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Abstract
Background The goal of this study was to determine whether an awake prone position (aPP) reduces the
global inhomogeneity (GI) index of ventilation measured by electrical impedance tomography (EIT) in
COVID-19 patients with acute respiratory failure (ARF).
Methods This prospective crossover study included COVID-19 patients with COVID-19 and ARF defined
by arterial oxygen tension:inspiratory oxygen fraction (PaO2

:FIO2
) of 100–300 mmHg. After baseline

evaluation and 30-min EIT recording in the supine position (SP), patients were randomised into one of two
sequences: SP-aPP or aPP-SP. At the end of each 2-h step, oxygenation, respiratory rate, Borg scale and
30-min EIT were recorded.
Results 10 patients were randomised in each group. The GI index did not change in the SP-aPP group
(baseline 74±20%, end of SP 78±23% and end of aPP 72±20%, p=0.85) or in the aPP-SP group (baseline
59±14%, end of aPP 59±15% and end of SP 54±13%, p=0.67). In the whole cohort, PaO2

:FIO2
increased

from 133±44 mmHg at baseline to 183±66 mmHg in aPP (p=0.003) and decreased to 129±49 mmHg in
SP (p=0.03).
Conclusion In spontaneously breathing nonintubated COVID-19 patients with ARF, aPP was not
associated with a decrease of lung ventilation inhomogeneity assessed by EIT, despite an improvement in
oxygenation.

Introduction
Acute respiratory failure (ARF) related to COVID-19 pneumonia is associated with severe impairment in
oxygenation, and initially, there is only moderate evidence of respiratory distress [1]. The pathophysiology
of underlying hypoxaemia includes intrapulmonary shunt, ventilation to perfusion (V′/Q′) mismatch,
pulmonary artery embolism and microvascular coagulation despite relatively preserved lung-gas volumes at
the onset of the disease [2, 3]. V′/Q′ mismatch is the result of ventilation and/or perfusion inhomogeneity [4].
In intubated and mechanically ventilated patients, a prone position (PP) improves oxygenation notably
through redistribution of the tidal volume towards the dorsal region and by increasing V′/Q′ matching.
Therefore, a prolonged repeated PP is recommended for moderate-to-severe acute respiratory distress
syndrome (ARDS) [5] and decreases mortality.
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Preliminary studies have evaluated the feasibility of an awake prone position (aPP) for COVID-19 patients
admitted to the intensive care unit (ICU) [6, 7], and a randomised meta-trial combing aPP and high-flow
O2 nasal cannula has shown a decrease in the need for intubation [8]. Electrical impedance tomography
(EIT) is a bedside, noninvasive, functional method for monitoring lung ventilation and measuring
variations in chest impedance with a thoracic belt [9]. For a mechanically ventilated patient, EIT can be
used to evaluate lung recruitment, which is assessed by positive end-expiratory pressure (PEEP) [10, 11],
and to personalise ventilation [12].

EIT has been investigated in ventilated patients with COVID-19 [13], but investigations on nonintubated and
spontaneously breathing patients are scarce [14, 15]. Therefore, the main objective of the study was to
evaluate lung inhomogeneity assessed by EIT in COVID-19 patients with ARF in a supine position (SP) and
PP. The secondary objectives were to compare respiratory function and derived EIT indices in both positions.

Materials and methods
Study design and population
We conducted this prospective crossover cohort study in a tertiary university hospital in Marseille, France.
We screened all patients >18 years old who were admitted to the ICU with COVID-19 confirmed by reverse
transcriptase PCR (RT-PCR). We included patients who were awake and spontaneously breathing with ARF
and hypoxaemia (arterial oxygen tension (PaO2

):inspiratory oxygen fraction (FIO2
) 100–300 mmHg)

requiring O2 supply. Patients were not included if they had evidence of respiratory distress with a high
probability of intubation within the next hours (respiratory frequency >35 cycles·min−1, respiratory muscles
fatigue, agitation or confusion) or a pacemaker (a contraindication for EIT monitoring). Pregnant or
breastfeeding women and patients deprived of liberty or lacking health insurance were also not included.

Study approval was obtained according to French legislation (ethics committee, comité de protection des
personnes, Ile de France 1). Each subject gave written informed consent. The study was registered as
NCT04632602 in the clinical trials database (https://clinicaltrials.gov/).

Baseline assessment and data collection
The following parameters were recorded in the electronic case report form of each subject: age, sex, body
mass index, comorbidities, dates of first COVID-19 symptoms, RT-PCR positivity, and hospital and ICU
admission. Baseline respiratory parameters included oxygen saturation measured by pulse oximetry (SpO2

),
respiratory frequency, O2 supply, arterial blood gas (ABG), PaO2

:FIO2
and Borg scale ranking. PaO2

:FIO2

was calculated with FIO2
for patients who received O2 with a high-flow nasal cannula or estimated for

those who received O2 through non-rebreathing masks with the following formula [16]:

FIO2
=21%+oxygen flow rate in L·min−1×3

Thoracic computed tomography (CT) scan was performed as routine exam at ICU admission, and findings
were collected. The following clinical events and outcomes were also recorded: intubation, duration of
mechanical ventilation, and ICU and hospital mortality.

Design of the study
Patients were randomised to undergo one of two mutually exclusive sequences: SP and then aPP (SP-aPP
group) or aPP and then SP (aPP-SP group). Each step lasted 2 h with a washout period of 30 min between
them. A 30-min EIT recording was performed at baseline and at the end of each step. SpO2

, respiratory
frequency, O2 supply, ABG, PaO2

:FIO2
and Borg scale ranking were also assessed at the end of each step.

The study design is provided in figure 1.

EIT analysis
EIT monitoring was performed using a Pulmo Vista 500® monitor (Dräger, Lübeck, Germany), which was
connected to a belt with 16 electrodes placed around the patient’s chest at the fifth or sixth intercostal
space. EIT measurements were generated by passing a weak alternating electrical current through the belt.
Regional variations in impedance (ΔZ) during ventilation were used to map the tidal volume distribution in
the lungs. The EIT terms used have been described previously [9].

Our main EIT parameter of interest was the global inhomogeneity (GI) index [17]. Briefly, the GI index is
the difference in impedances between end-inspiration and end-expiration and the variations in its pixel
values within a predefined lung area. The calculation of GI is based on the difference between each pixel
value and the median value of all pixels. These values are normalised by the sum of impedance values
within the lung area:
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GI=Σ (pixel differences from median)/Σ(pixels), where Σ(pixels)=Σ (ΔZj), Σ (pixel differences from
median)=Σ (ΔZj – ΔZ median), ΔZj is the fEIT image value in pixel j, ΔZ median is the median image
value, and all sums are calculated for all pixels in the image.

Additional EIT indices studied were the surface of ventilation (SoV) and the centre of ventilation (CoV).
SoV represents the number of pixels with variation of impedance. CoV is a measure of anteroposterior
distribution of tidal volume and computed by the following formula:

CoV (%)=(height weighted pixel sum)/(pixel sum)

CoV yields a value between 0 and 100%, where 0% indicates all image amplitude at the top, and 100%
indicates all amplitude at the bottom of the image. As the centre of the distribution of ventilation moves
dorsally, CoV increases [9]. All EIT recordings were analysed offline by two operators (T. Brunelle and
C. Guervilly) who were blinded to the sequence allocation.

Statistical analysis
The methodology of analysis complies with the Consolidated Standards of Reporting Trials Statement
(CONSORT, http: //www.consort-statement.org/consort-statement/). The statistical analysis and figures
were generated using SPSS Version 20 (IBM SPSS Inc., Chicago, IL, USA). We postulated that PP would
be associated with a decrease in the GI index of 20% (with a standard deviation of 20%). With a power of
80% and α risk of 5%, we needed to include 10 patients in each group. A crossover design was chosen to
avoid the risk of important inter-individual heterogeneity and was sufficient with a global cohort of 10
patients.

A washout period of 30 min was used to decrease the risk of sequence effect (carryover effect). However,
in case of a sequence effect, a higher number of anticipated patients (10 patients for each sequence)
counteracted this risk of loss of power. In case of no association between the sequence and the position

RR, ABG, Borg ranking scale,

30 min EIT recording

RR, ABG, Borg ranking scale

30 min EIT recording

RR, ABG, Borg ranking scale

30 min EIT recording

Step 1=2 h in prone

position

Step 2=2 h in supine

position

Step 2 =2 h in prone

position

PP-SP group

SP-PP group

Washout period of 30 min

in supine position

Washout period of 30 min

in prone position

Step 1=2 h in supine

position

Baseline

=2 h in supine
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FIGURE 1 Study design. PP: prone position; SP: supine position; RR: respiratory rate; ABG: arterial blood gas; EIT: electrical impedance
tomography.
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(aPP and SP), the effect of the position was tested with an analysis of covariance (ANCOVA). Then, a
paired t-test for repeated measurements was performed between each time point (baseline and end of step 1,
end of step 1 and end of step 2, baseline and end of step 2). We also tested the correlation between
PaO2

:FIO2
and GI at each time point with Pearson’s test. A p-value <0.05 was considered as significant.

Results
A flow chart of the study is shown in figure 2. Initially, 22 patients gave their consent and were included
in the study. One patient was rapidly intubated after consent, and another withdrew his consent; therefore,
data were available for 20 patients. Table 1 shows the demographics, medical history, gravity scores,
thoracic CT scan findings, respiratory function and support at ICU admission and clinical outcomes of the
studied population.

Three patients were intubated during their ICU stay, and one of them died. The overall ICU and hospital
mortality rate was 5%. 10 patients were randomised into each group (SP-aPP and aPP-SP). One patient in
the SP-aPP group could not tolerate aPP, so all time points were available for only nine patients in this
group. An example of EIT measurements for one patient in each group is provided in figure 3. Respiratory
function at baseline was not different between the two groups. Mean respiratory frequency was
28±7 cycles·min−1 in the aPP-SP group and 29±9 cycles·min−1 in the SP-aPP group (p=0.74). Mean
PaO2

:FIO2
was 135±25 mmHg in the aPP-SP group and 152±60 mmHg in the SP-aPP group (p=0.55).

Borg scale ranking was 4±2 inthe aPP-SP group and 6±3 in theSP-aPP group (p=0.14).

EIT analysis
Concerning the GI index, we did not find an association between sequence and position (p=0.053). We
also found no significant change in GI index from the comparison of each time point in the SP-aPP group
(baseline 74±20%, end of SP 78±23% and end of aPP 72±20%, p=0.85) and in the aPP-SP group

63 patients admitted for COVID-19 pneumonia

between 1 September and 31 October 2020

22 patients with informed consent

20 patients included in the analysis

Withdraw consent (n=1)

Emergency intubation (n=1)

Excluded:

Mechanically ventilated within 24 h (n=23)

PaO2
:FIO2

≤100 mmHg (n=12)

Refused to participate (n=3)

Protected by law (n=2)

Pacemaker (n=1)

FIGURE 2 Flow diagram of the study. PaO2
:FIO2

: arterial oxygen tension:inspiratory oxygen fraction.
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(baseline 59±14%, end of aPP 59±15% and end of SP 54±13%, p=0.67) (figure 4). In the whole cohort,
the CoV did not significantly change during the study (49±7 at baseline, 49±7 during aPP, and 47±7
during SP, p=0.62). Furthermore, the surface of ventilation did not significantly change during the study
(330±78 at baseline, 328±71 during aPP and 332±68 during SP, p=0.98).

Oxygenation and clinical respiratory parameters
In the whole cohort, PaO2

:FIO2
increased from 133±44 mmHg at baseline to 183±66 mmHg in aPP

(p=0.003) and decreased to 129±49 mmHg in SP (p=0.03). PaO2
:FIO2

in aPP increased in 18 out of 19
patients, and the mean increase was 41±49%. The respiratory rate significantly decreased in aPP compared
with baseline (22±5 and 27±6 cycles·min−1, p=0.002, respectively) but was not significantly different from
that in SP (22±5 and 23±6 cycles·min−1, p=0.68, respectively). The Borg scale ranking did not
significantly change during the study and remained relatively low (2.4±2.2 at baseline, 1.7±1.6 in aPP
(p=0.13), and 2.1±2.1 in SP; p=0.46). PaO2

:FIO2
and the GI index were not correlated at any time point of

the study (figure 5).

TABLE 1 Demographics, gravity scores, respiratory function and support at ICU admission and outcomes

Patients n 20
Age years, mean±SD 60±15
Female sex, n (%) 4 (20)
Body mass index, mean±SD 27±3
Medical history, n (%)
Hypertension 7 (35)
Diabetes 8 (40)
Ischaemic cardiomyopathy 3 (15)
Stroke 1 (5)
Chronic lung disease 1 (5)
Solid organ cancer, haematological malignancy 3 (15)
Chronic renal failure 0 (0)

Simplified acute physiology score 2, mean±SD 31±12
Sepsis organ failure assessment score, mean±SD 3±2
Delay between onset of symptoms to ICU admission, days, mean±SD 7±4
Respiratory function at ICU admission, mean±SD
Transcutaneous peripheral saturation % 93±4
Respiratory rate cycles per minute 29±8
Borg scale ranking 3±2
Arterial pH 7.49±0.03
PaCO2

mmHg 33±4
PaO2

:FIO2
mmHg 146±39

Arterial oxygen saturation % 96±2
Arterial lactate mmol·L−1 1.5±0.6

CT scan characteristics at ICU admission, n (%)
Diffuse and bilateral pattern 20 (100)
Ground-glass opacities
<25% 4 (20)
25–50% 9 (45)
>75% 7 (35)

Consolidation 5 (25)
Crazy paving 7 (35)

Respiratory support at ICU admission
O2 non-rebreathing mask, n (%) 4 (20)
O2 L·min−1, mean±SD 12±2
High-flow nasal cannula, n (%) 16 (80)
O2 flow L·min−1, mean±SD 47±7
O2 inspired fraction %, mean±SD 59±17

Outcomes
Intubation during ICU stay, n (%) 3 (15)
Duration of mechanical ventilation days, mean±SD 15±6
ICU mortality, n (%) 1 (5)
Hospital mortality, n (%) 1 (5)

ICU: intensive care unit; SD: standard deviation; PaCO2
: arterial carbon dioxide tension; PaO2

:FIO2
: arterial oxygen

tension:inspiratory oxygen fraction; CT: computed tomography.
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Discussion
This prospective crossover study was performed with awake, nonintubated, spontaneously breathing
COVID-19 patients with ARF. PP did not decrease ventilation inhomogeneity assessed by EIT, it did not
modify the centre or surface of ventilation assessed by EIT, it increased oxygenation and decreased
respiratory rate, and it did not modify the dyspnoea Borg score. aPP has widely been adopted by clinicians
since the early beginning of the pandemic in both ICU settings and general wards. Numerous studies have
evaluated its feasibility and clinical effects [6,7]. However, its potential benefit in critically ill COVID-19
patients is still being questioned in regard to preventing intubation [18, 19] or decreasing mortality [8].

The physiological effects of aPP in spontaneously breathing, nonintubated COVID-19 patients have not yet
been fully described. In intubated and mechanically ventilated patients with non-COVID ARDS,
improvement in oxygenation in PP is mainly due to redistribution of tidal volume towards dorsal regions
and therefore where perfusion is still prominent and therefore decreasing V′/Q′ mismatch [20]. DALLA

CORTE et al. [21] showed that PP was associated with recruitment of dorsal regions and increased lung
ventilation homogeneity in mechanically ventilated and paralysed intubated ARDS patients.

Despite improvement in oxygenation in both groups, DOS SANTOS ROCHA et al. [15] found no redistribution
of regional ventilation induced by aPP in COVID-19-related ARDS patients who were noninvasively
ventilated (NIV), whereas PP of invasively ventilated patients led to redistribution of regional ventilation
from the ventral to the dorsal lung areas. Therefore, since regional aeration was not significantly modified
by aPP in NIV patients, they hypothesised that the benefit in oxygenation was predominantly explained by
the redistribution of pulmonary blood flow and optimisation of ventilation-perfusion matching rather than
alveolar recruitment or aeration change.

Additionally, we hypothesise that patients included at a relatively early state of the disease had a normal
elastance (“phenotype L”) according to GATTINONI et al. [22]. We may reasonably consider that patients at
a later stage of the disease with high elastance (“phenotype H”) could have a redistribution of ventilation
and a decrease of GI during aPP. Previous studies have investigated lung perfusion with dual-energy or
single-photon emission computed tomography (SPECT)/positron emission tomography (PET) CT scan in
COVID-19 patients. They found that perfusion preferentially occurred in areas of non-ventilated inflamed
lungs, suggesting complete loss of hypoxic vasoconstriction [23] aside from large perfusion defects that
may or may not be related to pulmonary embolisms [24]. Also, in 10 intubated and mechanically
ventilated COVID-19 ARDS patients, MAURI et al. [25] found a decrease of the GI index from 70±11% to
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59±10% when increasing PEEP from 5 to 15 cmH2O. Seven of the patients were investigated using a
modified EIT device allowing pulmonary perfusion distribution. The authors found a median V′/Q′
mismatch of 34% (interquartile range 32–45%).

The improvement in oxygenation that we observed during aPP without any variation of EIT indices
suggests redistribution of lung perfusion towards ventral regions. To support this hypothesis, we performed
dual-energy CT iodine mapping on one of the included patients, who was awake and breathing
spontaneously. This was done first in SP and then after 4 h in aPP. We observed a redistribution of lung
perfusion towards the ventral part of the lung (dependent lung in the PP) with no change in lung
condensations/atelectasis topography (still prominent in dorsal regions). In the meantime, we observed a
significant improvement in respiratory function (supplementary Appendix A).

Other studies have investigated the aeration response to aPP in patients with ARF related to COVID-19
using ultrasound scores [26–29]. Consistent results were observed with an improvement in aeration of the
dorsal regions of the lungs during and after aPP, particularly in patients who benefited from the
combination of aPP and high-flow O2 nasal cannula [26, 28] or noninvasive ventilation [27]. Interestingly,
in those studies, the duration of aPP was longer (range 3 to 8 h) compared with those investigated in our
study (2 h) and could at least partly explain the difference from our results, besides the different
monitoring used. The relatively low Borg score ranking and respiratory rates contrast with the moderate
hypoxaemia that we observed and support the concept of “silent” or “happy” hypoxaemia reported in
COVID-19 disease, for which mechanisms have not been totally elucidated [30].

Our study suffers from some limitations. Besides the small sample size, we were not able to measure all
EIT indices, particularly those related to pulmonary recruitment and atelectasis. These indices are only
available when patients are ventilated on positive pressure with a decremental PEEP trial. We also cannot
rule out redistribution of ventilation with longer periods of PP.

We could not investigate pulmonary perfusion with our EIT device. Indeed, this requires a specific device,
and a currently experimental technique is not widespread. It also requires a saline injection via a central
line during breath-holds of several seconds, which was not applicable in our clinical setting. Finally, our
results cannot be generalised to patients with more severe disease (PaO2

:FIO2
<100 mmHg).

Conclusion
In spontaneously breathing nonintubated COVID-19 patients with ARF, aPP is not associated with a
decrease of lung ventilation inhomogeneity assessed by EIT, despite an improvement in oxygenation.
Further studies investigating lung perfusion or intrapulmonary shunting are warranted to explain the
mechanism or potential clinical benefits.
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