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Abstract

Numerous genes for monogenic kidney diseases with classical patterns of inheritance as well 

as for complex kidney diseases that manifest in combination with environmental factors have 

been discovered. Genetic findings are increasingly used to inform clinical management of 

nephropathies, and have led to improved diagnostics, disease surveillance, choice of therapy, 

and family counseling. All of these rely on accurate interpretation of genetic data, which 

can be outpaced by current rates of data collection. In March of 2021, KDIGO (Kidney 

Diseases: Improving Global Outcomes) held a Controversies Conference on Genetics in Chronic 
Kidney Disease (CKD) to review the current state of understanding of monogenic and complex 

(polygenic) kidney diseases, processes for applying genetic findings in clinical medicine, and 

using genomics for defining and stratifying CKD. Given the important contribution of genetic 

variants to CKD, practitioners with CKD patients are advised to “think genetic,” which 

specifically involves obtaining a family history, detailed information on age of CKD onset, 

clinical examination for extra-renal symptoms, and considering genetic testing. To improve 

implementation of genetics in nephrology, meeting participants advise developing an advanced 

training or subspecialty track for nephrologists, guidelines for testing and treatment, and 

education of patients, students, and practitioners. Key areas of future research, including clinical 

interpretation of genome variation, electronic phenotyping, global representation, kidney-specific 

molecular data, polygenic scores, translational epidemiology, and open data resources, were also 

identified.
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INTRODUCTION

Chronic kidney disease (CKD) affects approximately 10% of the global adult population.1 

Multiple genetic and environmental risk factors contribute to kidney diseases, making it 

difficult to identify the underlying pathophysiologic mechanisms. However, the advent 

of high-throughput genotyping and massively parallel sequencing combined with the 

availability of large datasets of genomic and health information have led to rapid advances in 

our understanding of the genetic basis of kidney function and disease.

To date, more than 600 genes have been implicated in monogenic kidney diseases,2 and 

known single-gene disorders account for up to 50% of non-diabetic CKD in pediatric 

cohorts and 30% in adult cohorts.3-10 In addition, genetic variation plays an important 

role for kidney function in the normal range,11-16 and common genetic variants account 

for approximately 20% of the estimated genetic heritability of estimated glomerular 

filtration rate (eGFR).13 Common genetic variants have also been shown to contribute 

to disorders such as IgA nephropathy (IgAN),17, 18 membranous nephropathy,19, 20 or 

nephrotic syndrome.21-23 Hence the pathogenesis model for many kidney diseases has 

expanded to include multiple genetic and environmental factors that together contribute to 

the pathology, commonly referred to as “complex disease.”

Genetic findings are increasingly used to inform clinical management of many 

nephropathies, enabling more precise diagnostics, targeted disease surveillance, and better-

informed choices of therapy and family counseling.24 Clinical management relies on 

accurate interpretation of genomic data, a labor intensive process that can be outpaced by 

speed of discovery.25 To realize the promises of genomic medicine for kidney disease, many 

technical, logistical, ethical, and scientific questions must be addressed 24 In March of 2021, 

KDIGO (Kidney Diseases: Improving Global Outcomes) held a Controversies Conferences 

on Genetic in CKD to review the current state of understanding of monogenic and complex 

kidney diseases, processes for applying genetic findings in clinical medicine, and use of 

genomics for defining and stratifying CKD. Participants identified areas of consensus, gaps 

in knowledge, and priorities for research (Table 1).

DEFINITIONS AND EPIDEMIOLOGY OF GENETIC KIDNEY DISEASES

Familial aggregation and substantial heritability of CKD is well described across the world. 

Recent large-scale analyses of electronic medical records estimated observational heritability 

of CKD to be in the range of 25-44%, with higher estimates for patients of African 

ancestry.26 These estimates are generally consistent with traditional family-based heritability 

studies of CKD and glomerular filtration rate.27-29 Relatively high heritability of CKD is 

likely attributable to both monogenic causes as well as complex or polygenic factors.

Monogenic (also termed “Mendelian”) CKD generally refers to diseases caused by rare, 

pathogenic variants in a single gene (Table 2); there is a strong genotype-to-phenotype 

relationship, and environmental factors have limited influence. Oligogenic disorders are 

determined by rare variants in a few genes. Complex or polygenic diseases lack simple 

patterns of inheritance (e.g., dominant, recessive, or sex-linked) and instead are influenced 
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by the aggregate effect of many common genetic variants in multiple genomic regions 

as well as environmental factors.30 Such aggregate effects of common variants (or single 

nucleotide polymorphisms, SNPs) can be quantified by SNP-based heritability, which has 

been estimated for various types of kidney disorders to range from 14% for renal cancer 

among individuals of European ancestry to 43% for membranous nephropathy among 

individuals of East Asian ancestry. The proportions of variance explained by known loci 

of these diseases are smaller, ranging from <1% for urinary albumin-to-creatinine ratio 

to 32% for membranous nephropathy among individuals of East Asian ancestry (Figure 

1).13, 14, 17, 19, 31 However, common genetic factors may also influence the age of 

onset, severity, rate of progression, and associated extra-renal complications of monogenic 

diseases, which often have variable expression.32, 33 In addition to CKD attributed to 

specific etiologies, genetic studies also use phenotypic readouts such as measures of kidney 

function or damage (e.g., eGFR, albuminuria), kidney histology classification, or molecular 

injury markers to define CKD (Table 3).34, 35

Monogenic variants account for approximately 30-50% of cases of CKD stages G3b-

G5 in children3-5, 36, 37 and 10-30% in adults.3-10 Diagnostic yields differ between 

12-65% among studies, with selection bias likely contributing to the variability. However, 

prevalence estimations for genetic diseases are likely to change over time as genetics-

first approaches to diagnosis become more common (where sequence data is obtained 

first, followed by characterization of associated phenotypes).38 Many common variants 

associated with specific kidney function measures or complex kidney diseases have 

been identified through genome-wide association studies (GWAS) and exome or genome 

sequencing studies of large population samples—usually of European or East Asian ancestry 

(Figure 2).13, 14, 17, 19, 31, 39-41 The largest number of loci, genomic regions containing 

associated SNPs, were discovered for the continuous kidney function measure eGFR 

with studies based on data from >1 million individuals reporting more than 250 such 

loci.12-14, 17, 19, 22, 23, 31, 40, 42-66

Although distinguishing monogenic versus polygenic diseases provides a useful practical 

framework, genetic risk variants for kidney diseases occur on a spectrum from rare variants 

with large effects to common variants with small effects, and many diseases do not fit 

neatly into either category. For example, APOL1 (apolipoprotein L1)-associated kidney risk 

variants are common among some populations of African ancestry and impart a relatively 

high risk under a recessive mode of inheritance, but these variants are not considered 

monogenic. The magnitude of the risk associated with APOL1 variants varies significantly 

for different forms of nephropathy. For example, black South Africans with untreated HIV 

and two APOL1 risk alleles have been reported to have a more than 80-fold increased risk of 

developing HIV-associated nephropathy, but the magnitude of the risk conferred by the same 

risk alleles ranged between 1.2 and 2 for CKD or non-diabetic kidney failure (Figure 3).67-83 

Similarly, the combination of two common variants in the HLA-DR and PLA2R1 loci 

imparts a high risk of the complex disease membranous nephropathy, defying the common 

variant/small effect paradigm.84, 85
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CONSIDERATIONS FOR GENETIC TESTING

A positive family history, early age of onset, and presence of extra-renal symptoms are 

associated with a higher probability of monogenic disease. In addition, the clinical diagnosis 

is highly predictive of diagnostic yield and will also guide the choice of genetic tests, 

motivating a thorough clinical workup prior to genetic testing. For example, glomerular and 

tubulointerstitial disorders are associated with a higher diagnostic yield than diabetic kidney 

disease. In general, because of the genetic heterogeneity of most forms of nephropathy, 

genetic testing with phenotype-driven gene panels, or exome or genome sequencing is more 

efficient than sequential single-gene analyses.

Genetic testing is usually performed subsequent to a clinical work up, but there may be some 

situations when early genetic testing can be advantageous. For example, prospective kidney 

donors related to a recipient with a known genetic condition should be tested early during 

the donor evaluation process. Other situations where early genetic testing may be considered 

are listed in Table 4. In healthy children or adults, there are currently no data supporting 

predictive or presymptomatic genetic testing even if there is a family history. Nevertheless, 

once a pathogenic variant is identified in a proband, cascade testing of family members and 

genetic counseling in mutation carriers is the standard practice in clinical genetics.

Most countries do not have guidelines regarding which nephrology patients should be 

referred to genetic testing and counseling. Nephrology communities would therefore benefit 

from developing guidelines based on best evidence and practices in clinical genetics. 

Overall, guidance should take into account the potential benefit of a genetic diagnosis 

for the specific patient and their family (e.g., treatment changes, family planning, ending 

a diagnostic odyssey) and balance the risk of false positive results that could engender 

unnecessary clinical workup for the patient and their families. A position paper by the 

ERA-EDTA Working Group for Inherited Kidney Diseases (WGIKD) and the Molecular 

Diagnostics Taskforce of the European Rare Kidney Disease Reference Network (ERKNet) 

has been recently issued to delineate indications for genetic testing in chronic kidney 

diseases.86

Defining Actionable Genes in Kidney Diseases

Actionable genes in kidney diseases refer to genes that, when significantly altered, confer a 

high risk of serious disease that could be prevented or mitigated if the risk were known.87 

A set of 73 actionable genes have been proposed by the American College of Medical 

Genetics and Genomics (ACMG), many of which are associated with phenotypes relevant to 

nephrology (PALB2, GLA, HNF1A, MEN1, MAX, RET, SDHAF2, SDHB, SDHC, SDHD, 
VHL, TMEM127, TSC1, TSC2, WT1). While these genes were selected based on the 

possibility of preventing overall morbidity and/or mortality, one can conceive additional, 

kidney-specific actionable genes, nominated based on availability of interventions that 

could prevent renal morbidity (Figure 4). Examples include early initiation of general 

renoprotective therapies (e.g. reninangiotensin blockade for carriers of pathogenic variants 

in type IV collagen genes); initiation of targeted therapies (e.g. enzyme therapy for Fabry 

disease or CoQ10 supplementation for nephrotic syndrome due to CoQ10 deficiency); 

avoidance of treatment that would be futile and perhaps even deleterious (e.g., prolonged 
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immunosuppressive therapies for genetic podocytopathies); or surveillance for recurrence 

of disease after kidney transplantation (e.g. atypical hemolytic uremic syndrome/thrombotic 

microangiopathy [aHUS/TMA], primary hyperoxaluria). ClinGen, an international initiative 

to define robust disease-gene associations and curate pathogenic variants,87 now has 

a kidney expert work group that is developing a stable list of nephropathy-associated 

genes and variants. It is expected that this group would also provide guidance for 

actionability for kidney genes and nominate them for the ACMG list. Awareness of the 

ClinGen Initiative should be promoted in the kidney community, along with messaging 

regarding the importance of variant submission to public databases such as ClinVar and 

the value of creating interdisciplinary expert boards to discuss controversial variants of 

uncertain significance (VUS) and discussing the most complex cases. Additional efforts to 

harmonize gene and gene panel curation such as the Genomics England panel app (https://

panelapp.genomicsengland.co.uk) are listed in Supplementary Table S1.

In addition to rare pathogenic variants, common genetic variants or polygenic scores may 

become appropriate for clinical reporting if they are shown to alter patient management, 

indicate need for surveillance for progression or associated comorbidities, or inform 

familial screening.88 In complex diseases, the current best candidates for reporting include 

APOL1 risk alleles,89, 90 genetic risk score for membranous nephropathy based on 

PLA2R1, NFKB1, IRF4, and HLA risk alleles,19 extremes of a polygenic risk score 

for eGFR,91 and pharmacogenetic variants that are informative about risk of adverse 

events, pharmacokinetics, and pharmacodynamics for specific drugs, some of which may 

be especially relevant to CKD patients (for example, azathioprine, tacrolimus, warfarin, 

clopidogrel, simvastatin, voriconazole, allopurinol). However, we currently lack evidence 

for actionability for polygenic scores, i.e. evidence that reporting can improve clinical 

outcomes.

APOL1 presents a special case in clinical nephrology because biallelic inheritance of two 

common variants in this gene, present at high frequency in some populations of African 

ancestry, increases risk for several kidney disorders.89, 90 Potential benefits for APOL1 
screening include improved risk stratification and opportunities for education. However, 

only a minority of patients with APOL1 risk genotypes develop nephropathy, and currently 

no data support early intervention in asymptomatic individuals to reduce future risk of 

disease. Potential drawbacks to screening include potential for anxiety, stigma, or apathy 

and the lack of evidence-based interventions.92, 93 Combined, these drawbacks could lead 

to misunderstanding among patients, mistrust of the medical system, and perceived or real 

racial bias given that APOL1 risk variants are predominantly found in those with African 

ancestry. On the other hand, the failure to offer a test that could be most informative in a 

specific ancestry group could also be perceived as bias. For transplant patients, APOL1 
screening could prevent harm to living donors and meet recipient right to know, but 

screening could also reduce rates of living donation, waste deceased donor kidneys, and 

exacerbate shortage of organs. The APOLLO study, which is in progress and expected 

to end in 2023, is prospectively evaluating the impact of APOL1 risk alleles on donor 

and recipient outcomes.94 Moreover, the initiation of genotype driven clinical trials may 

change the approach to diagnostic testing for APOL1 and other genetic disorders. These 
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considerations emphasize the importance of further research into the usefulness of APOL1 
testing.

REPORTING AND TERMINOLOGY STANDARDS

Differences in how diagnostic laboratories evaluate and report variants is a significant 

challenge in molecular diagnosis, and there is agreement that standardization of evaluation 

and reporting among different laboratories and countries is a key priority. The determination 

for pathogenicity is a semi-quantitative process that takes into account variant allele 

frequency, predicted impact on protein function, and prior reports of occurrence with 

disease. The ACMG and the Association for Molecular Pathology (AMP) published 

standards and guidelines for the interpretation of sequence variants.95 These guidelines are 

periodically reviewed and refined by the ClinGen Initiative to reduce discrepancies in variant 

interpretation between laboratories and clinicians.

The ACMG criteria classify variants into 1 of 5 tiers, with tiers 4 and 5 (i.e. likely 

pathogenic and pathogenic) classified as diagnostic variants.95 All variant classes can 

later be upgraded or downgraded based on novel information or interpretation, perhaps 

necessitating periodic review of clinical genetic reports. However, the abundance of class 3 

VUS has created a particular challenge and urgency for improving evaluation and reporting. 

The definition and relevance of VUS may be unclear to physicians or patients, causing 

incorrect assignment of diagnoses and/or psychological distress to patients and families. 

This situation necessitates proper communication with the patients to inform and educate 

them about the possibility of VUS, in which case familial segregation analysis might be 

recommended. Additionally, VUS should be reported only after interdisciplinary contact 

between the clinician and geneticist.96 Future reinterpretation of variants can be facilitated 

by diagnostic reports that provide detailed description of ACMG classification criteria that 

were applied at the time of reporting. Although there are currently no existing guidelines, 

incidental carrier status for autosomal recessive inheritance is not routinely reported in 

standard diagnostic reports. Guidelines for systematic reporting of these variants should be 

developed. Heterozygosity associated with a mild phenotype is increasingly recognized in 

human genetics, for example for COL4A3/COL4A4 variants.97

Unified Disease Terminology

There was consensus that establishing a unified disease terminology that takes into account 

genetic disease nomenclature is an important goal for the community. In support of 

unified, precise disease terminology, a suggested approach is two-part (“dyadic”) naming 

comprising both the clinical condition and gene name (Figure 5), although there is 

some controversy around this approach.98, 99 An important example is adoption of two-

part naming in autosomal dominant tubulointerstitial kidney disease (ADTKD), in which 

ADTKD is followed by reference to the underlying genetic defect, such as ADTKD-UMOD 
and ADTKD-MUC1.100 Two-part names provide flexibility, in that some users (patients/

clinicians) can use the first part (ADTKD) while others (patients/clinicians/researchers) 

can use the whole name (ADTKD-UMOD). When clinical presentation is unspecific, or 

very heterogeneous, use of gene name followed by “kidney disease” (e.g., PAX2-kidney 
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disease) is encouraged. Potential limits to this approach include the possibility of classifying 

a patient with a benign prognosis as having a potentially progressive disorder, as well as the 

challenge of adding a second or gene name to conditions already described in International 

Classification of Disease codes. To that end, participants of this KDIGO controversies 

conference did not reach consensus regarding renaming traditional disease terms, such as 

Alport Syndrome.

GENOMIC DISCOVERY AND IMPLICATIONS FOR CHRONIC KIDNEY 

DISEASES

As demonstrated by the first GWAS for eGFR, common genetic variants that are associated 

with complex kidney traits usually have small effects and therefore require very large sample 

sizes for discovery.101 Accordingly, there has been limited success in identifying common 

kidney disease susceptibility variants in individual observational studies of adult 102-105 

or pediatric 106-108 CKD. Conference participants therefore recognized the importance 

of collaborative consortia, such as CKDGen,11, 109 CHARGE,66, 110 iGeneTRAiN,111 or 

COGENT Kidney,112, 113 that aggregate and harmonize genetic and phenotypic data across 

multiple studies for combined genetic discovery. In addition to enlarging sample size and 

providing a platform for replication studies, expanding consortia to international sites can 

enable studies of more ancestrally and geographically diverse populations. For more specific 

but less frequent primary kidney disorders such as IgAN, membranous nephropathy, or 

steroid-sensitive nephrotic syndrome, aggregating multiple international case-control cohorts 

is even more important to assure adequate power. Additionally, more diverse ancestral 

composition of analyzed cohorts facilitates fine-mapping of GWAS loci, enables discovery 

of ancestry-specific effects, and assures broader generalizability of genetic findings.

The identification of causal genes and variants underlying GWAS associations and defining 

their pleiotropic effects are recognized as important challenges in the field. Examples such 

as UMOD the locus with the strongest common variant association with CKD,66 support the 

existence of a spectrum of risk variants from monogenic to complex. There are currently 

no examples for successful translation of insights from GWAS in CKD to new therapies, 

but the discovery of the MYH9 locus,114, 115 followed by the identification of APOL1 as 

the causal gene,69 refinement of nephrotoxic mechanisms of APOL1 risk variants,89 and an 

ongoing phase IIa study of a small molecule APOL1 inhibitors (ClinicalTrials.gov identifier 

NCT04340362) represent promising steps to that end.

Conference participants recognized the emerging importance of electronic health record 

(EHR)-based genetic research for linking genetic information with a wide range of 

laboratory parameters and medical conditions. EHR-linkage is possible in various settings, 

ranging from existing biobanks in research settings, hospitals, or healthcare systems to 

entire countries such as Iceland, Estonia, or Finland. Examples of EHR-linked biobanks, 

institutions, health care systems, or country-wide efforts are UK Biobank,116 MVP,117 

HUNT,118 deCODE,119 FinnGen,60 Biobank Japan,120 BioVU,121 MGI,122, eMERGE,123 

and All of Us.124 The development of standardized, scalable, and portable computable 

phenotypes is time consuming and represents many challenges,125 but it can empower 
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future genetic studies by automated identification of kidney disease patients in large EHR 

databases.26, 126 Notably, it is just as important (and often harder) to accurately define 

those without a disease versus those with the disease to serve as healthy controls in genetic 

studies. We envision that computable phenotyping can be used to find patients with or 

without CKD, hypertension, kidney stones, or glomerular disease, as well as patients who 

have received a kidney biopsy or kidney transplant. In nephrology, computable phenotyping 

is underway,26, 127-129 with CKD phenotyping perhaps best positioned for widespread 

implementation given the availability of new algorithms based on ICD codes and laboratory 

values routinely measured in clinical practice.26, 126

In addition to genomic discovery, EHR-linked genetic research may allow for recontacting 

of patients with a specific genotype for detailed clinical and molecular studies. Linking EHR 

and genetic data can also be used to investigate pleiotropic associations of genetic variants 

originally discovered for a specific condition (e.g. APOL1 or UMOD) with additional traits 

captured in medical records using phenome-wide association approaches.14, 26, 42, 130 Such 

studies can be further complemented with Mendelian randomization methods to clarify 

associations between genetic variants, biomarkers, and phenotypes.131

Despite the large size of consortia and EHR-linked studies, certain groups of patients are 

still underrepresented in genetic research. For instance, the paucity of pediatric patients 

with genetic information has limited longitudinal phenotype analyses from childhood to 

adulthood and the ability to identify genetic drivers of kidney diseases or traits of childhood. 

There is also an urgent need to expand ancestral diversity of participants in genetic 

studies, specifically aiming to increase the representation of non-European populations.132 

Additional challenges include harmonizing data for rare kidney conditions that necessitate 

aggregating cases from across several biobanks and EHRs; identifying ancestry-matched 

controls for case-control analyses; handling of missing data; and harmonizing genotypes in 

the presence of different types of available genetic data.133, 134

Partnerships between academic labs and industry allow efficient exchange of ideas and 

resources to promote investigation of disease mechanisms, biomarkers, and therapeutic 

targets. Such partnerships can enable academic labs, biobanks, and institutions and health 

care systems to conduct large-scale multi-omic studies that would not be feasible with 

only support from internal funds or extramural grants and facilitate follow-up studies 

to “functionalize” key genes or genetic variants. Successful partnerships must achieve a 

balance between a companies’ incentive to invest and the academic freedom in research 

and publishing. Key principles and processes, such as intellectual property, publications, and 

data sharing and access, also must be aligned. These partnerships have been particularly 

valuable for generating functional genomic data from primary kidney tissues and allow 

for rapid implementation of new methods.135-138 Generation of additional such data from 

primary kidney tissue and cell types should continue to be a research priority, because 

the kidney is underrepresented in many existing public databases, including ENCODE,139 

Roadmap Epigenomics,140 and GTEx Projects.141 The Kidney Precision Medicine Project 

(KPMP)142 and similar new initiatives aim to address some of these important gaps by 

generating and harmonizing new multi-dimensional molecular data for human kidney tissue 

in health and disease.
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Polygenic Scores

Polygenic scores (PGS) are based on the results of GWAS and aggregate the effects of 

trait- or disease-associated variants across the genome. PGS capture a greater proportion 

of genetic variance compared to individual SNPs and may potentially be useful to risk-

stratify populations, enhance screening, and ultimately inform diagnosis, prognosis, and/or 

treatment. PGS have been shown to modify the penetrance of monogenic variants for 

hypercholesterolemia, hereditary breast and colon cancer, and obesity,32, 33 although this 

effect has not yet been examined for kidney diseases. PGS for kidney disease can be 

constructed using a smaller set of genome-wide significant SNPs only, such as a 147-SNP 

score for eGFR (odds ratio of ~2 for individuals in the highest 10% of the score)13 or a 

5-SNP score for membranous nephropathy (odds ratio of >20 for those in the highest 10% 

of the score),19 or by using genome-wide scores with hundreds of thousands of variants, 

such as the UK Biobank score for CKD91 Currently, most scores are derived from European 

populations and do not include rare or population-specific variation, potentially creating a 

new health disparity between individuals from European descent and others.132 Since scores 

are constructed from GWAS for complex traits and diseases, they may reflect heterogeneous 

mechanisms and therefore not necessarily point to targeted interventions.

Conference participants agreed that before applying PGS in clinical nephrology, more 

research is needed to derive the most accurate and cosmopolitan scores for kidney disease. 

Also necessary are proof of clinical utility in surveillance, diagnosis, prognosis, or treatment 

of kidney disease; a better understanding of dependence on the clinical context, including 

disease stage, ancestry, sex or demographics;143 and cost-effectiveness and added value 

beyond standard clinical risk factors. PGS computation would need to be robust, open-

source, and able to be incorporated into points of care. Quality standards for PGS have 

recently been defined by ClinGen,144-146 providing a framework for evaluating clinical 

translation and utility.

ACHIEVING IMPLEMENTATION IN CLINICAL MEDICINE

Clinical Knowledge

Often, insufficient experience and knowledge is a major barrier for implementing genetic 

evaluation in nephrology practice. To ensure equitable access to genetic testing, all 

nephrologists should have a sufficient knowledge base for discerning which patients would 

benefit from genetic testing and, at minimum, be able to collect personal and family 

histories. While it would be best for all nephrologists to also be able to recommend 

screening for at-risk family members if applicable; conceptually understand types of genetic 

tests, including their risks and benefits; and remain aware of local regulations around 

genetic testing, nephrologists lacking experience in these domains should collaborate with 

a clinical geneticist and/or a genetic counselor. In addition, reporting of positive genetic 

results to patients necessitates individual and family counseling and referrals. Hence, a 

multidisciplinary approach is key for successfully implementing genetics in the clinic.

Participants recognized workforce education as a critical need. Genetics is currently not part 

of the nephrology fellowship curriculum in the Unites States,147 and indeed, fellows report 
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lacking competency in genetic renal disease.148 Similarly, in Australia, less than half of 

nephrologists feel confident in using results of genomic testing in clinical practice.149 There 

are no genetics core competency guidelines for nephrologists, nor guidelines for evaluating 

competencies for clinical genetic consent and return of results. Based on published data 

and information,150 a compiled list of core competencies expected from nephrologists at 

different levels of expertise can be found in Supplementary Table S2. These gaps can be 

remedied by including more robust genetics curricula in medical school, residency, and 

fellowship training. Education for current practicing nephrologists can be achieved via 

workshops at national and international societies, continuing medical education, review 

papers in nephrology journals, and introduction of clinical genetic questions to re-licensing 

tests.151 One can also envision an advanced training or subspecialty track in genetic 

nephrology, similar to transplant, oncology, or glomerular diseases sub-specialization. 

Supplemental Table S1 provides an overview of clinical genetics web resources to aid 

nephrologists.

Clinical Practice

Centers of expertise are sites where patients can receive comprehensive, coordinated care 

from a multidisciplinary team that includes a relatively small number of nephrologists with 

a high skill set for genetic diagnosis (Figure 6). These centers also play an important role 

in training and research. Centers of expertise, or reference, are concentrated in Europe, with 

ERKNet constituting a consortium of more than 30 centers in 12 countries, supported by 

the European Union. In most regions of the globe, including the United States, there are 

no centralized accreditation mechanisms for developing centers of expertise or reference. 

The establishment of such centers can facilitate standardized variant interpretation, identify 

“actionable” genes associated with kidney diseases, train the future generation of physicians 

with dual expertise in genetics and nephrology, develop guidelines for referral and testing 

of patients with kidney diseases, disseminate implementation knowledge, and develop 

collaborative research projects and clinical trials for rare disorders.

Cost and Access

Often, genetic testing is not affordable for either patients or healthcare systems. In regions 

where there is cost coverage or reimbursement, access can still be unequal since genetic 

testing is based on clinical presentation, and obtaining coverage is often easier in children 

than in adults. Many countries do have genetic protection acts, laws, or regulations to ensure 

equitable access to genetic testing without fear of discrimination. However, legislation alone 

is not always sufficient for allaying patient concerns about the potential for prejudice.

Logistically, remote sample collection and telemedicine have potential for increasing access 

to genetic counseling. However, adequate physical evaluation and identification of extra-

renal manifestations can be more complicated or impossible with telemedicine. In addition, 

although the SARS-CoV-2 pandemic has accelerated the deployment of telemedicine across 

many health systems, not all patients and physicians are comfortable with remote, video-

based communications.
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For most genetic conditions, we lack large-scale cost-effectiveness analyses to demonstrate 

the benefits of genetic testing. Recent data suggest that genetic testing has a high diagnostic 

yield in patients with CKD of unknown etiology and may reduce costly diagnostic workups, 

hopefully increasing the coverage of genetic testing for those patients.3, 8 It is also important 

to demonstrate the clinical value of genetic testing beyond diagnosis, such as impact 

on long-term outcomes and health economics. A comparison of the cost-effectiveness of 

genetic testing in nephrology across different healthcare coverage systems could provide key 

insights and an evidence base for expanding testing.

Patient Voice

Patient engagement is vital for successful treatment and advances in research. To advocate 

for their own genetic testing, patients need to have an awareness of and education 

regarding genetics and kidney disease and the relative benefits and risks of genetic 

testing.152 The complex ethical, psychosocial and familial implications for genetic testing, 

including presymptomatic testing, can make decision-making challenging and require an 

understanding of patient values, goals, and priorities.153 To engage and activate patients and 

patient communities, educational content needs to be accessible and sensitive to patients in 

terms of culture, language, and literacy as well as be shared across multiple platforms.154

The topics of race and ancestry have been widely debated in genetics as well as 

nephrology.155-158 In specific terms, race is a social, categorical construct, whereas ancestry 

is based on inherited genetic variants without categorization. In principle, genetics research 

is agnostic to race,157 and identifying disease causing variants could obviate reliance on race 

or ancestry as a proxy for probability of carrying a risk allele.132, 158

Within nephrology, patient reported outcome measures (PROMs) can provide doctors, 

investigators, and policymakers with important insights into patient symptoms and 

experiences that cannot be identified through laboratory or imaging studies alone.159 

Research communities that engage with patients and include the patient voice can better 

advocate for more research and development in rare kidney diseases.

Research in Implementation

Evidence-based frameworks for evaluating quality of care in genetic testing have been 

put forth by ACMG,160 ERKNet, and others.161, 162 These cover different methods 

for evaluating analytic and clinical validity as well as clinical utility of genetic tests. 

Nephrology outcomes used in clinical trials have included those that are disease-specific 

or represent more general longer-term outcomes, such as kidney failure, cardiovascular 

death, or mortality, which require large datasets. Yet this space is evolving, as demonstrated 

by development of novel trial designs using Bayesian methodology, inclusion of patient-

reported outcomes, and additional economic evaluation of genetic risk. Steps for expanding 

measures to best inform value-based implementation and quality assurance of clinical 

genetics in nephrology are listed in Table 5. This is a large and critical space underpinning 

clinical translation and mainstreaming, with much research and work anticipated in the 

coming years.
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CONCLUSIONS

This KDIGO Controversies Conference on Genetics in Chronic Kidney Disease discussed 

many technical, logistical, ethical, and/or research questions related to the definition and 

epidemiology of monogenic and complex kidney diseases, applications of genetic findings 

in clinical medicine, and utilization of genomics for defining and stratifying CKD. Identified 

areas of consensus and future research priorities provide a roadmap towards realizing the 

promises of genomic medicine for nephrology.

The conference agenda, discussion questions, and plenary session presentations are available 

on the KDIGO website: https://kdigo.org/conferences/genetics-in-ckd/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SNP single nucleotide polymorphism

TMA thrombotic microangiopathy

VUS variants of uncertain significance

WGIKD ERA-EDTA Working Group for Inherited Kidney Diseases
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Figure 1. Common Variant Contributions to Kidney Diseases and Traits.13, 14, 17, 19, 31

*For binary outcomes, the proportions of phenotypic variance explained by loci from 

genome-wide association studies (GWAS) were estimated from Nagelkerke’s or McKelvey 

& Zavoina pseudo R2.

SNP, single nucleotide polymorphism.
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Figure 2. GWAS, Exome, or Genome Sequencing Studies. 13, 14, 17, 19, 31, 39-41

*The largest study focused on urinary albumin-to-creatinine ratio. Several included serum 

albumin studies.

**Pediatric population.

***For case-control studies, the total sample sizes were plotted.

CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; FSGS, focal 

segmental glomerulosclerosis; GWAS, genome-wide association studies; IgAN, IgA 

nephropathy; KF, kidney failure; LN, lupus nephritis; MCD, minimal change disease; MN, 

membranous nephropathy; Scr, serum creatinine; SRNS and SSNS, steroid-resistant and 

steroid-sensitive nephrotic syndrome; T1DM and T2DM, types 1 and 2 diabetes mellitus; 

WES, whole exome sequencing; WGS, whole genome sequencing.
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Figure 3. Associations of APOL1 High Risk Genotype.67-83

APOL1 high-risk genotype: G1G1, G2G2, or G1G2

Studies were ordered by PMID, a proxy for publication date.

*Compared with white patients

APOL1, apolipoprotein L1; CKD, chronic kidney disease; DRC, Democratic Republic of 

Congo; FSGS, focal segmental glomerulosclerosis; HIVAN, HIV-associated nephropathy; 

HTN, hypertension; KF, kidney failure; LN, lupus nephritis; PMID, PubMed identifier.
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Figure 4. Actionable Genes in Kidney Diseases.
Actionability refers to the potential for genetic test results to lead to specific clinical 

actions for prevention or treatment of a condition, supported by recommendations based 

on evidence. aHUS, atypical hemolytic uremic syndrome; SRNS, steroid-resistant nephrotic 

syndrome; RAAS, renin-angiotensin-aldosterone system.
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Figure 5. Unified Disease Terminology.
Two-part (“dyadic”) naming comprises both the clinical condition and gene name. An 

example would be autosomal dominant tubulointerstitial kidney disease (ADTKD), in which 

ADTKD is followed by reference to the underlying genetic defect, such as ADTKD-UMOD. 

ADTKD, autosomal dominant tubulointerstitial kidney disease; PKD, polycystic kidney 

disease.
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Figure 6. Proposed Organization for Implementing Genetics in Nephrology.
Within a health system, multiple center types, provider specialties, and education strategies 

are needed for best implementing genetics in nephrology. A three-tiered organization model 

includes 1) a basic, common level of knowledge in genetics among all nephrologists, 2) 

clinical connections between nephrologists and geneticists and genetic counselors, and 3) 

centers of expertise where nephrologists with genetic expertise collaborate with geneticists 

and genetic counselors. CME, continuing medical education.

Page 31

Kidney Int. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Page 32

Ta
b

le
 1

.

Su
m

m
ar

y 
Po

in
ts

 F
ro

m
 th

e 
G

en
et

ic
s 

in
 C

K
D

 C
on

tr
ov

er
si

es
 C

on
fe

re
nc

e

C
on

se
ns

us

•
M

on
og

en
ic

 a
nd

 c
om

pl
ex

 k
id

ne
y 

di
se

as
es

 e
xi

st
 o

n 
a 

co
nt

in
uu

m
, b

ut
 d

ic
ho

to
m

ou
s 

ca
te

go
ri

es
 a

re
 u

se
fu

l f
or

 p
ra

ct
ic

al
 d

is
tin

ct
io

n.

•
T

he
re

 is
 n

o 
up

pe
r 

ag
e-

lim
it 

fo
r 

m
on

og
en

ic
 C

K
D

.

•
A

ct
io

na
bl

e 
ge

ne
s 

in
 k

id
ne

y 
di

se
as

es
 r

ef
er

s 
to

 g
en

es
 in

 w
hi

ch
 th

e 
id

en
tif

ic
at

io
n 

of
 p

at
ho

ge
ni

c 
va

ri
an

ts
 c

an
 le

ad
 to

 s
pe

ci
fi

c 
cl

in
ic

al
 a

ct
io

ns
 f

or
 tr

ea
tm

en
t o

r 
pr

ev
en

tio
n,

 f
ol

lo
w

in
g 

re
co

m
m

en
da

tio
ns

 b
as

ed
 o

n 
ev

id
en

ce
.

•
T

he
re

 is
 a

 n
ee

d 
fo

r 
de

ve
lo

pi
ng

 a
 r

ef
er

en
ce

 k
id

ne
y 

di
se

as
e 

ge
ne

 li
st

 a
nd

 s
ta

nd
ar

di
za

tio
n 

of
 g

en
e/

va
ri

an
t r

ep
or

tin
g 

fo
r 

ki
dn

ey
 d

is
ea

se
s.

•
A

 la
rg

er
 w

or
kf

or
ce

 w
ith

 e
xp

er
tis

e 
in

 k
id

ne
y 

ge
ne

tic
s,

 g
en

om
ic

s,
 a

nd
 c

om
pu

ta
tio

na
l r

es
ea

rc
h 

is
 n

ee
de

d.

•
E

du
ca

tio
n 

of
 th

e 
w

or
kf

or
ce

 is
 n

ec
es

sa
ry

 f
or

 s
uc

ce
ss

fu
l i

m
pl

em
en

ta
tio

n 
of

 g
en

et
ic

 te
st

in
g 

in
 c

lin
ic

al
 n

ep
hr

ol
og

y.

•
M

or
e 

st
ud

ie
s 

ar
e 

ne
ed

ed
 th

at
 in

cl
ud

e 
di

ve
rs

e 
po

pu
la

tio
ns

 w
or

ld
w

id
e 

to
 e

ns
ur

e 
eq

ui
ta

bl
e 

an
d 

ge
ne

ra
liz

ab
le

 im
pl

em
en

ta
tio

n 
of

 g
en

et
ic

 te
st

in
g,

 o
bt

ai
n 

ev
id

en
ce

 o
f 

ca
us

al
ity

, e
st

ab
lis

h 
gl

ob
al

 
pr

ev
al

en
ce

, a
nd

 f
ac

ili
ta

te
 v

ar
ia

nt
 d

is
co

ve
ry

•
In

te
rd

is
ci

pl
in

ar
y 

ex
pe

rt
 b

oa
rd

s 
(i

nc
lu

di
ng

 n
ep

hr
ol

og
is

ts
, c

lin
ic

al
 g

en
et

ic
is

ts
, m

ol
ec

ul
ar

 b
io

lo
gi

st
s,

 g
en

et
ic

 c
ou

ns
el

or
s)

 s
ho

ul
d 

be
 a

ss
em

bl
ed

 f
or

 d
is

cu
ss

in
g 

po
te

nt
ia

l g
en

et
ic

 d
ia

gn
os

tic
 

fi
nd

in
gs

 a
nd

 c
ou

ns
el

 p
ri

m
ar

y 
an

d 
se

co
nd

ar
y 

ca
re

 c
en

te
rs

.

•
G

en
om

ic
s 

sh
ou

ld
 b

e 
in

te
gr

at
ed

 in
to

 c
lin

ic
al

 tr
ia

ls
 o

n 
ki

dn
ey

 d
is

ea
se

s.

•
E

st
im

at
es

 o
f 

th
e 

pr
ev

al
en

ce
 o

f 
m

on
og

en
ic

 C
K

D
 a

re
 im

po
rt

an
t b

ut
 c

ur
re

nt
ly

 im
pr

ec
is

e 
du

e 
to

 s
el

ec
tio

n 
bi

as
.

O
ng

oi
ng

 c
on

tr
ov

er
si

es

D
ef

in
iti

on
s/

te
rm

in
ol

og
y

•
Tw

o-
pa

rt
 n

am
es

 (
cl

in
ic

al
 c

on
di

tio
n 

PL
U

S 
ge

ne
 n

am
e)

 a
re

 p
re

fe
rr

ed
 f

or
 m

or
e 

pr
ec

is
e 

di
se

as
e 

te
rm

in
ol

og
y.

•
T

he
 te

rm
 C

K
D

 o
f u

nk
no

w
n 

et
io

lo
gy

 is
 n

ot
 c

le
ar

 a
nd

 in
 n

ee
d 

of
 c

on
se

ns
us

.

•
T

he
re

 is
 n

o 
cl

ea
r 

co
ns

en
su

s 
on

 w
hi

ch
 V

U
S 

ar
e 

to
 b

e 
re

po
rt

ed
 in

 th
e 

fr
am

e 
of

 d
ia

gn
os

tic
 te

st
in

g.

P
ro

ce
ss

es
 fo

r 
im

pr
ov

in
g 

da
ta

 c
ap

tu
re

 a
nd

 a
na

ly
si

s

•
Im

pr
ov

e 
ph

en
ot

yp
in

g,
 in

cl
ud

in
g 

m
et

ho
ds

 f
or

 e
le

ct
ro

ni
c 

ph
en

ot
yp

in
g.

•
Im

pr
ov

e 
th

e 
qu

al
ity

 o
f 

ge
no

m
ic

 s
tu

di
es

, i
nc

lu
di

ng
 a

na
ly

tic
al

 a
nd

 c
om

pu
ta

tio
na

l m
et

ho
ds

.

•
Im

pr
ov

e 
da

ta
 a

cc
es

s 
w

hi
le

 p
ro

te
ct

in
g 

th
e 

pr
iv

ac
y 

of
 r

es
ea

rc
h 

pa
rt

ic
ip

an
ts

.

•
C

re
at

e 
pr

oc
es

se
s 

fo
r 

tr
an

sf
er

ri
ng

 g
en

et
ic

 in
fo

rm
at

io
n 

ob
ta

in
ed

 th
ro

ug
h 

cl
in

ic
al

 te
st

in
g 

to
 r

es
ea

rc
h.

•
St

ud
y 

he
al

th
-e

co
no

m
ic

 im
pa

ct
s 

of
 g

en
et

ic
 te

st
in

g 
in

 n
ep

hr
ol

og
y.

•
E

st
ab

lis
h 

a 
pr

oc
es

s 
fo

r 
pe

ri
od

ic
 r

ea
na

ly
si

s 
of

 u
ns

ol
ve

d 
ca

se
s 

w
ith

 k
id

ne
y 

di
se

as
e.

•
Im

pl
em

en
t h

ig
h-

th
ro

ug
hp

ut
 te

ch
ni

qu
es

 f
or

 in
 s

ili
co

 a
nd

 in
 v

itr
o 

va
ri

an
t c

ha
ra

ct
er

iz
at

io
n.

•
Id

en
tif

y 
an

d 
ch

ar
ac

te
ri

ze
 r

ar
e 

va
ri

an
ts

, s
tr

uc
tu

ra
l v

ar
ia

nt
s,

 a
nd

 f
un

ct
io

na
l v

ar
ia

nt
s 

us
in

g 
fu

nc
tio

na
l g

en
om

ic
, e

pi
ge

ne
tic

, a
nd

 o
th

er
 m

ul
ti-

om
ic

 a
pp

ro
ac

he
s.

•
E

m
pl

oy
 n

ew
 a

pp
ro

ac
he

s 
to

 id
en

tif
y 

m
or

e 
ho

m
og

en
eo

us
 C

K
D

 p
he

no
ty

pe
s 

an
d 

su
bc

la
ss

if
ic

at
io

ns
 f

or
 g

en
et

ic
 s

tu
di

es
, e

.g
. u

si
ng

 n
on

-t
ra

di
tio

na
l o

m
ic

s 
bi

om
ar

ke
rs

, e
le

ct
ro

ni
c 

he
al

th
 r

ec
or

d 
da

ta
, i

m
ag

in
g,

 o
r 

m
ac

hi
ne

 le
ar

ni
ng

.

Kidney Int. Author manuscript; available in PMC 2023 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Page 33

•
A

ss
em

bl
e 

la
rg

er
 c

oh
or

ts
 w

ith
 g

en
et

ic
al

ly
 d

ef
in

ed
 k

id
ne

y 
di

se
as

e 
fo

r 
bo

th
 r

es
ea

rc
h 

an
d 

cl
in

ic
al

 tr
ia

ls
; c

ol
la

bo
ra

te
 in

te
rn

at
io

na
lly

 if
 p

os
si

bl
e.

•
R

ed
uc

e 
m

ea
su

re
m

en
t e

rr
or

s 
in

 e
G

FR
 a

nd
 m

is
cl

as
si

fi
ca

tio
n 

in
 th

e 
re

su
lti

ng
 C

K
D

 d
ef

in
iti

on
, e

.g
. r

ea
ss

es
s 

co
ef

fi
ci

en
ts

 b
as

ed
 o

n 
ra

ce
, s

ex
, a

nd
 c

hr
on

ol
og

ic
al

 a
ge

 in
 e

G
FR

 e
qu

at
io

ns
.

•
C

on
du

ct
 la

rg
e-

sc
al

e 
ge

ne
tic

 s
tu

di
es

 o
n 

sp
ec

if
ic

 k
id

ne
y 

su
b-

ph
en

ot
yp

es
, e

.g
. C

K
D

 p
ro

gr
es

si
on

, a
cu

te
 k

id
ne

y 
in

ju
ry

, c
au

se
-s

pe
ci

fi
c 

di
se

as
e 

se
ve

ri
ty

, a
nd

 m
an

if
es

ta
tio

ns
.

•
In

te
gr

at
e 

ge
ne

tic
 s

tu
di

es
 w

ith
 b

io
m

ar
ke

r 
an

d 
m

ul
ti-

om
ic

 p
ro

fi
lin

g 
to

 le
ve

ra
ge

 f
in

di
ng

s 
an

d 
in

cr
ea

se
 p

ow
er

 f
or

 b
ot

h 
va

ri
an

t a
nd

 p
at

hw
ay

 id
en

tif
ic

at
io

n.

•
G

en
er

at
e 

co
m

pr
eh

en
si

ve
 m

ol
ec

ul
ar

 m
ap

s 
of

 k
id

ne
y 

tis
su

e/
ce

lls
 a

s 
w

el
l a

s 
in

 v
itr

o 
an

d 
an

im
al

 m
od

el
s 

to
 e

na
bl

e 
m

ec
ha

ni
st

ic
 s

tu
di

es
 o

f 
ge

ne
s 

id
en

tif
ie

d 
in

 G
W

A
S 

of
 k

id
ne

y 
tr

ai
ts

.

•
E

nc
ou

ra
ge

 b
ro

ad
 d

at
a 

sh
ar

in
g 

(F
A

IR
 p

ri
nc

ip
al

s:
 F

in
da

bl
e,

 A
cc

es
si

bl
e,

 I
nt

er
op

er
ab

le
, R

eu
sa

bl
e)

, t
ra

ns
pa

re
nt

 p
ro

to
co

ls
 f

or
 d

at
a 

ge
ne

ra
tio

n,
 q

ua
lit

y 
co

nt
ro

l, 
an

d 
an

al
ys

es
.

•
U

se
 f

ed
er

at
ed

 n
et

w
or

ks
 to

 s
ta

nd
ar

di
ze

 k
ey

 d
at

a 
el

em
en

ts
 a

cr
os

s 
pl

at
fo

rm
s 

an
d 

co
un

tr
ie

s.

•
U

se
 p

or
ta

ls
 (

cl
ou

d-
ba

se
d)

 to
 “

sa
fe

ly
” 

sh
ar

e 
in

di
vi

du
al

 d
at

a 
an

d 
al

lo
w

 f
or

 d
em

oc
ra

tiz
at

io
n 

an
d 

br
oa

de
r 

sc
al

e 
of

 in
te

gr
at

iv
e 

in
 s

ili
co

 a
na

ly
se

s.

•
E

xt
en

d 
di

sc
ov

er
y 

an
al

ys
es

 to
 n

on
-a

dd
iti

ve
 g

en
et

ic
 m

od
el

s 
(e

.g
. r

ec
es

si
ve

) 
an

d 
in

cl
ud

e 
no

n-
au

to
so

m
al

 r
eg

io
ns

 (
e.

g.
 c

hr
om

os
om

e 
X

, m
ito

ch
on

dr
ia

l)
.

•
Im

pr
ov

e 
im

pu
ta

tio
n 

re
fe

re
nc

e 
pa

ne
ls

.

•
A

pp
ly

 a
nd

 d
ev

el
op

 a
pp

ro
ac

he
s 

sp
ec

if
ic

 to
 a

dm
ix

ed
 p

op
ul

at
io

ns
.

•
C

on
du

ct
 M

en
de

lia
n 

ra
nd

om
iz

at
io

n 
an

al
ys

is
 to

 e
lu

ci
da

te
 c

au
sa

l m
ec

ha
ni

sm
s.

P
ri

or
it

ie
s 

fo
r 

Im
pl

em
en

ta
ti

on

•
In

cr
ea

se
 g

en
et

ic
 a

nd
 g

en
om

ic
 r

es
ou

rc
es

 in
 u

nd
er

re
pr

es
en

te
d 

po
pu

la
tio

ns
 w

ith
 k

id
ne

y 
di

se
as

e.

•
In

ve
st

ig
at

e 
th

e 
us

e 
of

 p
ol

yg
en

ic
 s

co
re

s 
in

 c
lin

ic
al

 s
et

tin
gs

.

•
D

ev
el

op
 g

ui
de

lin
es

 f
or

 n
ep

hr
ol

og
is

t c
or

e 
co

m
pe

te
nc

ie
s 

in
 g

en
et

ic
s,

 d
ev

el
op

 e
va

lu
at

io
ns

 to
 te

st
 th

em
, a

nd
 id

en
tif

y 
th

e 
ed

uc
at

io
na

l g
ap

s 
of

 g
en

er
al

 n
ep

hr
ol

og
is

ts
 (

so
m

e 
ne

ed
 to

 b
e 

co
un

tr
y 

sp
ec

if
ic

).

•
D

ev
el

op
 a

nd
 te

st
 th

e 
im

pa
ct

 o
f 

di
ss

em
in

at
io

n 
to

ol
s 

to
 s

pr
ea

d 
th

e 
ba

si
c 

kn
ow

le
dg

e 
re

qu
ir

ed
 f

or
 a

ll 
ne

ph
ro

lo
gi

st
s.

•
M

ea
su

re
 th

e 
qu

al
ity

 o
f 

ex
is

tin
g 

or
 to

-b
e-

es
ta

bl
is

he
d 

ge
ne

tic
 s

ub
sp

ec
ia

lty
 tr

ai
ni

ng
 f

or
 n

ep
hr

ol
og

is
ts

 a
s 

w
el

l a
s 

tr
ai

ni
ng

 in
 n

ep
hr

ol
og

y 
fo

r 
ge

ne
tic

 c
ou

ns
el

or
s 

an
d 

m
ol

ec
ul

ar
 g

en
et

ic
is

ts
 

(v
ar

ia
nt

 in
te

rp
re

ta
tio

n 
si

de
).

•
D

ev
el

op
 g

ui
de

lin
es

 f
or

 th
e 

re
fe

rr
al

 o
f 

ne
ph

ro
lo

gy
 p

at
ie

nt
s 

to
 g

en
et

ic
 c

ou
ns

el
in

g/
ge

ne
tic

 te
st

in
g/

re
pr

od
uc

tiv
e 

co
un

se
lin

g.

•
A

na
ly

ze
 th

e 
im

pa
ct

 o
f 

ge
ne

tic
 te

st
in

g 
on

 c
lin

ic
al

 o
ut

co
m

es
 o

f 
ne

ph
ro

lo
gy

 p
at

ie
nt

s.

•
A

na
ly

ze
 th

e 
co

st
-e

ff
ec

tiv
en

es
s 

an
d 

lo
ng

itu
di

na
l c

lin
ic

al
 u

til
ity

 o
f 

ge
ne

tic
 te

st
in

g.

•
A

na
ly

ze
 th

e 
im

pa
ct

 o
f 

ce
nt

er
s 

of
 e

xp
er

tis
e 

on
 q

ua
lit

y 
of

 c
ar

e 
an

d 
pa

tie
nt

 o
ut

co
m

es
.

C
K

D
, c

hr
on

ic
 k

id
ne

y 
di

se
as

e;
 V

U
S,

 v
ar

ia
nt

s 
of

 u
nc

er
ta

in
 s

ig
ni

fi
ca

nc
e

Kidney Int. Author manuscript; available in PMC 2023 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Page 34

Table 2.

Characteristics of Monogenic Versus Complex Genetic Diseases

Monogenic (Mendelian) Polygenic (Complex)

Allele/variant frequency Rare Can be common

Effect size of major driving gene Large Small

Penetrance High Low

Role of environment Limited Strong

Inheritance model Mendelian None apparent
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Table 3.

Disease Definitions for Genetic Studies Based on Kidney Function, Kidney Histology, or Molecular Markers

Advantages Disadvantages

Kidney function markers (e.g., eGFR, albuminuria)

  • Readily attainable and standardized information in low- 
and high-income settings

• Deployed routinely in clinical care and interventional 
trials

• Allows the identification of genetic determinants of 
kidney function and factors impacting the progression 
of kidney disease

• Relatively inexpensive

• Repeated measures often readily available to assess 
trajectory

• Descriptive nature of disease categorization

• Agnostic to underlying kidney pathology and 
pathophysiology and disease heterogeneity

• Urinary albumin excretion is underutilized

• Current markers identify genetic variants related to 
marker metabolism but not filtration

Kidney histology

• Allows for classification based on structural patterns of 
damage

• Standardized classification scheme for most glomerular 
diseases

• Current reference standard for clinical management with 
established clinical workflow

• Histology classifications may reflect a more 
homogenous pathophysiology than kidney function 
markers

• Often aggregates a diverse set of underlying 
disease-initiating events under a common 
histological damage pattern (e.g., FSGS), thereby 
potentially introducing functional and genetic 
heterogeneity

• Limited accessibility in resource-constrained 
settings

Non-traditional molecular markers (e.g., markers quantified with high-throughput omics technologies)

• Can segregate kidney disease populations into more 
homogenous subgroups and thereby facilitate the 
identification of underlying disease causes and drivers

• Enables systems genetics analysis of kidney disease

• Comprehensive multi-omics profiling possible (e.g. 
metabolomics, proteomics, exposomics)

• Emerging technologies with limited accessibility 
in resource-constrained settings, need to establish 
cost-effective readouts readily attainable in low- 
and middle-income countries

• Access to large biobanks required for disease 
subtyping

• Some marker levels may vary by kidney function

FSGS, focal segmental glomerulosclerosis.
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Table 4.

Potential Indications for Genetic Testing for Monogenic Forms of CKD

• The clinical work indicates the possibility of a genetic disease, such as—

– high prevalence of monogenic subtypes within the clinical category (e.g. congenital/cystic nephropathies or steroid-
resistant nephrotic syndrome)

– positive family history of kidney disease

– early age of onset (pediatric CKD)

– syndromic/multisystem features

– consanguinity

– possibility of identifying a condition amenable to targeted treatment (e.g., enzyme replacement therapy for Fabry 
disease)

• The individual is an at-risk relative of a patient with a known monogenic disease, especially when the individual is a potential 
kidney donor

• As an alternative to kidney biopsy in patients at high risk of biopsy-related complications, especially when there is a high pre-test 
probability of finding a genetic variant based on family or clinical history

• CKD or kidney failure of unknown etiology when kidney biopsy would not be informative due to advanced disease and there are 
other features suggestive of hereditary disease

• Information to guide continuation of immunosuppressive therapy (e.g., in steroid resistant or partially responsive nephrotic 
syndrome)

• Genetic testing can provide prognostic information (ADPKD or Alport syndrome, age at kidney failure)

• Diagnosis of diseases with risk of recurrence in renal allografts (e.g., aHUS/TMA, primary

ADPKD, autosomal dominant polycystic kidney disease; aHUS, atypical hemolytic uremic syndrome; CKD, chronic kidney disease; TMA, 
thrombotic microangiopathy
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Table 5.

Recommended Practices for Value-Based Measures of Implementation and Quality Assurance of Clinical 

Genetics in Nephrology

Measure nephrologist adoption of genetic testing and appropriate referral to genetic testing

Measure nephrologist utilization of genetic results (to determine if appropriate changes in diagnosis and care have occurred)

Define disease-specific outcomes that can be measured

• Development of kidney failure

• Rate of kidney disease progression

• Change in treatment

• Access to genetically stratified clinical trials

• Donor risk evaluation, or deceased donor organ evaluation

• Recipient risk evaluation (e.g., improved matching, customized immunosuppression, etc.)

• Utilization of information for family planning

• Patient-reported outcome (quality of life, etc.)

• Hospitalization, cardiovascular outcomes, mortality

• Diagnosis of at-risk family members

Define and measure potential harmful impacts of genetic testing (e.g., wrongful impact on change of treatment)

Define audits/assessments for centers that offer genetic testing in nephrology as quality assurance activity

Potentially apply USPSTF and EGAPP methods to analyze the implementation of genetic testing for kidney diseases

USPSTF, United States Preventive Services Task Force; EGAPP, Evaluation of Genomic Applications in Practice and Prevention.
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