). The OS was lower in the group with high TMB compared with the group with low TMB. 
Furthermore, the whole patient cohort was divided into four groups (‘H-TMB + high risk’, ‘H-TMB + low risk’, 
‘L-TMB + high risk’ and ‘L-TMB + low risk’) and the OS was compared. The prognosis of patients in the four dif-
ferent groups was significantly different (P < 0.001; Fig. 9E).

Cuproptosis‑related lncRNA signature and m6A methylation.  Previous studies have reported 
that m6A methylation serves significant roles in immune system of various cancer types25,26 and that lncRNAs 
are associated with m6A methylation27,28. Therefore, 12 m6A methylation-related genes (METTL3, METTL14, 
WTAP, RBM15, ZC3H13, YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC, FTO and ALKBH5) were 
selected and their mRNA expression levels in high- and low-risk patients were compared (Fig. 10). The findings 
indicated that the expression levels of YTHDC1, YTHDC2, METTL3, RBM15 and METTL14 of high- and low-
risk patients differed considerably.

Discussion
Lung cancer seriously threatens human lives worldwide due to its high morbidity and mortality rates29. However, 
traditional therapy has not provided patients in advanced stages or recurrence with the expected benefits30. 
According to the latest research, copper targets lipoylated TCA cycle proteins, causing lipoylated proteins to 
congregate and related iron-sulfur cluster proteins to disappear. This causes proteotoxic stress, which ultimately 
leads to cell death. Therefore, cuproptosis was used to describe this copper-dependent cell death. A variety of 
human tumor cells show a strong association with cuproptosis, indicating that copper ionophore intervention 
should concentrate on malignancies with this metabolic profile5.

Increasing evidence suggests that lncRNAs play a wide range of roles in fundamental and important biological 
processes, including cell differentiation, immune response, cell cycle control, imprinting and splicing31,32. And our 
study investigated the involvement of lncRNAs in lung cancer cuproptosis. Noteworthy, with the development 
of bioinformatics, computational model has become a common and effective model used in medical researches. 
Among a great number of computational models, non-coding (ncRNA) related models play key roles in complex 
human diseases, such as cancer, Alzheimer’s disease, Heart failure (HF), etc33–35. As a result of these, computa-
tional biology and ncRNA shows great potential ability in prediction of different human diseases.

NSCLC is a common classification to explore the mechanism of lung cancer (mainly LUAD and LUSC). 
Recently, there are several bioinformatics studies revealed LUAD had a relation with cuproptosis and TIME36–38. 
However, there is no research to explore the correlation between cuproptosis, TIME, and NSCLC. To predict 
the prognosis and examine the association with TIME and find the lncRNAs contribute to NSCLC, our study 
developed a novel and more precise cuproptosis-related lncRNA signature.

Using transcriptome information from the LUAD and LUSC cohorts in TCGA, a cuproptosis-related lncRNA 
signature was created in the present study (Fig. 11). A total of 19 genes were selected to be cuproptosis genes 
based on previous studies, and 16,773 lncRNAs were screened out from TCGA LUAD and LUSC transcrip-
tome data. Subsequently, a co-expression test was performed, and finally 1138 lncRNAs were determined to be 
cuproptosis-related lncRNAs (coefficient > 0.4; P < 0.001). After analyzing 1138 lncRNAs related to cuproptosis 
using the Cox and LASSO methods, 8 lncRNAs (AL133445.2, LINC02635, AC026355.2, OGFRP1, AL161757.2, 
PTPRG-AS1, RPARP-AS1 and AC092127.2) were highlighted. The cuproptosis-related lncRNA signature was 
created using these 8 lncRNAs. Among these 8 lncRNAs, OGFRP1 has been reported to be the oncogene in 
NSCLC39. PTPRG-AS1 was reported to increased the proliferation in LUAD40 and reduced the radiosensitivity in 
NSCLC as well41. These previous studies confirmed that 8 lncRNAs have the potential to affect the development 
of LUAD and LUSC. Based on the signature, the risk score of every patient could be determined. According to 
the median of the risk scores, samples were divided into high- and low-risk groups. Additionally, the risk score 
and other clinical markers were used in univariate and multivariate analyses. The findings of the present study 

Table 3.   Univariate and multivariate analyses with Cox proportional hazard model. HR hazard ratio.

Characteristics

Univariate analysis Multivariate analysis

HR HR.95L HR.95H P-value HR HR.95L HR.95H P-value

Age 1.010813793 0.998054561 1.02373614 0.097013304 1.011886345 0.998953982 1.024986128 0.071782626

Gender 1.178261447 0.930052697 1.492711157 0.174098951 1.105180074 0.869617581 1.404551866 0.413524318

Stage 1.412311364 1.254116096 1.590461518 1.23E-08 1.048298253 0.785299793 1.39937542 0.748933339

T stage 1.388384222 1.207014884 1.59700661 4.34E-06 1.242539912 1.033986625 1.493158032 0.020531819

M stage 1.984910983 1.214435109 3.244201011 0.006237697 1.807612299 0.871839952 3.747777578 0.111540311

N stage 1.412365976 1.218044459 1.637688703 4.84E-06 1.212805299 0.931835268 1.578494337 0.151314554

Risk score 1.578316247 1.398413772 1.78136273 1.46E-13 1.503379388 1.331555912 1.697374901 4.57E-11
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demonstrated that the risk score might be used as a standalone indicator to forecast the prognosis of patients 
with LUAD or LUSC. The ROC curves and PCA were used to assess the predictive power of the built signature, 
and a nomogram was created by combining the risk score with these clinicopathological characteristics (gender, 
age, stage, T stage, N stage). As the clinical data of M stage were not enough, M stage was not used to construct 
nomogram. Additionally, clinical subgroups (stage I-II and III-IV; age < 65 and ≥ 65 years; female and male; 
LUAD and LUSC) also demonstrated strong prediction for the signature.

In order to ascertain the mechanism underlying the present study’s cuproptosis-related lncRNA signature’s 
prediction, GO and KEGG enrichment analyses were performed using the differently expressed genes in the 
high- and low-risk groups. The enrichment analyses showed that the signature was associated with immune func-
tions. Immunotherapy has currently been applied for the treatment of a variety of tumor types, including lung 
cancer42, melanoma43, cervical cancer44 and liver cancer45. Immune checkpoints, for instance programmed cell 
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death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have the ability to encourage 
anticancer immune function46,47. Subsequently, in present study, immunological checkpoints, immune functions 
and immune cell infiltration were compared in two groups (high- and low-risk). PD-1 and PD-L1 did not show 
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Figure 6.   K-M survival curves of patients. Stage I-II (A), stage III-IV (B), age < 65 years (C), age ≥ 65 years (D), 
female (E) and male (F), LUAD (G) and LUSC (H). PCA diagrams according to the expression of all genes (I), 
cuproptosis-related genes (J), cuproptosis-related lncRNAs (K) and 8 signature lncRNAs (L). K-M, Kaplan–
Meier; lncRNA, long non-coding RNA; PCA, principal component analysis.
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significantly different expression between the two groups. However, the traditional checkpoint CTLA-4 and a 
number of other checkpoints were expressed differently in the two groups. This result may contribute to find-
ing novel immune checkpoint inhibitors to treat lung cancer. Additionally, the relationships among TMB, risk 
score and prognosis in patients were identified. The findings of the present study demonstrated a positive link 
between the risk score and TMB and a negative association between TMB and the OS of patients with LUAD 
and LUSC. This may also explain how the survival rate of patients with LUAD and LUSC can be predicted using 
the cuproptosis-related lncRNA profile created in the present study.
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In the majority of eukaryotic lncRNAs and mRNAs, m6A methylation is an essential RNA post-transcriptional 
modification48. Three different types of regulators, writers (methyltransferases), erasers (demethylases) and read-
ers, can be used to influence the target RNA’s stability, splicing, destruction, translation and processing (binding 
proteins)49. According to some research, numerous malignancies are associated with m6A methylation50. Addi-
tionally, multiple studies have indicated that m6A methylation is involved in the control of the immune response 
and TIME51,52. Therefore, the expression levels of m6A methylation-related genes were compared between the 
high- and low-risk groups. The results illustrated that YTHDC1, YTHDC2, METTL3, RBM15 and METTL14 
were differently expressed in the two groups.

The accuracy of the signature was demonstrated in several sample sets in the current analysis, demonstrating 
the dependability of the signature. Furthermore, the link between the risk score and immune cell infiltration, 
immunological functions, immune checkpoints, TMB, and m6A methylation was found as another aspect of 
the signature’s predictive process. However, the present study does have several drawbacks. To further evaluate 
the capacity of this signature to predict outcomes, more lung cancer patients, including LUAD, LUSC, large cell 
lung cancer, small cell large cancer, must take part in clinical trials. Furthermore, bioinformatics and non-coding 
RNA, such as miRNA, lncRNA, play key roles in different human diseases.

Conclusion
In summary, in the present study, a cuproptosis-related lncRNA signature that could reliably predict prognosis 
and was associated with TIME in patients with LUAD and LUSC was developed. For patients with LUAD and 
LUSC, the built signature may offer a more thorough theoretical foundation and aid in exploring the more 
intricate cuproptosis mechanism.
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Figure 11.   Flow diagram.
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Data availability
The transcriptome and clinical data of LUAD and LUSC are available from the TCGA database 512 (https://​
portal.​gdc.​cancer.​gov/).
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