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The ubiquitination landscape of the
influenza A virus polymerase

Franziska Günl 1,2, Tim Krischuns 1,15, Julian A. Schreiber 3,4, Lea Henschel1,
Marius Wahrenburg1,5, Hannes C. A. Drexler 6, Sebastian A. Leidel7,8,
Vlad Cojocaru 9,10,11, Guiscard Seebohm 4, Alexander Mellmann 2,12,
Martin Schwemmle 13,14, Stephan Ludwig 1,2 & Linda Brunotte 1,2

During influenza A virus (IAV) infections, viral proteins are targeted by cellular
E3 ligases for modification with ubiquitin. Here, we decipher and functionally
explore the ubiquitination landscape of the IAV polymerase proteins during
infection of human alveolar epithelial cells by applying mass spectrometry
analysis of immuno-purified K-ε-GG (di-glycyl)-remnant-bearing peptides. We
have identified 59 modified lysines across the three subunits, PB2, PB1 and PA
of the viral polymerase of which 17 distinctively affect mRNA transcription,
vRNA replication and the generation of recombinant viruses via non-
proteolytic mechanisms. Moreover, further functional and in silico analysis
indicate that ubiquitination at K578 in the PB1 thumb domain is mechan-
istically linked to dynamic structural transitions of the viral polymerase that
are required for vRNA replication. Mutations K578A and K578R differentially
affect the generation of recombinant viruses by impeding cRNA and vRNA
synthesis, NP binding as well as polymerase dimerization. Collectively, our
results demonstrate that the ubiquitin-mediated charge neutralization at PB1-
K578 disrupts the interaction to an unstructured loop in the PB2 N-terminus
that is required to coordinate polymerase dimerization and facilitate vRNA
replication. This provides evidence that IAV exploits the cellular ubiquitin
system to modulate the activity of the viral polymerase for viral replication.

Influenza A viruses (IAV) are respiratory pathogens of the Orthomyx-
oviridae family that pose a substantial threat to global health through
seasonal epidemics and recurring pandemics. The IAV genome con-
sists of eight segments of negative-sense single-strand RNA (vRNA).

Each vRNA is encapsidated by multiple copies of the nucleoprotein
(NP) and one copy of the trimeric viral RNA-dependent RNA poly-
merase (RdRP), composed of the subunits PB2, PB1, and PA1,2 to form
viral ribonucleoprotein (vRNPs) complexes3. Transcription of viral
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mRNAs and replication of the viral genome is mediated by RdRPs and
occurs in the cell nucleus. While incoming vRNPs are capable to
directly perform mRNA synthesis following cap-snatching from host-
derived pre-mRNAs4–6, vRNA replication depends on newly produced
viral proteins and polymerase complexes. It proceeds in a primer-
independent manner that involves the generation of full-length posi-
tive-sense complementary RNA (cRNA) intermediates, which serve as
templates for vRNA synthesis7.

Structural investigations revealed that the IAV RdRP is a flexible
and highly dynamic protein complex that adopts different conforma-
tions during mRNA transcription and vRNA replication5,8. The current
model for vRNA replication suggests that the transition from the tran-
scriptase to the replicase is promoted by the interaction with a second
viral polymerase forming an asymmetric dimer9,10. Moreover, the for-
mation of the asymmetric dimer facilitates encapsidation of thenascent
cRNA strand. In the second step of genome replication, initiation of
vRNA synthesis from cRNA templates requires formation of a sym-
metric polymerase dimer through interaction with a trans-activating
polymerase11,12. To maintain the optimal balance between mRNA tran-
scription and vRNA replication during the viral life cycle chronologic
assembly of the two dimers is critical and is suggested to be influenced
by viral as well as cellular factors. In particular, host-mediated post-
translational modifications (PTM) of viral proteins were proposed as
dynamic molecular switches to fine-tune the actions of the RdRP13,14.
Indeed, phosphorylation15–19, ADP-ribosylation or acetylation19–21 as well
as linkage of ubiquitin (UB)22–31 and ubiquitin-like modifiers (UBL), such
as SUMO1–332,33, NEDD834, or ISG1535 to thepolymerase subunits andNP
have been reported. Among thesemodifiers, ubiquitination is themost
abundant in human cells and regulates the functionality and longevity
of a wide range of proteins and has been described for all subunits of
the IAV RdRP with both pro- and antiviral outcomes. Conjugation of
PTMs such as UB confers several effects. It introduces a binding surface
for otherUBL-binding proteins, but can also shield protein binding sites
on the modified protein. In addition, UB transfers biological signals,
e.g., the degradation by the cellular proteasome or translocation to a
different cellular compartment. A less reported consequence of UB-
linkage is the neutralization of the positive charge in the side chain of
the acceptor lysine by formation of the dipeptide bond, which can
result in structural alterations and affect interactions with other
proteins36. Until today, the biological impact of site-specific modifica-
tions in the IAV polymerase proteins for the processes of viral mRNA
transcription and genome replication has remained largely unknown.

In this study, we have performed mass spectrometry (MS) ana-
lyses of immuno-selected, K-ε-GG-(di-glycyl)-enriched viral proteins
purified from infected human lung epithelial cells to unravel the ubi-
quitination landscape of the IAV polymerase during infection.We have
identified 59modified lysines across the subunits of the IAVRdRP,with
UB being the most abundant UBL. Mutational analysis and generation
of recombinant viruses by reverse genetics reveal that ubiquitination
at position PB1-K578 in the PB1-thumb domain regulates the spatio-
temporal positioning of an unstructured N-terminal loop in the
PB2 subunit and thereby participates in the coordination of poly-
merase dimerization, NP binding and vRNA replication.

Results
Unraveling the ubiquitination landscape of the IAV polymerase
during infection
Western blot analysis of co-precipitated strep-tagged RdRP subunits,
PB2, PB1, and PA, with co-expressed UBLs revealed abundant UB mod-
ifications on all three subunits (Fig. 1a and Supplementary Fig. 1), which
is in line with previous reports27. In contrast, NEDD8 was only detected
on PA, while ISG15 was absent for all three subunits (Fig. 1b, c).

To determine the specific location of theUB/UBL-modified lysines
within the IAV polymerase during the early phase of the viral infection
cycle in human alveolar epithelial cells, we infected A549 cells with the

human IAV strain A/WSN/1933 (H1N1, WSN) at a multiplicity of infec-
tion (MOI) of 20 for 5 h, followed by immunoselection of trypsin
digested peptides harboring di-glycyl remnants and MS analysis
(Fig. 1d, e).

In total, we identified 59 lysines with di-glycyl remnants dis-
tributed across all three subunits of the polymerase, of which 22 were
located in PA and PB2, each, and 15 in PB1 (Table 1). Themajority of the
modified lysines are highly conserved among IAV strains from birds,
swine and humans (Fig. 1f–h). To assess surface accessibility and spa-
tial distribution of the modified lysines within the described con-
formational states,wegenerated sequence-adapted three-dimensional
structure models of the trimeric WSN RdRP bound to promoters of
vRNA (Fig. 2a) or cRNA (Fig. 2b) by homology modeling8,9,11,37. The
majority of the modified lysines were exposed on the surface of the
polymerase trimer in at least oneof the conformations, suggesting that
modification by E3 ligases can occur in the context of the individual
proteins as well as the active polymerase trimer (summarized in
Table 1). In PB1 some lysines were located within the inaccessible
hydrophobic core, suggesting that modification occurred prior to the
assembly of the polymerase trimer. Importantly, many lysines were
located in functionally described subdomains of the polymerase
(Fig. 2c). In PB2, modified lysines resided in two main clusters: the N-
terminus, which extends to the N2 domain, and the combined
C-terminal 627-NLD domain. Both regions are crucial for interactions
with NP, PA, and PB138–45. Moreover, some modified lysines were
located in regions implicated inpolymerasedimerization9,11. Only three
modified lysines were detected in the flexible and exposed mid, cap-
binding (CapB), and linker domains. Several modified lysines were
embedded in nuclear localization signals (NLS) or mediated interac-
tion with the host nuclear import protein importin-α, suggesting a
putative function for UB/UBL modifications in nuclear-cytoplasmic
shuttling of PB2 proteins and the RdRP complex46,47.

In PA, seven di-glycyl-carrying lysines resided in the N-terminal
endonuclease domain (Fig. 2c, middle panel), also including the cata-
lytic residue K13448–50. Interestingly, four lysines directly faced toward
the PB2-CapBdomain in the transcriptase conformationof the trimeric
polymerase, including K102 and K104, which were reported to interact
with the 5′-capped mRNA-primer during transcription50, suggesting
that the cap-snatching process is a putative target for regulation by
UB/UBL modification. Three modified residues were located in the PA
linker region. Within the PA C-terminus three modified lysines were
found in the region involved in the formation of the symmetric
dimer9,11,12 and six within the interaction site to the cellular RNA poly-
merase II (pol-II)42,51. In both, PA and PB1, several modified lysines were
located in close proximity to the binding pocket of the 5′ hook of the
vRNA and cRNA templates42,52–55.

The central polymerase subunit PB1 exhibited the lowest number
ofmodified lysines inour analysis. Furthermore, only 7 out of 15 lysines
were surface exposed, while the rest was located in the hydrophobic
core or covered by the other subunits within the trimeric complex
(Fig. 2a, b, lower panel). Residue K480 is located at the rim of the NTP
tunnel, where it has been shown to participate in NTP binding during
RNA synthesis42,55. K578 resides in the PB1 thumb domain, which is a
highly flexible subdomain that is part of the vRNA template exit
tunnel5. In addition, it directly points toward the PB2-N1-domain and is
located in close proximity to the interface of the symmetric dimer as
well as the secondary binding site of the cRNA and vRNA 3′ end5,11,56. In
summary, our results provide the first comprehensive map of UB/UBL
modifications that are acquired across all subunits of the IAV viral
polymerase at 5 h p.i. of human lung epithelial cells.

Substitution of modified lysines impacts polymerase functions
To assess the functional impact of the site-specific modifications
identified in our analysis, we substituted each lysine with a non-
charged alanine (A) or a positively charged arginine (R) and
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determined polymerase activity (Fig. 3a), intracellular localization and
generation of infectious recombinant viruses (Fig. 3b). Bothmutations
lead to the loss of the UB/UBL acceptor function but either neutralize
(A) or retain (R) the positive charge of the naturally encoded lysine.

Overall, introduction of A was tolerated at 22 positions without
affecting the polymerase activity (Supplementary Fig. 2a–c). At
16 sites, A mutations significantly changed the polymerase activity,
however, this effect was reverted by the R mutation, which suggests
that it was the positive charge of the lysine rather than the presence of
the UB/UBL that determined its role for polymerase activity (Supple-
mentary Fig. 2d–f, Supplementary Table 1). For the 17 remaining
positions, A and R substitution significantly up- or down-regulated the
polymerase activity, which corroborated their function as UB/UBL
acceptor sites and suggested a regulatory role of the modification on

the activity of the viral polymerase. This was further supported by the
fact that these lysines are located within binding regions to NP, the
other polymerase subunits and pol-II as well as the NLS and RNA
binding motifs, which are essential domains for polymerase activity
(Fig. 3c–e). Notably, previously reported NEDD8 and UB acceptor sites
in PB2, such as K69934 and K48231, respectively, were also among the
identified regulatory lysines. Among all three subunits, we identified
only two positions that indicated an antiviral effect of the UB/UBL
modifications. This included PB2-K157 located in themRNA exit tunnel
and PB1-K635 in the thumb domain. Both mutations demonstrated
increased polymerase activity and resulted in the generation of stable
recombinant viruses (Fig. 3c, e). Substitution of PA-K22 with A or R
resulted in diverging effects on polymerase activity. While PA-K22R
reduced polymerase activity, the introduction of A led to a strong
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Fig. 1 | Identification of site-specific UB modifications in the IAV polymerase.
a–c Western blot analysis of ubiquitin (UB), NEDD8 and ISG15 modification of the
IAV polymerase subunits. A549 (UB) or HEK293-T (NEDD8, ISG15) were transfected
with expression plasmids for strep-tagged polymerase subunits (PB2, PB1, or PA),
respectively, together with plasmids for the expression of ubiquitin-like modifiers
(UBLs) bearing an HA- or His-tag. UBL-modified polymerase subunits were pre-
cipitated under denaturing conditions using Strep-Tactin® bound sepharose beads.
UBL modification was detected by western blot using the indicated antibodies.
Representative blots of three independent experiments are shown. MW,molecular
weightmarker.d Experimental outline for the identification of di-glycylated lysines
using a di-glycyl-specific immunoselection coupled to mass spectrometry analysis

5 h post infection (p.i). MOI, multiplicity of infection. This illustration was created
with biorender. e Sequence alignment of UB/UBLs. The di-glycyl motif is high-
lighted in yellow, the N-terminal amino acid, which determines trypsin cleavage, is
highlighted ingray. f–hConservation analysis of the identifiedUBLacceptor lysines
in PB2, PB1, and PA. PB2-K113, -K627; PB1-K278, -K586 are not depicted. PB2, PB1,
and PA sequences from human, swine, and avian IAV isolates were downloaded
from NCBI (PB1 and PB2: 09/15/2017; PA: 10/01/2017) and analyzed for sequence
identity. Relative frequency of lysines at the respective position in PB2 (f), PB1 (g),
and PA (h) is depicted. In case of a lysine frequency below 75%, the most abundant
AA is shown (R=Arginine). Source data are provided as a Source data file.
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Table 1 | Modified lysines in the IAV polymerase

Domain K-ε-GG
position

Rep. of 5 Exposed in
monomer

Exposed in dimer Rec. virus (titers [PFU/ml]) Ref.

vRNA cRNA Symmetric Asymmetric Ala Arg

PB2

N-Terminal domain 32 2 − − − − 85

41 4 − − + −

61 4 + + + +

80 4 + + + +

116 4 + + + +

121 4 − − − Rep − | Enc +

126 4 + + + +

157 2 + + − − + (2.0 × 107) + (1.8 × 107)

187 4 + + + −

189 4 + + − −

197 2 + + + +

Mid CapB Linker 312 2 + − − −

353 2 + + + + 44

482 4 + + + Rep+| Enc − LT (5.8 × 104) SP (1.7 × 106) 31

627 Domain 586 2 + + + + 86

617 2 − + − − − −

670 2 − + + Rep − | Enc + 87

NLD 699 3 + − + + + (1.0 × 107) − 34

718 2 + + + − SP (4.8 × 106) + 46

752 4 + + + + 31,46,47

PA

Endonuclease 22 4 + + + + + (1.4 × 108) SP (1.4 × 107) 57

29 5 + + + +

102 2 + + + + 48,50

104 1 + + + + 48,50

113a 2 + + + + 48

134 4 − − − + − − 48,49,88,89

158 1 + − + − 49

Linker 213 3 + + + + 48

245 3 + + + +

251 4 + + + +

C-terminal domain 262 4 + + + +

281 2 − − − − 42,87,90,91

309 2 + + − Rep +| Enc −

339 2 + + + Rep +| Enc − 9,48

353 1 + + + + 11,12

391 1 + + + +

536 4 + + + Rep +| Enc − R/LT (7.3 × 103) R (3.6 × 107) 53

605 4 + + + Rep +| Enc − SP (2.2 × 107) + (7.8 × 106)

609 2 + + + +

615 2 + + + Rep +| Enc − − + (1.2 × 107) 92

626 3 + + + + 93

635 5 + + + + − SP/LT (3.0 × 104) 51

643 3 − − − − 91,93

PB1

Core 121 3 − − − −

229 4 − − − − − − 55,87,94–96

ß-hairpin 347 2 − − − − − −

353 2 − − + + 55

360 2 + + + + + (3.6 × 107) LT (1.1 × 105)

379 2 + + + +
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increase to more than 250%. With regard to its location in a hinge
region of the PA endonuclease domain and an interaction site with
PB157 (Supplementary Fig. 2j, Supplementary Table 1), this could sug-
gest, that UB/UBL-mediated neutralization at PA-K22 affects mRNA
transcription through structural alterations. Mutations at eight posi-
tions abrogated or reduced the polymerase activity but nevertheless
gave rise to viable recombinant viruses (Fig. 3c–e, bottom panels,
Table 1). We speculated that this discrepancy was facilitated by resi-
dual vRNA replication. To confirm this hypothesis, we determined
synthesis of the different viral RNA species with strand-specific qRT-
PCRs for mRNA and cRNA58. Indeed, all mutations ablated mRNA
transcription but retained at least 40% cRNA synthesis activity
(Fig. 3f–h). In the case of PB1-K360A cRNA synthesis was even upre-
gulated to more than 250% compared to the wild-type (WT) poly-
merase (Fig. 3h). This indicates that UB/UBL modifications at these
positions are particularly required for mRNA transcription. Residue
PA-K536 resides within a putative RNA template binding groove53,54.
Both the introductionof A andRwere not stable but caused immediate
reversion to K536 during virus rescue, demonstrating a strong selec-
tion pressure for lysine. We speculate that neither a constantly
neutral nor a positively charged residue is tolerated at this position and
that at some point during viral replication, the positive charge of PA-
K536 needs to be neutralized, hypothetically by the conjugation of
UB/UBL.

Positions in domains with catalytic activity, such as the endonu-
clease in PA (K134) and the polymerase catalytic cavity in PB1 (K229,
K347, K471) were in general highly sensitive to substitution with A or R
leading to loss of polymerase activity and lack of recombinant virus
generation despite robust protein expression (Fig. 3d, e, Supplemen-
tary Fig. 2h, i). PB2-K617, located in a putative NP binding region41,59,
was likewise sensitive to mutation, pointing towards a pro-viral func-
tion of the UB/UBL modification (Fig. 3c).

The mutations PB2-K699R and PA-K615A did not support the
generation of recombinant viruses despite increased polymerase
activity and WT-like levels of cRNA synthesis activity (Fig. 3c, d, f, g),
suggesting a supportive function of themodification for other steps in
the viral life cycle, which might be hindered by the loss of the mod-
ification. In the case of PB1-K578, A and R mutations both strongly
elevated the polymerase activity (Fig. 3e). However, while K578A gave
rise to stable recombinant virus, rescue with K578R resulted in infec-
tious plaques in only one out of three experiments (Fig. 3i), indicating

that substitution of K578 with a neutral or constantly positive charged
residue differentially affects the viral polymerase. The low stability of
K578R was further corroborated by reduced hemagglutination inhi-
bition (HI) titers and low viral titers reaching less than 104 PFU/ml after
virus rescue in R1 (Fig. 3i and Supplementary Fig. 2k). Nevertheless,
virus titers increased to comparable levels of the WT virus after only
one additional passage of the rescue supernatant, indicating either
reversion of themutation or introduction of compensatorymutations.
In contrast, PB1-K578A did not show reduced viral and HI titers for up
to 5 passages after rescue (Fig. 3j, Supplementary Fig. 2l).

Some mutations also affected the intracellular localization of the
polymerase subunits. We observed an increased cytoplasmic locali-
zation of PB2-K482R and PB2-K699R (Fig. 3l), which are both known to
be involved in nuclear-cytoplasmic shuttling of PB246,60. In addition,
PA-K635A resulted in an increased translocation of PA into the nucleus
(Fig. 3m, n). In summary, our functional analysis revealed that host-
derived site-specific UB/UBLmodifications in the polymerase subunits
confer both positive and negative effects on the activities of the viral
polymerase. Furthermore, our results provide evidence that several
modifications distinctively impact viral mRNA transcription or vRNA
replication.

PB1-K578 is an acceptor site for UB and is highly conserved
among influenza viruses
The different effects of A/R mutations of K578 on viral rescue
prompted us to investigate this UB/UBL acceptor site in more detail.
We first elucidated whether K578 is modified by UB. Co-expression of
wild-type PB1 and K578A with a UB-expressing plasmid resulted in
significantly reduced UB levels (~70%) for PB1-K578A despite 14 other
UB sites detected in the MS screen (Fig. 4a), which suggested that PB1-
K578 represents a major UB target site in PB1. Treatment with the UB-
specific peptidase USP2 removed residual UB from both WT and
mutant PB1. To obtain structural insights on how UB modification of
PB1-K578 affects the polymerase activity, we analyzed the structural
environment within the WSN-adapted 3D models of the IAV WT poly-
merase. PB1-K578 resides in a surface exposed α-helix within the PB1
thumbdomain that is part of a positively charged patch constituted of
several positively charged residues in PB1 (R571, R572) and PB2 (R101).
In the modeled structure, PB1-K578 is directly oriented towards the
negatively charged residuePB2-E72,which resides at the tip of amostly
unstructured and flexible loop in the PB2-N1 domain (AA 61–82),

Table 1 (continued)

Domain K-ε-GG
position

Rep. of 5 Exposed in
monomer

Exposed in dimer Rec. virus (titers [PFU/ml]) Ref.

vRNA cRNA Symmetric Asymmetric Ala Arg

Palm 471 1 − − − − − SP (1.1 × 107) 97

480 3 + + + + 42,55,98

Thumb 578 2 + + + + + (2.2 × 107) R (6.4 × 103)

586 1 + + + +

635 1 − − + − + (9.4 × 107) + (1.2 × 108)

669 2 − − − + 99

C-Ext 736 2 + + + +

737 4 + + + +

List of thepositions of all K-ε-GGbound lysines in thePB2, PA, andPB1 subunitsdetected in 5 independent replicates (Rep.) at 5 hp. i. togetherwith their location in functional domains. Thenumber of
replicates inwhich the sitewas detected is indicated (Rep. of 5). Surface exposureof the identified siteswas assessedusing 3Dstructuralmodels of aWSN-adapted IAVpolymerasemonomerbound
to either vRNA or cRNA as well as the 3D structures of the symmetric dimer of the H3N2 polymerase (PDB: 6QNW) and the ANP32A-stabilized asymmetric dimer of the influenza C virus polymerase.
Surface exposure is indicatedwith (+), concealed location is indicatedwith (−). In the asymmetric dimer, surface exposure is also itemized regarding location in the replicating (Rep) or encapsidating
(Enc) polymerase. Success or failure to generate recombinant viruseswith theplasmids encoding the respectivemutations after three independent rescue attempts is encodedby (+) = generation of
virus, (−) = novirus after three attempts, (R) = generation of virus but reversion towild type, (SP) = generation of virus but small plaquephenotype, (LT) = generation of virus but low rescue titer. Rescue
titers are provided as [PFU/ml].
Studies that have previously described or functionally characterized the detected lysines are listed in the references (Ref.) column.
Following reanalysis of the MS data additional modified sites in PB2 (K113, K627) and PB1 (K278) were detected.
aOne site in PA (K113) that was identified in previous analyses was excluded due to threshold adjustments.
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suggesting a direct charge-dependent communication between both
residues (Fig. 4b). The PB2 loop was described before to participate in
dimerization of the viral polymerase trimer11,12. Particularly, residues
PB2-T76 and R70 were shown to interact with PA-D347 of the second
polymerase (Fig. 4c). In addition, alanine substitution of the triplet
PB2-N71-E72-Q73 in the PB2 loop resulted in loss of polymerase activity
and dimerization suggesting a crucial role of this loop for viral RNA
synthesis11,12.

The amino acid sequences of the PB1 helix and the PB2 loop are
both highly conserved among IAV strains including natural isolates
fromhuman, swine and avian hosts (Supplementary Fig. 3a, b). K578, is
the predominant amino acid in PB1 sequences derived from human
(98.82%), avian (99.26%), and swine (75.18%) isolates (Supplementary

Fig. 3c). Only 0.03% of avian IAV strains contained A578, whichwas not
present in human and swine IAV isolates, suggesting low evolutionary
stability in nature. Interestingly, of the analyzed swine PB1 sequences
12.47% encoded for R578 and 12% for S578, a putative acceptor site for
phosphorylation. To assess the functional conservationof PB1-K578we
substituted PB1-K578 with A and R in PB1 of IAV strains PR8 (H1N1) and
SC35M (H7N7), which resulted in enhanced polymerase activity and
resembled the results of the WSN RdRP (Supplementary Fig. 3d).
Furthermore, we identified structural resemblance of the PB1-PB2
interface in the polymerases of influenza B and C as well as bat influ-
enza viruses (Supplementary Fig. 3e–g). Taken together, these results
reveal that K578 is a highly conserved UB acceptor site in the
PB1 subunit of IAV.
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Mutationof PB1-K578 remodels thePB1-PB2 interfaceby charge-
dependent rearrangement of a flexible N-terminal PB2 loop
To predict how UB-mediated charge neutralization or a constant
positive charge at K578 would affect the structural integrity and
dynamic of the putative PB1-PB2 interaction site, we performed
extended molecular dynamic (MD) simulations of 100ns using WSN-
adapted 3D models of the IAV WT polymerase in comparison to
models harboring K578A and K578R (n = 4 for each condition). Simu-
lations were restricted to an area of 45 Å around the PB1-PB2 interface.
The analysis resembled that four amino acids are involved in ionic
interactions with PB2-E72, including PB1-R571, PB1-R572, PB1-K578, and
PB2-R101, of which K578 represents the only UB acceptor site allowing
for charge neutralization. Comparing the lifetime of ionic interactions
with one of these residues revealed that charge deletion in K578A
eliminates PB2-E72 exerted ionic interactions (2.8 ± 2.8%, SEM, n = 4, p
value 0.0076, Fig. 4d), whereas for K578R simulations, lifetime of PB2-
E72 ionic interactions (48.3 ± 14.9%) was not significantly different (p-
value 0.7289) to lifetime evaluated for WT simulations (42.2 ± 7.2%).
Because alteration of interactions can result in reorientation of the
involved residues, we analyzed the change of residue position of PB2-
E72 in dependence of either WT, K578A, or K578R over the complete
simulation time by calculating the rootmean square deviation (RMSD)
every 0.1 ns (4000 values for each condition). However, while this did
not reveal a significant shift in a certain mean position of PB2-E72 (WT:
3.160 ± 0.21, K578R: 3.410 ± 0.39, K578A: 4.196 ±0.58), RMSD dis-
tribution analyses demonstrated clear differences for both mutants,
indicating that K578A strongly increased the degree of mobility for
PB2-E72, since the residue is able to occupy positions with RMSD
values of more than 6Å compared to the initial structure (Fig. 4e). In
comparison to the WT simulations, RMSD distribution of PB2-E72 for
K578R showed a second peak, indicating the presence of an additional
favored position of E72. Interestingly, we observed that mutation
K578R also heavily affected the RMSD distribution of the adjacent
residue PB2-Q73 (Fig. 4f). While RMSD values for WT and K578A are
similar distributed showing the highest peak around 4.5 (K578A) to 5 Å
(WT), K578R resulted in a clear shift of the highest peak to 3.25 Å,
indicating a different spatial stabilization of Q73 in a conformation
different from the conformation observed for WT.

Loss of the charge-dependent interactions (K578A) also sig-
nificantly increased the flexibility (root mean square fluctuation,
RMSF) of residues located at a proximal region of the PB2 loop,
spanningAA63–68,while residues at a distal regionof AA78–82where
not affected (Fig. 4g, Supplementary Table 2). This uneven increment
of flexibility could influence the spatial structure of the complete loop.
Contrary to K578A, K578R showed no significant RMSF alterations in
comparison to WT.

To analyze whether these predictions are supported in the poly-
merase reconstitution assay, we mutated additional residues in the
positive interaction surface (PB2-R101, R571, R572) as well as the PB2

loop (PB2-E72 and Q73). This demonstrated that charge neutralization
of PB2-R101A as well as PB2-E72 increased the polymerase activity
similar to K578A (Supplementary Fig. 3h, i). In contrast, PB1-K571A
resulted in amild reduction while PB1-K572A and PB2-Q73A abrogated
the polymerase activity, suggesting additional interactions with other
residues that affect the polymerase activity by a different mechanism
of action.

Taken together, the results of the dynamic structure simulations
support the previous observation that PB2-E72 is coordinated by a
positively charged interaction surface involving PB1-K578 and that
mutations PB1-K578A/R both affect the PB1-PB2 interface in a different
manner. Neutralization of PB1-K578 interrupted the interaction to PB2-
E72 (PB1-K578A) leading to increased flexibility in the proximal part of
the PB2 loop. In contrast, K578R preserved the positively charged
surface and did not impact the flexibility of the loop compared to WT
but instead conferred pronounced repositioning and stabilization of
the neighboring residue PB2-Q73. Presumably, this stable position of
the PB2 loop is not compatible with the dynamic structural rearran-
gements in the viral polymerase that are required for viral replication.
These results suggest that UB modification of K578 promotes viral
replication by a charge-dependent structural rearrangement of the
PB1-PB2 interface that may also affect formation of the
symmetric dimer.

PB1-K578R aborts vRNA replication during (multicycle)
infection
In contrast to results from the polymerase reconstitution assay, which
did not show a negative effect of K578R on polymerase activity, the
inefficient viral rescues suggested that a constant positive charge at
position PB1-578 is not tolerated during viral replication and poses a
strong selection pressure for reversion or alternative mutations.
Indeed, deep sequencing of purified infectious and non-infectious
virus particles from the supernatants after the rescue experiments
revealed a high prevalence of adenines at nucleotide positions
1732–1734 in R1, demonstrating a high frequency of reversion from the
mutated 578R to the natural K (Fig. 5a). In contrast, in non-infectious
particles from replicates R2 and R3 the distribution of nucleotides at
these positions was more heterogeneous, with 0 and 1% adenines at
the first position inR2 andR3, respectively, suggesting absence or very
low reversion to 578 K. Of note, R2 and R3 contained fractions
encoding for 578 A or Q, but nevertheless failed to produce infectious
virus also after additional passaging. Compensatory mutations in the
polymerase or other genes were not observed.

Analyses of the abundance of the individual vRNA segments
within virus particles from rescue supernatants of PB1-K578R, PB1-
K578A and the WT virus demonstrated that all eight vRNA segments
were present in viral particles from the rescues giving rise to viable
virus (Fig. 5b). In contrast, the non-infectious viral particles from R2
and R3 of the PB1-K578R rescue contained incomplete viral genomes,

Fig. 3 | Mutational screen of modified lysines reveals distinct effects onmRNA
transcription and vRNA replication. a Schematic of the polymerase reconstitu-
tion assay. Cells are co-transfected with plasmids for PB2, PB1, PA, and NP together
with a firefly luciferase-encoding vRNA minigenome under control of the pol-I
promoter and a Renilla luciferase under control of the pol-II promoter. FF activity
correlates with the activity of the viral polymerase. Renilla activity serves as an
internal transfection control. b Generation of recombinant influenza viruses. Cells
are co-transfected with 8 bi-directional pHW2000 plasmids encoding the viral
genome segments. Viral mRNA and vRNA is generated from pol-II and pol-I pro-
moters, respectively. Illustrations created with biorender. c–e Polymerase recon-
stitution assay with A/R-substitutions of the modified lysines in PB2 (c), PA (d), and
PB1 (e). Relative FF activities are presented as the mean percentage activity using
the wild type (WT) polymerase (±SEM), n = 3 independent biological replicates. P
values < 0.05 compared to WT from Dunnett’s multiple comparison one-way
ANOVA test are indicated. Success (+) or failure (−) to generate recombinant viruses

is depicted below. Virus rescue was considered negative if three independent res-
cue attempts failed. Sites located in functional domains (white), interaction regions
with RNA templates (light red), or viral/host proteins (gray) are highlighted.
f–hQuantificationof FFmRNAand cRNA levels from thepolymerase reconstitution
assay for mutations in PB2 (f), PA (g), or PB1 (h) using qRT-PCR using segment and
RNA species-specific primers. Values are depicted as mean relative to WT (±SEM),
n = 3 independent biological replicates. GAPDH served as housekeeping control. P
values < 0.05 compared to WT from Dunnett’s multiple comparison two-way
ANOVA are indicated. i–k Viral titers after rescue (i) or passaging (j, k), n = 3
independent biological replicates (±SEM). Viral titers were determined 48h p.i. as
plaque forming units (PFU) per ml. l–n Immunofluorescence of WT or mutated
versions of PB2 (l), PA individually (m), or in combinationwith HA-tagged PB1 (n)74.
24 h post transfection A549 cells were fixed and analyzed using the indicated
antibodies. Cell nuclei were visualized using DAPI. Representative cells from one
experiment are shown. Scale bar = 10 µm.
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implying that defective vRNA replication accounts for the generation
of non-infectious virus particles in these replicates.

To determine the step of vRNA replication that was affected by
K578R, we next compared the ability of reconstituted WT and
mutant polymerase complexes to stabilize and transcribe a cRNA

template provided by viral infection. Cells were first transfected
with plasmids expressing PB2, inactive PB1 (PB1a), PA, and NP for
24 h followed by infection with WT virus in presence of cyclohex-
imide (CHX) to inhibit translation of viral proteins. Both, K578A and
K578R did not differ in cRNA stabilizing activity compared to the
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Fig. 4 | PB1-K578 is ubiquitinated and interacts with a loop in the PB2
N-terminus. a A549 cells were co-transfected with strep-tagged PB1 or PB1-K578A
and HA-tagged UB. UB-modified PB1 subunits were strep-purified using denaturing
conditions and analyzed by western blot. For de-ubiquitination, bound PB1 con-
structs were treated with USP2. Co-precipitated UB-HA levels were quantified and
presented as the mean fold change of WT (±SEM), n = 4 independent biological
replicates. P values compared to WT from Welch’s corrected two-tailed t-test are
indicated. b, c Illustration of PB1-K578 in the 3D structures of the WSN polymerase
(vRNA-bound conformation; b) and the 3D structure of the symmetric dimer of the
H3N2 polymerase (PDB: 6QNW; c), showing the K578 containing PB1-helix (cyan),
the flexible loop in the PB2 N-terminus (yellow) harboring PB2-E72 and the helix in
the PA C-terminus that participates in dimer formation. Distances between PB1-

K578 and PB2-E72 are indicated in Angstrom (Å). Amino acids involved in the dimer
interface are indicated. Created with ChimeraX. d Mean lifetime of ionic interac-
tions with PB2-E72 for 100ns simulations, n = 4 independent biological replicates
for each condition (±SEM).P values < 0.05 compared toWT fromWelch’s corrected
two-tailed t-test are indicated. e, fRMSDdistribution of PB2-E72 (e) and PB2-Q73 (f)
for WT, K578R and K578A simulations. Each 100ns simulation generated 1000
RMSDvalues leading to a total number of 4000values for each condition. Equal bin
sizes with 0.5 Å steps were used for of each histogram. g RMSF values of PB2
residues (±SEM). Significanceofmeandifferenceswas analyzedbyWelch corrected
two-sided t-test, n = 4 independent experiments. P values are summarized in Sup-
plementary Table 2. Source data are provided as a Source data file.
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WT polymerase (Fig. 5c). However, pre-transfection with plasmids
for the assembly of an active polymerase complex resulted in sig-
nificantly reduced cRNA levels for both K578A and K578R (Fig. 5d).
In addition, we observed that the neutral K578A polymerase pro-
duced significantly lower levels of vRNA compared to theWT as well
as K578R polymerase, suggesting less efficient cRNA to vRNA
synthesis (Fig. 5e). These results reveal that both mutations hamper
a step proceeding cRNA stabilization and that neither a constant
positive nor a neutral charged residue at this position supports the
synthesis of similar high cRNA levels compared to the WT poly-
merase, suggesting that UB-mediated charge neutralization of PB1-
K578 is required to occur with distinct timing in the infected cell for
optimal vRNA levels.

Since these results did not unravel the specificdefect of theK578R
mutant to generate viable virus, we next compared the amounts of
segment-specific vRNAs during virus rescue directly from the trans-
fected HEK293-T cells at 16 h and 48 h post transfection (p.t.) of the 8

rescue plasmids. This demonstrated significantly higher levels of 7
vRNA segments (excluding the HA encoding segment) for the K578R
mutant compared to the WT at 16 h p.t. (Fig. 5f). However, this
advantage was lost at 48 h p.t. when vRNA levels of all segments were
strongly reduced compared to the WT (Fig. 5g), indicating that the
defect in vRNA replication of the PB1-K578R harboring polymerase
involves the incoming vRNP and is therefore detrimental in infected
rather than transfected cells.

The charge at PB1-K587 modulates NP binding and polymerase
dimerization
Accumulating evidence suggests that vRNA replication relies on
polymerase dimerization as well as the interaction with free NP to
encapsidate newly produced cRNAs and vRNAs9,11,61–64. Based on the
previous results,we speculated that the alteration in vRNAsynthesis by
mutation of PB1-K578 could underlie changes in NP binding or poly-
merase dimerization.
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Fig. 5 | Mutation of PB1-K578 affects cRNP stabilization and vRNA synthesis.
a, bDetection of packaged vRNA segments isolated from released virus particles in
the supernatants of the rescue experiments at 48h p.t. vRNA segments were
amplifiedwith segment-specificprimers, separatedon 2%agarose gel (b).Gels from
all three replicates of K578R and representative gels of three replicates (R) with
consistent results are shown forWT and PB1-K578A. vRNAwas analyzed using deep
sequencing. Percentage of nucleotides encoded at position 1732–34 encoding for
K578 (a). c–e Analysis of cRNA stabilization, cRNA and vRNA synthesis. HEK293-T
cells were transfected with plasmids expressing NP, PB2, PA, inactive PB1 [PB1a]
(D445A/D446A62,100; c) or active PB1 (d, e). At 24h p.t., cells were infected with WT
WSNvirus (MOI: 5) and cultured in infectionmediumwith cycloheximide (CHX). At

6 h p.i. cRNA (c,d) or vRNA levels (e) of theNA segmentwere assessed using strand-
specific RT-PCR and are shown as mean n-fold of WT (±SEM), n = 6 independent
biological replicates. P values < 0.05 compared to WT from Dunnett’s multiple
comparison one-way ANOVA-test are indicated. f, g Accumulation of vRNA seg-
ments in HEK293-T cells co-transfected with pHW2000 plasmids at the indicated
time points. vRNA levels were quantified using segment-specific primers for RT-
PCR and presented as the mean n-fold of WT (±SEM), n = 3 independent biological
replicates. Cellular GAPDH mRNA levels were used as housekeeping control. P
values < 0.05 compared to WT from Šidák’s corrected multiple comparison two-
way ANOVA test are indicated. Source data are provided as a Source data file.
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Co-immunoprecipitation of strep-tagged NP with the viral poly-
merase subunits showed that PB2 and to a minor extent also PB1
directly interacted with NP, while there was no direct interaction with
PA (Supplementary Fig. 4a). We further investigated whether the PB1-
NP interaction was affected by mutations K578A or K578R but did not
find a difference, suggesting absence of a direct interaction at this
residue (Supplementary Fig. 4b). In the next step we co-expressed the
trimeric polymerase using wild type PB1 or PB1 harboringmutations at
PB1–578with strep-taggedNP and used the PA subunit as a readout for
interaction. This demonstrated that PB1-K578A significantly destabi-
lized the interaction between the polymerase and NP (Fig. 6a). In the
presence of viral RNA, however, binding of PB1-K578A to NP was not
reduced (Fig. 6b), while PB1-K578R did not affect NP interaction in
either setting. Collectively, these results suggest, that UB-mediated
charge neutralization of PB1-K578 reduces NP binding to the RNA-free
trimeric IAV polymerase but not to the vRNP-bound polymerase.

Finally, we analyzed whether the dimerization between two het-
erologous polymerase trimers was affected by PB1-K578A/Rmutations
and used the previously described dimerizationmutant PB2-71–73 as a
positive control for reduced formation of the symmetric dimer12. Co-
expressionof strep-PA andHA-PA togetherwith theother subunits and
subsequent strep-pull down resulted in reduced levels of co-
precipitated HA-PA for PB1-K578A but not for PB1-K578R, suggesting
that UB-mediated charge neutralization also reduces formation of the
symmetric polymerase dimer (Fig. 6c). Taken together, these results
indicate that UB modification of PB1-K578 modulates assembly of the
symmetric polymerase dimer and binding to NP.

Discussion
Post translational modifications provide a crucial regulatory layer to
control the structure and function of viral proteins as well as their
intracellular location and interaction to other proteins. Thereby, PTMs
can serve as dynamic molecular switches to coordinate the different
steps of viral replication.

Here, we unraveled the first comprehensive landscape of site-
specific ubiquitin modification in the IAV viral polymerase during
infection. The combination of di-glycyl-targeted peptide enrichment
and MS analysis resulted in the identification of 59 UBL-modified
lysines across all three subunits of the polymerase, the majority of
which have not been described nor functionally characterized before.
Most lysines are highly conserved in IAV isolates from humans, birds,
and pigs and reside within functionally and structurally important
regions, emphasizing their putative impact on viral replication.
Although di-glycyl remnants derive from different UBL modifiers, we
demonstrate that ubiquitin is the most abundantly detected mod-
ification in the viral polymerase, which is consistent with earlier
reports27,34. Several other groups reported site-specific UB/UBL mod-
ifications in the IAVpolymerase andNPwith effects on viral replication.
However, these effects were commonly attributed to proteasomal
degradation or destabilization of the modified viral proteins, while
specific effects on the polymerase functions were not reported22,28,34.
Our work provides a new perspective on UB/UBL modifications of the
IAV polymerase and demonstrates that suchmodifications confer site-
specific effects on the activity of the viral polymerase and the gen-
eration of recombinant viruses through non-proteolytic mechanisms,
which substantiates that IAV exploits the cellular UB/UBL system to
optimize viral replication. We describe no less than 17 UB/UBL accep-
tor sites in the viral polymerase, which positively or negatively affect
the activity of the viral polymerase on the level of intracellular locali-
zation, mRNA transcription, vRNA replication, and generation of
recombinant viruses upon substitution with A and R. Interestingly, we
found that several mutations resulted in the abrogation of mRNA
transcription, however, with minor effects on cRNA synthesis. This
provides strong evidence for a broad spectrum of functional roles of
site-specific ubiquitination in the temporal coordination of both

processes and emphasizes that the regulatory impact of host-derived
and site-specific UB modifications on the viral polymerase activity
exceeds our current understanding and thus requires further
investigation.

In addition to the description of new ubiquitination sites within
the IAV polymerase and their functional characterization, we provide
compelling evidence that the UB acceptor site PB1-K578 plays a crucial
role for mRNA transcription and vRNA replication. The importance of
K578was revealed bymutational substitutionwith A andR, which both
abrogate UB-modification but resemble UB-mediated charge neu-
tralization or the constant positive charge of a non-modified lysine,
respectively. According to the current model for mRNA transcription5,
we speculate that the increased polymerase activity of the PB1-K578A/
R mutants observed in the reconstitution assays (Fig. 3e) derives from
an altered repositioning of the PB1 thumb domain and the PB2-N1
domain, which alleviates blockage of the template exit channel by PB2
(AA 80–90) in the pre-initiation complex of the transcriptase and
thereby promotes mRNA elongation.

Dynamicmolecular structuremodeling predicted that PB1-K578A
negatively affects the integrity of a positively charged interaction
surface constituted by PB1-R571, R572, K578, and PB2-101, leading to
the spatial reorientation of the entire N-terminal PB2 loop by weak-
ening the charge-dependent interactions to residue PB2-E72 and sub-
sequently influencing spatial positioning of PB2-Q73. Consequently,
we found that PB1-K578A had a reduced affinity to NP in the context of
the RNA-free polymerase and demonstrated reduced formation of the
symmetric dimer. Importantly, this was accompanied by significantly
reduced cRNA and vRNA synthesis activity, while cRNA stabilization
wasnot affected.Nevertheless, PB1-K578A supported rescueof a stable
recombinant virus. In combination with the defect of the PB1-K578R
mutant to rescue a stable virus but instead enforcing the rapid rever-
sion to the natural lysine, as well as the pronounced defect in vRNA
replication, our data emphasize that both, the non-modified and the
UB-modified forms of K578 are required for viral replication.

The dynamic structure simulations indicate that K578R stabilizes
the PB2 loop differently, leading to an altered favored positioning
profile of residue Q73. Because PB1-K578R demonstrated WT-like
polymerase dimerization and cRNA to vRNA synthesis in the
transfection-infection experimental setting (Figs. 5e, 6c) we speculate,
that this position of the loop represents the favorable position for
assembly of the symmetric dimer. Despite the WT-like behavior in
several assays, K578R is detrimental for viral replication and does only
allow the generation of viable recombinant viruses when rapid rever-
sion to the natural K is achieved. Based on these results and the cur-
rently discussed models of vRNA replication, we speculate that the
PB1-K578R encounters at least two problems during infection caused
by the absence of UB-mediated charge neutralization (Fig. 6d). First,
the incoming vRNP produces high levels of viral mRNAs leading to
expression of new trimeric polymerases harboring PB1-K578R as well
as free NP. Due to the constant positive charge of PB1-K578R, the free
trimeric polymerase has a high affinity to interact with NP, which
reduces both, the pools of free trimeric polymerase needed for for-
mation of the different dimers as well as NP that is required for cRNP
and vRNP assembly. Secondly, we assume that PB1-K578R promotes
premature assembly of the symmetric polymerase dimer possibly
already between the incoming vRNP-associated polymerase and newly
expressed PB1-K578R harboring polymerase, which leads to abortion
of cRNA synthesis. Both mechanisms lead to an imbalanced viral RNA
synthesis and will pose a strong pressure for reversion to the modifi-
able lysine. In reverse conclusion, we propose that ubiquitination of
K578 is required to decrease NP binding to newly synthesized trimeric
polymerases to retain the free polymerase pool and to achieve correct
positioning of the PB2 loop that prevents the premature assembly of
the symmetric dimer. The mechanism underlying decreased NP
binding to the trimeric polymerase but not the vRNA-associated NP by
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mutation K578A or K578 ubiquitination remains open to speculations.
Whether this is also mediated by a charge-dependent mechanism that
affects the positioning of the PB2 loop or rather involves shielding of
the NP binding site by the UB moiety cannot be concluded from our
results. Moreover, it remains elusive whether our results reflect
reduced binding of the first NP in the vRNP, or the terminating NP and
if NP binding and dimer formation are competitive events due to the
overlapping binding sites.

The responsible E3 ligase for PB1-K578 ubiquitination is not
known. A previous report demonstrated that among the more than
600 E3 Ubiquitin ligases UBR5, STUB1/CHIP, HUWE1, and DDB1 inter-
act with the viral replication machinery in infected cells14. Several
groups have previously used comparative interactomics of the human

ubiquitin proteasome system with viral proteins, genome-wide RNAi
library screens or mass spectrometry-based interaction screens22,30,65

to identify candidate E3 ligases that facilitate ubiquitination of viral
proteins. The results of our study can now be combined with such
technologies to link cellular E3 ligases to site-specific modifications in
the viral polymerase and uncover new therapeutic targets. In conclu-
sion, in addition to generating the first comprehensive ubiquitin
landscape of the viral polymerase, our results provide a novel and
unexpected role of host-derived ubiquitination of residue PB1-K578 in
the PB1 thumbdomain for the coordination of NP binding, polymerase
dimerization and vRNA replication (Fig. 6d). These novel findings
advance our understanding of the enigmatic binding site of NP to the
polymerase trimer and unravel the important role of the flexible
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N-terminal PB2 loop for the formation of the symmetric polymerase
dimer. Moreover, our study emphasizes the remarkable potential of
UB-modifications to fine-tune protein structures and functions way
beyond the mechanism of proteolytic degradation.

Methods
Cells
Madin-Darby Canine Kidney cells type II (MDCK-II), human embryonic
kidney 293T cells (HEK293-T), and human alveolar epithelial cells
(A549) were maintained in Dulbecco’s modified Eagle medium
(DMEM), supplementedwith 10% fetal calf serum (FCS; Capricorn) and
1% Penicillin/Streptomycin (P/S; Sigma). All cells were cultured at 37 °C
and 5% CO2. MDCK-II, HEK293-T, and A549 cells were provided by
Martin Schwemmle (Freiburg, Germany).

Plasmids
For generation of recombinant influenza A viruses, the eight reverse
genetics bi-directional pHW-2000 plasmids encoding vRNA and viral
proteinsderived fromtheA/WSN/1933 (H1N1) (WSN) viruswere used66.
Mutations in pHW-2000PB2, PB1, and PAplasmidswere introducedby
site-directed mutagenesis (SDM). To create overexpressing plasmids
encoding for mutated PB2, PB1, and PA of WSN, A/PR/8/1934 (PR8),
and A/SC35M/1980 (SC35M), the respective pHW-2000 plasmids
bearing the respective mutations were used as templates and sub-
jected to assembly PCR to introduce restriction sites for NotI and XhoI
restriction enzymes (NEB). The resulted PCR fragments were cloned
into pCAGGs plasmids. pCAGGs vectors that encode Strep-tagged
polymerase subunit constructs of WSN-derived wild type PB2, PB1 and
PAwere created likewise. The pCAGGs plasmids encodingC-terminally
HA-tagged PB1 and PA fusion proteins were a kind gift from Martin
Schwemmle (Freiburg, Germany) and described previously67. The
pPolI-Firefly reporter plasmid encodes a negative-sensed luciferase
gene flanked by the 5′ and 3′ non-coding regions of the NS segment.
Likewise, the pPolI-Firefly-UP-Promoter encodes a positive-sensed
luciferase gene and has been described before68. Both were used for
minigenome assays together with the pTK-Renilla plasmid. pRK5-HA-
Ubiquitin-WT was a gift from Ted Dawson (Addgene plasmid #17608)
and pcDNA3-HA-NEDD8was a gift fromEdward Yeh (Addgene plasmid
#18711). The pCMV2b-RGS-His-ISG15WT plasmid was a gift fromGerrit
Praefcke (Langen, Germany).

Expression of viral proteins
HEK293-T cells were transfected with pCAGGs plasmids encoding for
PA, PB2, PB1 (WT or mutant), 24 h p.t. the cells were lysed using ice-
cold radio immunoprecipitation assay buffer (RIPA; 150mMNaCl, 0.1%
(w/v) SDS, 0.5% (w/v) sodium deoxycholate, 25mM TRIS (pH 7.5), 1%
(v/v) Triton X-100, protease inhibitor cocktail). Clarified cell lysates
were adjusted to equal amounts using Pierce™ BCA assay (Thermo

Fisher), mixed with Laemmli buffer (4X), incubated at 95 °C for 5min,
and subjected to SDS-PAGE and western blot. Proteins were detected
using the primary antibodies rabbit anti-PB1 (GTX125923, Genetex;
1:2000 in blocking buffer), rabbit anti-PA (GTX125932, Genetex; 1:1000
in blocking buffer), and mouse anti-Tubulin (clone DM1A, Sigma-
Aldrich; 1:1000 in blocking buffer) and the secondary antibody anti-
Rabbit IgG-800CW (LI-COR; 1:10,000 in blocking buffer), and anti-
Mouse IgG-680RD (LI-COR; 1:10,000 in blocking buffer). Uncropped
blots are provided in a source data file.

Detection of post-translational modification by affinity
precipitation
For detection of ubiquitination, A549 cells were cotransfected with
pCAGGs plasmids expressing nStrep-PB2-, nStrep-PB1, or nStrep-PA
fusion proteins with HA-ubiquitin using X-tremeGENE HP DNA Trans-
fection Reagent (Sigma). Due to the reduced expression levels of
plasmids that encode HA-tagged NEDD8 or His-tagged ISG15 in A549
cells, themodification of the polymerase subunits with theseUBLswas
performed in HEK293-T cells by co-transfection of the respective
plasmids with Lipofectamin 2000 (Invitrogen). A549 cells were pro-
cessed 48 h post transfection (p. t.) and HEK293-T cells 24 h post
transfection as previously described69. Briefly, cells were treated with
lysis buffer (2% SDS, 150mM NaCl, 2mM EDTA, 1% Triton X-100, Pro-
tease inhibitor cocktail), proteins were denatured at 95 °C for 10min,
sonicated for 30 s, renatured in a dilution buffer (10mM TRIS HCl (pH
8.0), 150mM NaCl, 2mM EDTA, 1% Triton X-100) for 1 h at 4 °C and
then clarified by centrifugation. Clarified lysates were adjusted to
equal amounts using Pierce BCA assay (Thermo Fisher) and pre-
cipitated using Strep-Tactin sepharose beads (IBA Lifescience) at 4 °C
for 2 h. Beads were washed thrice using a stringent washing buffer
(10mMTRIS-HCl (pH 8.0), 1M NaCl, 1mM EDTA, 1% Igepal CA-630). In
case of deubiquitinase treatment, the beads were washed twice with
DUB reaction buffer (1X), as provided inUbiCRESTKit70, and incubated
with USP2 at 37 °C for 30min according to the manufacturer
description. Precipitated proteinswere eluted using 1X Laemmli buffer
(0.25M TRIS (pH 6.8), 40% glycerol, 8% SDS, 10% β-mercaptoethanol,
0.01% bromophenol blue) by incubation at 95 °C for 5min. The pre-
cipitated samples were subjected to SDS-PAGE and western blot.
Covalently bound modification by HA-ubiquitin, HA-NEDD8, or His-
ISG15 of each polymerase subunit was detected using the primary
antibodies rat anti-HA-Tag (clone 3F10, Roche; 1:500 in blocking buf-
fer), rabbit anti-NEDD8 (clone Y297, Abcam; 1:1000 in blocking buffer)
or mouse anti-His-Tag (clone HIS.H8, Thermo Fisher; 1:1000 in block-
ing buffer) and secondary antibodies anti-Rat IgG-HRP (Cell signaling
Technologies; 1:3000 in blocking buffer), anti-Rabbit IgG - HRP (Cell
signaling Technologies; 1:3000 in blocking buffer) and anti-Mouse IgG
- HRP (Cell signaling Technologies; 1:3000 in blocking buffer). Poly-
merase subunits were detected using the primary antibodies rabbit

Fig. 6 | Mutation of PB1-K578 affects the binding of free polymerase to NP and
polymerase dimerization. a, b Detection of NP binding to trimeric polymerase by
co-affinity precipitation. Cells were transfected with PB1, PB2, HA-tagged PA, strep-
tagged NP (a) and a firefly-encoding vRNA reporter (b) followed by strep-
purification 24h p.t. Co-precipitated proteins were detected by western blot.
c Polymerase dimerization assessed by co-affinity precipitation. Cells were trans-
fected with PB1, PB2 and both HA- and strep-tagged PA. 24h p.t. the polymerase
components bound to strep-tagged PA were purified. Co-precipitated proteins
were detected by western blot. (Input Strep-PA signals derive from a blot analyzed
in parallel). Quantification of the interaction is shown below the panels. Levels of
HA-tagged PAwere normalized to strep-tagged NP (a, b) or strep-tagged PA (c) and
depicted below as the mean n-fold of WT (±SEM). The number of independent
biological replicates (n) is provided in the figure. P values < 0.05 compared to WT
from Dunnett’s multiple comparison one-way ANOVA are indicated. Source data
are provided as a Source data file.dModel depicting the biological function of PB1-
K578 ubiquitination during vRNA replication. Incoming vRNPs perform viral mRNA

transcription for viral protein expression including the viral polymerase proteins
and NP. A subpopulation of newly synthesized trimeric polymerase complexes
acquires ubiquitinationat PB1-K578 (cyanpolymerase complexeswithUB in yellow)
which disrupts the interaction between PB1-K578 and the loop in the PB2-N1
domain, prevents early formation of the symmetric dimer and reduces the affinity
to NP. The PB1-K578 ubiquitinated polymerase interacts with the vRNP-bound
polymerase to form the ANP32A-stabilized asymmetric dimer for cRNA synthesis
and encapsidation. For vRNA synthesis from the cRNA template, a non-
ubiquitinated polymerase (violet polymerase complexes) interacts with the cRNP-
associated polymerase under formation of the symmetric dimer. Ultimately, pro-
geny vRNPs may perform secondary mRNA transcription, further rounds of vRNA
replication or get exported out of the nucleus for progeny virion assembly. Sub-
stitution of the UB-acceptor site PB1-K578 with both alanine and arginine affects
vRNA replication (right panel). While PB1-K578A retains the pool of free poly-
merases, PB1-K578 aborts progression of vRNA replication due to a depletion of
free polymerases.
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anti-PB2 (GTX125926, Genetex; 1:1000 in blocking buffer), rabbit anti-
PB1 (GTX125923, Genetex; 1:2000 in blocking buffer), rabbit anti-PA
(GTX125932, Genetex; 1:1000 in blocking buffer) and the secondary
antibody anti-Rabbit IgG-680RD (LI-COR; 1:1000 in blocking buffer).
Uncropped blots are provided in a source data file.

Mass spectrometry analyses of K-ε-GG-enriched peptides
Infection was carried out by incubating 108 A549 cells with IAVWSN in
PBS supplemented with 0.7% BSA, 1% CaCl2, and 1% MgCl2 at a multi-
plicity of infection (MOI) of 20 for 30min at 4 °C and subsequently for
additional 30min at 37 °C. For the detection of the ubiquitin remnant
motif (K-ε-GG) on the IAV polymerase subunits, the PTMScan®-Kit (Cell
Signaling Technology) was applied according to manufacturer’s pro-
tocol. Briefly, 5 h post infection (p.i.) cells were lysed using Urea lysis
buffer (20mM HEPES (pH 8), 9M urea, 1mM sodium orthovanadate,
2.5mM sodium pyrophosphate, 1mM β-glycerophosphate), followed
by sonication. Clarified lysates were reduced and alkylated using
dithiothreitol (DTT) and chloroacetamide, respectively, and diluted
3-fold with 20mM HEPES (pH 8.0). Lysates were trypsin digested by
incubation with 1% TPCK-Trypsin (m/v in 1mMHCl) overnight at 25 °C,
desalted using Sep-Pak® C18 cartridges and immunoaffinity purifica-
tion (IAP) using the anti-(K-ε-GG) motif antibody of the kit. Final pur-
ification was performed on Stage tips as described before71.

Peptides enriched for the ubiquitin remnant motif (K-ε-GG) were
dissolved in either 0.5% acetic acid or 0.1% formic acid prior to LC-MS/
MS analysis using a LTQ Velos Orbitrap (n = 1) or Q Exactive HF mass
spectrometer (n = 3; Thermo Scientific), respectively. Each MS instru-
ment was online coupled to an EASY nLC nanoflow HPLC system via a
Nanospray Flex ion source (Thermo Scientific), harboring in-house
packed fused silica capillary column (length 15 cm; ID 75 µm; ReproSil-
Pur C18-AQ, 3 µm). Following loading, bound peptides were eluted
using a linear 240min gradient from 3–40% B (80% ACN, 0.5% acetic
acid) followed by a short gradient from 35–98% B in 10min at a flow
rate of 300 or 250nl/min. After washing at 98% B the column was re-
equilibrated at starting conditions. The Orbitrap Velos Pro mass
spectrometer was operated in the positive ion mode, switching in a
data-dependent fashion between survey scans in the orbitrap (mass
range m/z = 300–1650; resolution R = 60,000; target value = 1e6;
lockmass set to 445.120025) and collision induced fragmentation and
MS/MS acquisition in the LTQ part. MS/MS spectra of the 15 most
intense ionpeaks detected in theMS1 scanswere recorded. Conditions
for the analysis using the Q Exactive HF mass spectrometer were kept
similar (Top17 DDA; Full MS R = 60,000; AGC target = 3e6; Maximum
IT = 100ms; scan range 300–1750 m/z; ddMS2 R = 15,000; max IT =
50ms; NCE = 27 V). Dynamic exclusion was enabled on both MS
systems.

Raw MS data were processed using MaxQuant (v. 2.0.1.0) with
the built-in Andromeda search engine. Tandem mass spectra were
searched against the Influenza A virus (strain A/Wilson-Smith/1933
H1N1; UP000000834.fasta; version from 10/2016) as well as against
the human UniprotKB database (UP000005640_9606.fasta; version
from 04/2019) concatenated with reversed sequence versions of all
entries and also containing common lab contaminants. Carbamido-
methylation on cysteine residueswas set as fixedmodification for the
search in the database, while oxidation atmethionine and acetylation
of the protein N-termini were set as variable modifications. For the
identification of ubiquitination sites, modification of lysine residues
with the remnant diglycyl motif was allowed as additional variable
modification. Trypsin was defined as the digesting enzyme, allowing
amaximumof twomissed cleavages and requiring aminimum length
of 7 amino acids. The maximum allowed mass deviation was 20 ppm
for MS and 0.5 Da for MS/MS scans. Common lab contaminants and
proteins containing reverse sequences that were derived from the
decoydatabasewerefiltered out from thedataset prior to any further
analysis. Protein groups were regarded as being unequivocally

identified with a false discovery rate (FDR) of 1% for both the peptide
and protein identifications. Ubiquitination sites were accepted when
they were identified with a localization probability of >0.75 (class I
sites). PX partial: All mass spectrometry data have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository with the
dataset identifier PXD030816, DOI: 10.6019/PXD03081672.

Sequence analysis
PB1, PB2, and PA sequences from isolates of human, swine and avian
IAV origin were downloaded from NCBI. 2004 sequences for IAV PB2
and 1630 sequences for IAV PB1 were downloaded on 09/15/2017.
2016 sequences for IAV PAweredownloaded on 10/01/2017. The cd-hit
was used to assign clusters of 99% sequence identity. Sequences of
each protein were aligned using MUSCLE (multiple sequence com-
parison by Log-Expectation).

Polymerase reconstitution assay
HEK293-T cells were cotransfected with 50ng of pCAGGs plasmids
expressing PA, PB2, PB1 (eitherWT ormutant) together with 200ng of
pCAGGs-NP plasmids and 25 ng of both pTK-Renilla plasmids and the
vRNA expressing pPolI-Firefly or the cRNA expressing pPolI-Firefly-Up-
Promoter plasmids using Lipofectamin™ 2000. 24 h post transfection
cells were lysed and relative polymerase activity was examined using
the Dual-Luciferase Reporter Assay (Promega) and reporter gene
expression was determined by measuring luminescence using a
MicroLumat Plus LB96V luminometer (Berthold Technologies).

Generation of recombinant viruses
For generating recombinant viruses co-cultivated HEK293-T cells and
MDCK-II cells were co-transfected with the eight pHW-2000 plasmids
derived from WSN (WT or mutant) using Lipofectamin™ 2000 (Invi-
trogen). After 6 h of incubation in Gibco™ Opti-MEM™ I Reduced
SerumMedium (ThermoFisher) at 37 °C the supernatant was removed
and cells were incubated with infection medium (DMEM supple-
mented with 0.7% BSA, 1% CaCl2/MgCl2, and TPCK-Trypsin) for 48 h at
37 °C. The virus rescue supernatant was plaque purified on MDCK-II
cells by plaque assays using Oxoid™ purified agar (Thermo Fisher).
Then, MDCK-II cells were infected with single plaques diluted in
infection PBS and incubated in infection medium for 48 h at 37 °C.
Final virus stockswereobtained by passaging this supernatant onceon
MDCK-II cells with a defined MOI of 0.001. To control for the respec-
tive mutation, MDCK-II cells were infected with an MOI of 2. After 6 h,
cells were lysed and RNA was extracted using the RNeasy Plus Mini Kit
(Qiagen). The respective gene segment was amplified using OneStep
RT-PCR Kit (Qiagen) and sequenced by Sanger sequencing (Eurofins
Genomics).

Viral genome sequencing
Following isolation of the viral RNA from virus supernatant using
QIAamp Viral RNA Mini Kit (Qiagen), each vRNA segment was reverse
transcribed using the SuperScriptTM III One-Step RT PCR System with
PlatinumTM Taq DNA polymerase (Invitrogen). In the following,
approximately 1 ng of the pooled PCR products was used as template
and introduced into library preparation with the Nextera XT DNA
Sample Preparation Kit (Illumina) and paired-end sequenced with the
2 × 250bp MiSeq Reagent Kit v2 (Illumina) with an average insert size
of 300 bp on a MiSeq instrument (Illumina). The protocols for library
preparation and sequencing were conducted as recommended by the
manufacturer (Illumina). After automatic demultiplexing on theMiSeq
instrument, the resulting fastq files weremapped onto the Influenza A
virus strain A/WSN/1933(H1N1) reference sequence (GenBank acces-
sionnumbers CY034132-CY034139) using theBWAmapping algorithm
implemented in the Ridom SeqSphere+ software (v7) with default
parameters. Subsequently, variant positions (detection via the
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software with default parameters) were checked manually and the
variant read frequencies and percentage of each nucleotide at the
respective position were determined.

Accumulation of viral segments during virus rescue
To assess the accumulation of viral segments during virus rescue with
limited virus propagation HEK293-T cells were cotransfected with the
eight pHW-2000 plasmid system derived from WSN using Lipofecta-
min™ 2000. 16 h and 48 h post transfection RNA was isolated using
TRIzol (ThermoFisher). Residual DNAwas digested using recombinant
DNase I (Roche). The RNA was reverse transcribed with oligo(dT) or
Uni12 primers using RevertAid H Minus Reverse Transcriptase
(Thermo Fisher Scientific). Briefly, primers and 500 ng RNA were
heated at 70 °C for 5min, immediately chilledon ice for 1min, and then
heated at 37 °C for 2min. Then, a mixture of First Strand Buffer (5x,
Invitrogen), dNTPs, and RevertAid H Minus Reverse Transcriptase
(Thermo Fisher Scientific) was added and incubated at 37 °C for
10min, followed by an incubation at 42 °C for 60min. Reverse tran-
scription was terminated by incubation at 85 °C for 5min. CT values
were measured in duplicates using a LightCycler® 480 II (Roche) and
the LightCycler® 480 Software (v1.5.1.62), normalized to the expres-
sion data of the housekeeping gene glyceraldehyde 3-phosphate
dehydrogenase (GADPH) and analyzed using the 2−ΔΔCT method73.

Quantification of viral RNA by strand-specific RT-PCR
HEK293-T cells were transfected with 250ng of pCAGGs plasmids
expressing WT or mutant PB2, PB1, and PA, 1000ng of NP and 100ng
of a pol-I drivenminigenome firefly reporter plasmid expressing vRNA,
using Lipofectamin™ 2000. 16 h p.t. RNA was isolated using TRIzol
(Thermo Fisher) and dissolved in RNase-free water. Residual DNA was
digested using recombinant DNase I (Roche). For reverse transcription
a mixture of tagged primers directed to either m-, c-, or vRNA of the
fireflyminigenome (designed according to Kawakami et al.58), oligo-dT
primers, and 250ng RNAwere heated at 65 °C for 10min, immediately
chilled on ice for 5min and then heated at 60 °C for 5min. Then, a
mixture of First Strand Buffer (5x, Invitrogen), 0.1M dithiothreitol,
dNTPs, andMaximaHMinus Reverse transcriptase (Thermo Scientific)
was added and incubated at 60 °C for 60min. Reverse transcription
was terminated by incubation at 85 °C for 5min. RT-PCR was carried
out using Brilliant III SYBR Green (Agilent) and primers directed to the
respective tags. CT values were measured in duplicates using a Light-
Cycler® 480 II (Roche) and the LightCycler® 480 Software (v1.5.1.62),
normalized to the expression data of the housekeeping GADPH and
analyzed using the 2-ΔΔCT method. Primer sequences are included
within Supplementary Data 1.

cRNP stabilization assay
HEK293-T cells were cotransfectedwith pCAGGs plasmids that express
for PB2, PA, and NP together with pCAGGs plasmids for either WT or
inactive PB1 (PB1a:D445A/D446A) harboring the indicated mutations
using Lipofectamin™ 2000. After maintaining the cells on Gibco™
Opti-MEM™ (Thermo Fisher) for 6 h, the medium was exchanged to
DMEM (supplementedwith 10% FBS and 1% P/S). 24 hp.t. the cells were
infectedwithWSNWTvirus at anMOI of 5 andmaintainedon infection
medium (supplemented with 100 µg/ml cycloheximide (CHX)). For
controls, PA was substituted with an empty vector, cells were mock
infected or CHX was omitted. 6 h p.i., RNA was isolated using TRIzol
(Thermo Fisher). For reverse transcription the protocol of strand-
specific qPCR (as described above) was applied using tagged oligo-dT
primers as well as primers for c- and vRNA of the NA segment. CT
valuesweremeasured in duplicates using a LightCycler® 480 II (Roche)
and the LightCycler® 480 Software (v1.5.1.62), normalized to the
expression data of the housekeeping gene GADPH and analyzed using
the 2 −ΔΔCT method. Primer sequences are included within Supple-
mentary Data 1.

Immunofluorescence analysis
A549 cells were seeded on glass coverslips and transfected with
pCAGGs plasmids expressing either WT or mutants of PB2, PB1 (in
combination with nHA-PA), and PA (in combination with nHA-PB1)74

using XtremeGeneTM (Roche) 24 h p.t., cells were fixed with 3.7% for-
maldehyde, permeabilizedwith 0.1% Triton X-100 and blockedwith 3%
BSA in PBS (blocking buffer). For immunostaining coverslips were
incubated with the primary antibodies rabbit anti-PB2 (GTX125926;
Genetex; 1:3000 in blocking buffer), rabbit anti-PB1 (GTX125923,
Genetex; 1:3000 in blocking buffer), rabbit anti-PA (GTX125932, Gen-
etex; 1:3000 in blocking buffer), rat anti-HA-Tag (clone 3F10, Roche;
1:500 in blocking buffer), overnight at 4 °C and with secondary anti-
bodies anti-rabbit Alexa Fluor 488 (Invitrogen; 1:2000 in blocking
buffer) or anti-rabbit Alexa Fluor 568 (Invitrogen; 1:2000 in blocking
buffer) and anti-rat Alexa Fluor 488 (Invitrogen; 1:2000 in blocking
buffer) for 1 h at room temperature. Cell nuclei were stained with DAPI
(Thermo Fisher Scientific) for 20min at room temperature. Coverslips
were mounted using Mounting Medium S3023 (Dako Omnis) and
examinedusing anLSM-800Airyscan confocalmicroscope (Carl Zeiss)
and ZEN software (v2.6).

Hemagglutination inhibition assay
To quantify the total amount of virus particles after infection, the
volume of the assessed supernatants was adjusted to a final volume of
50 µl based on the PFU titer using infection PBS. The virus samples
were serially diluted (1:2) in infection PBS until dilution 1:1024 in a V-
bottom-shaped microtiter plate. Then, 50 µl of fresh human ery-
throcytes (blood type: 0) was added to each well, mixed with the virus
dilutions, and incubated for 1 h on 4 °C.

Affinity precipitation of NP-polymerase complexes
HEK293-T cells were transfected with pCAGGs plasmids encoding for
Strep-tagged NP (nStrep-NP) fusion protein, HA-tagged PA (nHA-PA),
PB2, PB1 (WT or mutant), and a pol-I driven minigenome firefly (FF)
reporter plasmid using Lipofectamin® 2000. For negative controls,
nStrep-NP, PB2, and nHA-PA plasmids were substituted with an empty
vector. 24 h p.t. the cells were lysed using ice-cold Co-IP lysis buffer
(50mM TRIS (pH 8.0), 150mM NaCl, 5mM EDTA,1% (v/v) Igepal CA-
630, protease inhibitor cocktail), as described before75. Clarified cell
lysates were adjusted to equal amounts using Pierce™ BCA assay
(Thermo Fisher) and precipitated using Strep-Tactin sepharose beads
(IBA Lifescience) for 2 h at 4 °C. Beads werewashed 5 times using Co-IP
washing buffer (50mM TRIS (pH 8.0), 500mM NaCl, 5mM EDTA, 1%
(v/v) Igepal CA-630). Precipitated proteins were eluted in Laemmli
buffer (1X) and subjected to SDS-PAGE and western blot. Co-
precipitated proteins were detected using the primary antibodies
rabbit anti-NP (GTX125989, Genetex; 1:1000 in blocking buffer), rat
anti-HA-Tag (clone: 3F10, Roche; 1:5000 in blocking buffer), rabbit
anti-PB1 (GTX125923, Genetex; 1:1000 in blocking buffer), rabbit anti-
PB2 (GTX125926, Genetex; 1:1000 in blocking buffer) and mouse anti-
Tubulin (clone DM1A, Sigma-Aldrich; 1:1000 in blocking buffer) and
the secondary antibodies anti-Rabbit IgG-800CW (LI-COR; 1:10,000 in
blockingbuffer), anti-Rat IgG-HRP (Cell signalingTechnologies; 1:3000
in blocking buffer) and anti-Mouse IgG-680RD (LI-COR; 1:10,000 in
blocking buffer). Uncropped blots are provided in a source data file.

Dimerization of the viral polymerase
HEK293-T cells were transfected with pCAGGs plasmids expressing
nStrep-PA, nHA-PA, WT, or mutant PB1 and PB2, using Lipofectamin™
2000 (Invitrogen). For negative controls nStrep-PA, nHA-PA, and PB2
plasmids were substituted with an empty vector. After 24 h cells were
lysed in 400 µl of TRIS lysis buffer (50mM TRIS-HCl (pH 7.6), 200mM
NaCl, 25% glycerol, 0.5% Igepal CA-630, 1mM DTT, protease inhibitor
cocktail) for 30min at 4 °C, as described before12. Clarified cell lysates
were adjusted to equal amounts using Pierce™ BCA assay (Thermo
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Fisher) and precipitated using Strep-Tactin sepharose beads (IBA Life-
science) at 4 °C for 16 h. Beads were washed 5 times with a washing
buffer (10mM TRIS-HCl (pH 7.6), 150mM NaCl, 10% glycerol, 0.1% Ige-
pal CA-630) and proteins were eluted using 1x Laemmli buffer. Pre-
cipitated proteins were detected by western blot using the primary
antibodies rat anti-HA-Tag (clone: 3F10, Roche; 1:500 in blocking buf-
fer),mouse anti-Strep-Tag (cloneGT661, Sigma-Aldrich), rabbit anti-PB1
(GTX125923, Genetex; 1:1000 in blocking buffer), rabbit anti-PB2
(GTX125926, Genetex; 1:1000 in blocking buffer) and mouse anti-
Tubulin (clone DM1A, Sigma-Aldrich; 1:1000 in blocking buffer) and the
secondary antibodies, anti-Rat IgG-800CW (LI-COR; 1:10,000 in block-
ing buffer), anti-Mouse IgG-HRP (Cell signaling Technologies; 1:3000 in
blocking buffer), and anti-Rabbit IgG-680RD (LI-COR; 1:10,000 in
blocking buffer). Uncropped blots are provided in a source data file.

Homology modeling of WSN polymerase structures
For bothmodels of IAVWSN polymerase bound to vRNA as well as the
IAV WSN polymerase model bound to cRNA comparative homology
modeling was performed using MODELLER (v9.19). For the vRNA-
bound polymerase model the crystal structure of the heterotrimeric
Bat Influenza A polymerase bound to the vRNA promoter (PDB: 4WSB)
served as a template, for the cRNA-bound polymerase model the
crystal structure of Influenza B virus in complex with 5′ cRNA (PDB:
5EPI) served as a template. Crystal structure sequences were aligned
with the polymerase subunit sequences ofWSN ((i) A/WSN/1933(H1N1)
PA (GenBank: CY034137); (ii) A/WSN/1933(H1N1) PB1 (GenBank:
CY034138 and (iii) A/WSN/1933(H1N1) PB2 (GenBank: CY034139) and
100 homology models (including loop models) were created of both
conformation states based on these WSN sequences. The RNA was
transferred as a rigid body from the respective original structure. A
‘slow’optimizationprotocol and ‘slow’molecular dynamics refinement
was further applied. The linker regions were modeled using “loop
model” without imposing any restraints on its structure. The best
modelswere selectedbasedon a normalized energy score. Themodels
were scored using the normalized DOPE score available inMODELLER.
Subsequently, superposition models were prepared by VMD (v1.9.3)
and figures were generated using PyMOL (v2.3.0, The PyMOL Mole-
cular Graphics System, Schrodinger LLC) or ChimeraX (v1.3.)76,77.

Molecular dynamic simulations
The homology model of the three-dimensional structure of the WSN
polymerase complex bound to cRNA was used for further structural
analyses. The residue PB1-K578 was mutated to K578A or K578R lead-
ing to three independent models for further simulations. Each model
was prepared and energy minimized for local simulations by initi-
alization procedure of YASARA structure (v21.6.2 and v21.8.27)78 using
AMBER1479 force field including structure cleaning and hydrogen
network optimization80,81, generation of a water shell (TIP3P) around
the protein model as well as prediction of pKA values at the chosen pH
of 7.482. After short equilibration simulation (~5 ns, AMBER14) of the
whole protein, the models were subjected to 100ns local molecular
dynamic simulations. Since previous results clearly identified the PB1-
PB2 loop-interface as the crucial region for altered behavior of K578R
and K578A, molecular dynamic (MD) simulations were conducted to
evaluate the interplay between these two domains. To achieve a
simulation time sufficient for interplay analyses, local MD simulations
were performed, which was only possible due to the strong separation
of single functional domains in the protein complex. Especially the
PB1-PB2 loop-interface can be identified as an independent domain of
the complex, that encompasses a spatial dimension equal to a 45 Å-
sphere. Therefore, atoms in a 45 Å-sphere around residue PB1-K578
including only protein residues were set mobile, while all other atoms
were immobilized. Further, the size of the simulation box was limited
to 92.95 × 92.95 × 92.95 Å, which is sufficient to include a fully mobile
water shell, all mobile protein residues as well as enough immobilized

protein residues to ensure stability and integrity of the protein. On the
other hand, this procedure reduces the possibility of extensive MD
artefact formation due to the presence of large amounts of immobi-
lized residues. Using this approach, we optimized the needed calcu-
lation time and computational resources leading to a simulation time
of 100ns for each replicate, which was not achievable in an all-atoms
mobile simulation for the complete protein. Local MD simulations
were conducted using the following settings: AMBER15IPQ force
field83, particle-mesh Ewald/Poisson-Boltzmann cutoff 8 Å, periodic
simulation cell boundary, long range coulomb forces, 0.9% NaCl,
pH = 7.4, water density 0.997 (TIP3P), pressure of 1 atm and a simula-
tion temperature of 298K. Complete simulation including tempera-
ture and pressure settings was controlled by a NPT ensemble and
atomic motions were integrated with a multiple timestep of 2 × 1.25 fs
for bonded interactions and 2.5 fs for non-bonded interactions as
previously described84. Local simulations were replicated to n = 4 for
all conditions (WT, K578R, K578A). Each simulation was documented
by simulation snapshots every 0.1 ns leading to a total number of 4000
analyzable snapshots for each condition.

The calculation of the RMSF is performed in three automated
steps. First, themean position ( �Pij) of the distinct atom (i) is calculated
using atom position vector (P) with j = 3 components for the x, y, and z
coordinates of every single snapshot (k) from the 100ns simulation
(N = 1000). In the second step, the root mean square fluctuation is
calculated by the following equation:

RMSFi =
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Both steps are performed for all atoms individually. In the final
step, theRMSF for each residue is calculatedby the averageRMSFof its
constituting atoms.

Data analysis and statistics
Quantitative data were analyzed and plotted using GraphPad PRISM™
(v7.04) and Origin 2022 (v9.9). Immune fluorescence images were
analyzed using ImageJ (v1.53c). Intensities of immuno-stained western
blots were quantified using Image Studio 5.2.5 (Li-COR Biosciences).
Biochemistry experiments were performed at least in triplicate unless
otherwise stated, and representative gels are shown. Details of statis-
tical tests and replicates are provided in the figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data generated in this study have
been deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD030816, https://doi.
org/10.6019/PXD030816 (http://proteomecentral.proteomexchange.
org/cgi/GetDataset?ID=PXD030816). MD simulations were con-
ducted using the commercially available software YASARA dynamics
(v21.6.2 and v21.8.27) and the implemented macros “md_run.mcr” and
“md_analyze.mcr”. Source codeofYASARAmacros canbedownloaded
from www.yasara.org. Raw simulation data encompassing around 40
gigabytes are available from the corresponding author. The study
made use of the publicly available datasets: NCBI: PB1, PB2, and PA
sequences from isolates of human, swine, and avian IAV origin were
downloaded on 09/15/2017 (PB2, PB1) and 10/01/2017 (PA). PDB
entries: 4WSB, 5EPI, 6QNW, 7NHA, 4WSA, 5D9A, 6T0N, 6TW1, 6T0S,
6T0V, 6SZU, 6T2C, 6T0U, and 2VQZ. GenBank: accession numbers
CY034132, CY034133, CY034134, CY034135, CY034136, CY034137,
CY034138, and CY034139. UniprotKB database (UP000000834.fasta
version from 10/2016; UP000005640_9606.fasta version from 04/
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2019). Biochemical data generated in this study are provided in the
Source data file. Source data are provided with this paper.
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