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A B S T R A C T   

With the spatial structure of urban agglomerations, well-developed transportation networks and close economic 
ties can increase the risk of intercity transmission of infectious diseases. To reveal the epidemic transmission 
mechanism in urban agglomerations and to explore the effectiveness of traffic control measures, this study 
proposes an Urban-Agglomeration-based Epidemic and Mobility Model (UAEMM) based on the reality of urban 
transportation networks and population mobility factors. Since the model considers the urban population inflow, 
along with the active intracity population, it can be used to estimate the composition of urban cases. The model 
was applied to the Chang-Zhu-Tan urban agglomeration, and the results show that the model can better simulate 
the transmission process of the urban agglomeration for a certain scale of epidemic. The number of cases within 
the urban agglomeration is higher than the number of cases imported into the urban agglomeration from external 
cities. The composition of cases in the core cities of the urban agglomeration changes with the adjustment of 
prevention and control measures. In contrast, the number of cases imported into the secondary cities is 
consistently greater than the number of cases transmitted within the cities. A traffic control measures discount 
factor is introduced to simulate the development of the epidemic in the urban agglomeration under the traffic 
control measures of the first-level response to major public health emergency, traffic blockades in infected areas, 
and public transportation shutdowns. If none of those traffic control measures had been taken after the outbreak 
of COVID-19, the number of cases in the urban agglomeration would theoretically have increased to 3879, which 
is 11.61 times the actual number of cases that occurred. If only one traffic control measure had been used alone, 
each of the three measures would have reduced the number of cases in the urban agglomeration to 30.19 %– 
57.44 % of the theoretical values of infection cases, with the best blocking effect coming from the first-level 
response to major public health emergency. Traffic control measures have a significant effect in interrupting 
the spread of COVID-19 in urban agglomerations. The methodology and main findings presented in this paper are 
of general interest and can also be used in studies in other countries for similar purposes to help understand the 
spread of COVID-19 in urban agglomerations.   

1. Introduction 

As we all know, we are still combating COVID-19 three years since its 
emergence (Wang et al., 2022). The COVID-19 epidemic continues to 
have a significant impact on the livelihood of the population, and the 
economic development and future of cities is in jeopardy (Hu et al., 
2021). According to WHO data, by the end of September 2022, the cu-
mulative number of confirmed cases worldwide exceeded 500 million, 
with >5.7 million deaths due to COVID-19. Many attempts have been 
made to block the spread of the epidemic, not only through medical 

measures, but also through many effective non-pharmacological in-
terventions (Takefuji, 2022; Wang et al., 2022). 

The theory behind non-pharmacological interventions is to limit 
population build-up and movement, and traffic control is the most 
effective way to do this (Xiang, Chen, Peng, Wang, Liu, 2022a). To block 
the spread of the epidemic, >140 countries around the world have taken 
various traffic control measures, including home quarantine, public 
transport shutdowns and traffic shutdowns in infected areas (Gao et al., 
2022; Mayer & Boston, 2022). In the United States, Australia and China, 
the most common traffic control measures used include shutting down 
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public transportation in cities at the center of the outbreak, blocking all 
modes of transportation in the infected areas of cities and requiring 
residents to stay at home in quarantine for about 14 days if there are 
cases of infection in their community (Beck et al., 2021; Goenaga et al., 
2021; S. Lai, Ruktanonchai, Zhou, Prosper, et al., 2020a; Z. Liu & Stern, 
2021). In addition, some countries have declared states of emergency in 
some cities or the whole country to encourage residents to stay in their 
homes and reduce unnecessary travel, such as New Zealand's “Alert 
Level System”, Japan's “State of Emergency”, and China's “ first-level 
response to major public health emergency” (S. Liu & Yamamoto, 
2022; Mayer & Boston, 2022). Countries with more severe epidemics 
have adopted direct measures of total blockades, for example France and 
India (Dablanc et al., 2022; Pulla, 2020). 

As global cities continue to evolve and develop, urban clusters are 
becoming more and more common (Cantuarias-Villessuzanne et al., 
2021), consisting of an urban agglomeration with a large city as the core 
and two or more supporting cities, forming a compact spatial organi-
zation, with close economic ties and highly developed transportation 
(Kim et al., 2018). This kind of regional spatial structure is common 
around the world, examples including the Chang-Zhu-Tan and Beijing- 
Tianjin-Hebei urban agglomerations in China, the Rhine-Ruhr urban 
agglomeration in Germany, the Seoul urban agglomeration in Korea, 
and the Greater Paris area in northwestern Europe (da Cruz et al., 2020; 
Moreno-Monroy et al., 2021; Ohmagari, 2022). The emergence of urban 
agglomerations provides cities with better opportunities for develop-
ment, but also imposes new challenges for the prevention and control of 
public health emergencies such as COVID-19. Urban epidemic preven-
tion and control face many dilemmas (Yonghong Xiao & Torok, 2020). 
Due to the complex social activities that go on between cities, over- 
control can affect intercity linkages and development, while measures 
that are too lax can lead to the further spread of an epidemic between 
cities (Sajadi & Hartley, 2022). Therefore, reasonable and effective 
traffic prevention and control for urban agglomerations facing an 
epidemic must be studied and discussed in today's circumstances. 

This study attempts to explore some issues of epidemic prevention 
and control from an urban agglomeration perspective, by examining the 
spread of cases between cities. First, we ask what is the composition of 
cases in each member of the studied urban agglomeration, and how each 
member can develop prevention and control measures specifically 
aimed at cases coming from inside and outside of the city. Second, we 
look at how many cases are being imported from outside of the urban 
agglomeration members to the urban agglomeration, and how such 
cases can be prevented and controlled. Third, we ask how cases spread 
among the members within the urban agglomeration. Fourth, we study 
the effectiveness of the traffic control measures taken by each member of 
the urban agglomeration in terms of blocking cases. 

To explore the above issues, this paper develops an Urban- 
Agglomeration-based Epidemic and Mobility Model (UAEMM) capable 
of simulating urban case composition and intercity case transmission. 
The improvements compared with the city-based epidemic and mobility 
model (CEMM) (Wei et al., 2021) include three aspects: (1) the active 
population within the city is considered in predicting the spread of in-
ternal cases; (2) the cure rate is considered; and (3) the distance atten-
uation effect is considered in cross-city transmission. Then, using the 
Chang-Zhu-Tan urban agglomeration as a case study, we investigate 
the case composition of each city, the number of cases imported from 
non-members of the urban agglomeration cluster to the urban agglom-
eration and the cross-transmission among urban agglomeration mem-
bers. Moreover, the effect of traffic control measures taken by urban 
agglomeration members to block case transmission is quantified. The 
methods and ideas used in this study can provide valuable reference 
material for the development of traffic control measures in urban 
agglomerations. 

The rest of the paper is structured as follows: Section 2 provides a 
literature review, Section 3 the methodology, Section 4 describes the 
case study and data sources, Section 5 presents the results and analysis, 

and Section 6 offers a discussion and conclusion. 

2. Literature review 

Modeling infectious diseases requires complex systems work (Sanz 
et al., 2014). Since Cohen's work on pioneering models of human in-
fectious diseases, scientists have worked on various mathematical 
models for studying the spread of infectious diseases (Cohen, 1992). 
Different infectious diseases have different epidemiological character-
istics, and the models built are also highly variable (Li et al., 2021). The 
major infectious disease models that have been created for COVID-19 
can broadly be divided into the following two groups: 

The first group contains the classical infectious disease models based 
on SIR (Susceptible-Infected-Recovered) and SEIR (Susceptible- 
Exposed-Infected-Recovered) (Kermack & McKendrick, 1939; Lekone & 
Finkenstädt, 2006; Jielun Liu et al., 2022; Shulgin et al., 1998). These 
models can be a good fit for urban epidemics, describing quantitatively 
the development and elimination of an epidemic through indicators 
such as peak, peak period and basic regeneration number (He et al., 
2020; Yang et al., 2020). To determine the effects of different inter-
vention measures on the spread of COVID-19, scholars have varied the 
SIR and SEIR models by introducing different populations. For example, 
Nguyen et al. (2022) established the SIR-M model by adding the mobile 
population M to the SIR model, and used this to study the evolution of 
the epidemic in Melbourne, Australia, under different prevention and 
control measures; Liu et al. (2022) then proposed the SEPIR model based 
on the SEIR model but considering a pre-symptomatic population P. 
They used their model to evaluate the effects of stay-at-home re-
quirements and travel restrictions on the spread of cases in the Tokyo 
urban agglomeration; Chuan et al. (2020) added the quarantine popu-
lation Q to develop the SEQIR model, and used it to evaluate the 
effectiveness of quarantine measures in India at the time. Other models 
along similar lines include SEIQRD (Ghostine et al., 2021), SEAHIR 
(Leontitsis et al., 2021), MSEIR (X. Chen, Zhang, Wang, Gallaher, & Zhu, 
2021b) and SEIRD (Maugeri et al., 2020). 

The second group comprises the machine learning and deep learning 
of infectious disease models in the context of big data. Such models have 
been widely used in the analysis and propagation prediction of COVID- 
19 (Shorten et al., 2021). Chimmula et al. use LSTM (long short-term 
memory) models under deep learning to predict the arrival of the Ca-
nadian epidemic's turning point; Mphale et al. (Mphale, Okike, & 
Rafifing, 2022) use a machine-learning time-series model, the autore-
gressive integrated moving average (ARIMA) model, to predict the 60- 
day outbreak in Botswana in order to better combat it; Zhang et al. 
(2020)(Zhang, Ji, Zheng, Ye, & Li, 2020) assess the impact of a city 
lockdown in limiting the spread of COVID-19, through deep-learning 
and network science models. Other examples include comparative 
modeling using six deep-learning time-series methods (Zeroual et al., 
2020), modeling using machine learning combined with logistic models 
(Tian et al., 2020) and modeling using artificial neural networks (Gha-
nim et al., 2022). 

The transmission models proposed in the above studies can offer a 
good fit for the development of city epidemics and provide a valid 
assessment of epidemic prevention and control measures. Yet they 
ignore the characteristics of intercity (or international) transmission of 
cases, i.e., the relevant spatial aspects of infectious disease transmission 
are largely ignored (Arino et al., 2007). Studies of urban epidemics 
usually assume closed rooms, which is clearly unreasonable. Therefore, 
Wei et al. (Wei et al., 2021) proposed the CEMM based on an urban 
spatial network perspective to model the spatial spread of cases. How-
ever, their intracity case projections were based on the existing number 
of infected cases and existing transmission rates in the city, rather than 
on the intensity of citizens' intracity travel, preventing accurate 
modeling of the structure of cases in the city. Because the COVID-19 
virus spreads mainly through human activity, it is often more accurate 
to predict its transmission chain based on the activity of residents 
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(Truong & Truong, 2021). In addition, Wei et al. (Wei et al., 2021) were 
unable to quantify the proportion of cases imported from each city, or to 
assess either the impact of transportation measures on cases within and 
outside of the city or the effect of blocking on specific cities from which 
cases were being imported. 

The main contributions of this study are as follows: first, breaking 
with the traditional notion of the room and board model, a UAEMM is 
proposed to simulate the spread of cases between cities as well as within 
cities, based on the realistic context of urban transportation networks 
and intercity population mobility factors, and considering the active 
intracity population. Second, since imported cases from distant cities 
tend to be overestimated, we also consider distance decay effects for 
inputs from non-members of the urban agglomeration, calibrated by the 
Gaussian function. Finally, policy factors are introduced and calibrated 
using a difference in differences (DID) model, and then used to simulate 
the development pattern under different traffic control measures. The 
methodology and main findings presented in this paper will be of gen-
eral interest and can also be used in other countries for similar purposes 
to help the understanding of the spread of COVID-19 in urban 
agglomerations. 

3. Methodology 

3.1. Theoretical basis of the model 

Population migration is a factor that cannot be ignored in infectious 
disease research. It can lead to the transmission of carriers of the virus. 
Generally speaking, if there is an infected but undiagnosed individual in 
a city, exhibiting travel behavior, then a certain percentage of people 
will be infected. The greater the scale of population migration, the more 
infections there will be. In other words, the scale of population migra-
tion between cities represents the probability of the spread of infectious 
diseases. The spread of infectious diseases can occur not only within 
cities, considering each city as a specific population, but also from one 
city to another due to travel. However, existing studies have mainly 
focused on case spread caused by population export from the cities at the 
epidemic center to other cities, while case spread in cities that are not 
epidemic centers has been less studied, and this type of research method 
can be considered single epidemic center export, as shown in Fig. 1. 

It should be said that many countries have now formed more com-
plete high-speed transportation networks. China has a relatively well- 
developed high-speed rail network. Korea, the U.S. and Japan also 
have very mature rail, air and high-speed rail layouts, and their cities are 
easily accessible. Further, with the exception of some less developed 
countries, most countries are linked within a more complete interna-
tional transportation network. This shows that population flow between 
cities can occur through various modes of transportation, such as high- 
speed rail, ordinary railroad, and air. The greater the accessibility of 
transportation, the easier is the spread of cases. Thus, in a context where 
populations can migrate rapidly, case spread may not only come from 
the city that is at the center of the outbreak, but also from other cities or 
countries. This requires a multi-city epidemic spread model that con-
siders not only the spread of the epidemic from the city at its center, but 
also the spread from non-central cities, as shown in Fig. 2. Non- 
coincidentally, 43 % of the early cases reported outside of Wuhan 
(before January 23, 2020) had no known travel history to Wuhan, and 
these cases were distributed throughout China. Therefore, this study will 
use the multi-city epidemic spread model as the basis for constructing its 
model and conducting the analysis. 

3.2. Urban-agglomeration-based epidemic and mobility model  

1. The model of migration scale between two cities 

The migration scale between two cities is calculated from the total 
scale of the first city's move-out and the proportion of that migration that 
goes to the second city, as shown in Eq. (1): 
⎡

⎣
I1,1,t ⋯ I1,j,t

⋮ ⋱ ⋮
Ii,1,t ⋯ Ii,j,t

⎤

⎦ = Sout
i,t ×

⎡

⎣
ω1,1,t ⋯ ω1,j,t

⋮ ⋱ ⋮
ωi,1,t ⋯ ωi,j,t

⎤

⎦ (1)  

where Si, t
out is the total move-out scale of city i at time t; ωi, j, tis the 

percentage of city i’s move-out that migrates to city j at time t; and Ii, j, t is 
the migration scale between city i and city j at moment t.  

2. The model of imported infection cases 

There are two important factors to be considered in the spread of 
intercity case import. First, the spread of cases between cities has a 
distance attenuation effect. This means that the number of cases far from 
the center of the outbreak tends to be overestimated and the number 
close to the center of the outbreak underestimated. Second, returns to 
scale is the basis for many powerful results in economics and economic 
geography (Bond-Smith, 2021). Power functions are often used to 
measure the pattern of increasing or decreasing returns to scale (Sza-
kolczai & Stahl, 1969). The performance of the power function is also 
usually more important than the performance of other functions when 

Fig. 1. Single Center Mode.  Fig. 2. Multi-city epidemic centered spread mode.  
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studying population mobility patterns (Schlapfer et al., 2021). There-
fore, in this study, the power function was also used to characterize the 
impact of the decreasing scale effect on population mobility. 

Seeing each city as an epidemic center, the characteristics of each 
city node will include the number of COVID-19 cases, and the scale of 
the migration between the original city and the destination city. The 
prediction model of imported cases is as follows: 

Ai→
j,t = Ei,t− 1 × β×

[
Ii,j,t− 1 × G

(
dij
) ]n (2)  

where Aj, t
i→ is the predicted number of infected cases imported from city i 

to city j at time t; Ei, t− 1 is the initial seed, that is the number of cases in 
city i at time t − 1, t − 1means the day before time t. For example, if t 
represents January 24, then t − 1 represents January 23; β is the 
transmission rate, which can be calculated according to the growth in 
the number of infected cases at the epidemic center; Ii, j, t− 1 is the 
migration scale from city i to city j at time t − 1; G(dij) is the distance 
decay factor. In addition, through repeated experiments, the best fit 
between estimated and actual cases was achieved when the value of n 
was close to 12.This means that when I (the scale of population migration) 
increases by 1 %, the value of Aj, t

+ increases by 0.5 %. The introduction of 
a power function describes the fact that the growth rate of infected cases 
is lower than the growth rate of the scale of population mobility when 
cases spread between cities, and also explains the fact that in urban 
agglomerations the number of cases contracted is much less high than 
expected, despite the fact that some members have larger population 
inflows.  

3. The model of intracity infection cases 

Besides the intercity transmission, COVID-19 also spreads within 
each city. Therefore, this model considers the amount of intracity travel 
to establish a prediction model for intracity infections: 

A+
j,t = Ej,t− 1 × β×αj,t− 1 × θ (3)  

where Aj, t
+ is the increase in the number of cases in city j at time t; Ej, t− 1 is 

the initial seed, that is the number of cases in city j at time t − 1; θ is the 
epidemic reduction factor, a value ranging from 0 to 1; αj, t− 1 is the 
amount of travel and migration inside city j at time t − 1.  

4. The model of aggregated infection cases 

However, as cases spread, some patients will be cured as the level of 
diagnosis improves. Therefore, we also consider the cure rate in the 
model. The total predicted number of infection cases in this city at time t 
is the sum of the cases at time t-1, minus the cured cases, plus the pre-
dicted number of imported cases and the predicted number of intracity 
cases: 

Aj,t = Aj,t− 1
(
1 − γj,t

)
+
∑

i
Ai→

j,t +A+
j,t (4) 

In Eq. (4), γj, tis the cure rate by city jat t, calculated from the number 
of infection cases and the number of cured cases, and Aj, t− 1 is the 
number of cases diagnosed by city j at t − 1. 

∑

i
Ai→

j,t is the sum of the 

number of cases imported into city from all other cities at moment t.  

5. Epidemics under different traffic control measures 

In real life, the final control effect is the result of the superposition of 
multiple policy effects and instruments. Therefore, we add a factor to 
discount the effect, and name this factor the traffic control policy factor. 
By adding the traffic control policy factor and quantifying the traffic 
prevention and control effects of different measures, we have: 

Aj,P,t = ρp,imported ×Ai→
j,t + ρp,internal ×A+

j,t (5) 

Where ρp is the effect of traffic control policy P on the number of 
cases. Since different measures have different effects inside and outside 
the city, we consider both the import effect, ρp, imported, and the effect of 
intracity propagation, ρp,internal. We established a simple classical DID 
regression model, based on Baidu migration big data, to find different 
traffic control policy effects. It is also adjusted to the level of decision 
making, the impact on traffic, and the degree of policy implementation 
and disposition for different measures implemented in the existing 
literature and in real life; Aj, P, t is the number of cases in city j at time t 
under policy P. 

Eqs. (1) to (5) can be unified as the UAEMM, through which the case 
structure of an urban cluster can be predicted, and the epidemic trend 
estimated under different traffic control measures. In Table 1, we 
compare the UAEMM with the CEMM. 

Description of parameters in CEMM: Nj, t
i→ is the number of cases 

imported from city i to city jat time t; Ni, t− 1 is the number of cases in city 
i at time t − 1; Nj, t

+ is the number of additional local cases in city j at time 
t; Nj, t is the number of cases in city j at time t.  

6. Distance decay effect 

In order to simulate the distance decay effect, we introduce the 
Gaussian function, which is widely used as a distance decay function, as 
shown in Eq. (6). 

G
(
dij
)
=

exp
(

− 1
2

(
dij
d0

)2
)

− exp
(
− 1

2

)

1 − exp
(
− 1

2

) , dij ≤ d0 (6) 

Here, G(dij) is the distance decay factor; di, j denotes the geometric 
distance between cities i and j; d0reflect the geometric distance between 
the two furthest cities in China.  

7. DID model for determining policy factors 

To determine the values of the different policy factors ρp, we build a 
simple classical DID model for regression estimation, as follows: 

ln
(
Si,t

)
= θ0 + θ1⋅Ri,t + ρp⋅Ti,t⋅Ri,t + θ3⋅Ti,t + εi,t (7) 

Here, ln(Si, t) is the logarithmic value of the scale of population 
migration (including out-migration, in-migration and intracity popula-
tion mobility) in city i during time period t. Ti, t is a group dummy 
variable, where 1 indicates the treatment group and 0 the control group. 
Ri, t is the policy variable, which equals 1 during the phase of imple-
menting the traffic measures and 0 in other time periods. θ0 is a constant, 
θ1 a policy effect coefficient and θ3 a treatment group coefficient. ρp is 
the coefficient of the interaction term Ti, t ⋅ Ri, t, which is the quantified 

Table 1 
UAEMM vs CEMM.  

Equations UAEMM CEMM Distinction 

Intercity 
communication 

Aj, t
i→ = Ei, t− 1 × β ×

[Ii, j, t− 1 × G(dij)]n 
Ni→

j,t =

Ni,t− 1 × β × Pij

popui 

Distance 
attenuation factor 
G(dij) is 
considered; 
Decreasing returns 
to scale n is 
considered 

Intracity 
dissemination 

Aj, t
+ = Ej, t− 1 × β ×

αj, t− 1 × θ 
Nj, t
+ = Nj, t− 1 ×

β × θ 
Intracity travel 
factor αj, t− 1 is 
considered 

Total formula Aj,t = Aj,t− 1

(
1 −

γj,t

)
+

∑

i
Ai→

j,t + A+
j,t 

Nj,t = Nj,t− 1 +

∑

i
Ni→

j,t + N+
j,t 

Cure rate γ is 
considered 

Modeling under 
different traffic 
control 
measures 

Aj, P, t = ρp, imported 

× Aj, t
i→ + ρp, internal ×

Aj, t
+

None   
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result of the policy effect. εi, t is the disturbance term.  

8. Epidemic reduction factor and cure rate 

The epidemic reduction factor θ shows the degree of severity of the 
epidemic in the city and the epidemiological risk of cases within the city. 
In general, if the value of θ is equal to or close to 0, the city is considered 
to have a low degree of epidemic severity and a low risk of intra-city 
epidemics; in contrast, a value of θ of 1 or close to 1 is considered to 
have a high degree of epidemic severity and a higher risk of intra-city 
epidemics. As shown in Eq. (8). 

θ =
Ei,t

∑n

i=0
En,t

(8) 

All parameters in the equation have the same meaning as in the 
above. Eq. (8) is defined as the epidemic discount factor and is equal to 
the ratio of the number of confirmed cases in city i at moment t to the 
sum of the number of confirmed cases in all cities at moment t. 

The cure rate is calculated as shown in Eq. (9). 

γi,t =
Ri,t

Ei,t− 1
(9) 

Ri, t is the number of populations cured in city i at time t. Other pa-
rameters have the same meaning as in the above. 

3.3. Multi-agent system as a technical support 

The multi-agent system (MAS) is a multidisciplinary fusion of com-
plex adaptive systems, artificial life and distributed artificial intelligence 

(Davila et al., 2005). This method can be an important tool for complex 
system analysis and simulation, and has been widely used in epidemic 
simulation. In existing multi-agent models, the agents usually represent 
single units, and the epidemic spread between units takes place through 
mutual contact. In this study, using cities as the basic unit of analysis, the 
assumption is that each city is an agent node and the city population 
scale, number of infection cases and other parameters are used as node 
characteristics. The amount of migration of populations between cities is 
considered to be a connection between agent nodes, so that a multi- 
agent network, also known as an urban network, can be built. There-
fore, the spatial spread of the infectious disease (COVID-19) can be 
simulated as the growth in the number of infection cases in cities and 
their spread between the cities in an urban network, with Netlogo 
software used to implement a specific simulation process. 

4. Application to the case of the Chang-Zhu-Tan urban 
agglomeration 

4.1. Study area and COVID-19 facts 

As aggregations of a number of megalopolises and metropolises, 
urban agglomerations develop on the basis of frequent population 
movements. China has already stepped into a new phase of a central city 
leading the development of an urban agglomeration and then the urban 
agglomeration driving the development of regional economies (Yao Xiao 
et al., 2021). A high population density and close regional relations are 
the most marked characteristics of agglomerations. For example, the 
three adjacent cities of Changsha, Zhuzhou and Xiangtan in China's 
Hunan Province share close geographical connections and frequent 
economic exchanges, while population flow between these three cities 

Fig. 3. Location of Chang-Zhu-Tan urban agglomeration in China and its transportation conditions.  
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accounts for 39.67 % of the total population flow within the entire 
province. 

We chose the Chang-Zhu-Tan urban agglomeration as the application 
case for this paper. Chang-Zhu-Tan is located in the important Yangtze 
River Delta economic belt of China (Fig. 3). It currently has a population 
of 15.30 million, which is 26 % of the total population of Hunan Prov-
ince. Continually propelled by the integration measures implemented by 
this agglomeration, these three cities have become increasingly close 
due to traffic links comprising intercity railways, expressways and na-
tional/provincial roads. This has stimulated population migration 
among the cities, with large amounts of off-site commuting and weekend 
roundtrips. Five intercity bus routes have already been introduced 
within the Chang-Zhu-Tan urban agglomeration, while intercity trains 
have become a form of mass transit, with the number of one-day trains 
having been increased to 76.5 pairs. The total number of travel in-
teractions in these three cities has reached about 400,000 per day. As a 
result, population migration has become more flexible and concen-
trated, while the epidemic's spread has become more threatening. The 
multi-city interactive transmission model should thus be adopted to 
simulate an epidemic's spread in an urban agglomeration. 

On January 12, 2020, the diagnosis of the first COVID-19 patient in 
Changsha was confirmed. Due to being the Hunan provincial capital and 
the closest city of the three to Wuhan, Changsha ended up having the 
severest epidemic outbreak, with 241 diagnosed cases in total, while 
Zhuzhou reported 78 and Xiangtan 35 (as shown in Figs. 4 and 5). It can 
be seen that the peak period of new cases in Changsha was mainly from 
January 27 to February 7, while the numbers of daily-added cases in 
Zhuzhou and Xiangtan were both small, and as a result the general 
epidemic variation was stable in that period. The number of daily-added 
cases in this agglomeration dropped after February 10. 

4.2. Traffic control measures 

At the beginning of the COVID-19 outbreak, three types of policies 
were commonly formulated by Chinese governments at all levels: firstly, 
the most severe type was the activation of the level 1 response to public 
health incidents, by provinces and municipalities directly under the 
central government, which required the people's governments at all 
levels to suspend work and schools (H. Chen, Shi, Zhang, Wang, & Sun, 
2021a; Kandel et al., 2020). The second type consisted of traffic block-
ades in the infected areas, so as to strictly control traffic. This strategy 
was to limit the population outflow from the infected areas and reduce 
the risk of the spread of the epidemic, which was the most important 
measure used to contain the spread of the epidemic from the center to 
the outside. The third type was a passenger transportation shutdown in 
cities with serious epidemics, used to reduce the possibility of human-to- 
human contact and thus COVID-19 transmission (Xiang, Chen, Peng, 
Wang, Liu, 2022b). The three measures, the decision-making levels, the 
scope of their impact, the impact on traffic, and degree of policy 
implementation and disposition are shown in Table 2. 

Hunan Province and the Chang-Zhu-Tan urban agglomeration also 
initiated three outbreak prevention and control measures in the early 
stages of the outbreak, including a first-level response to major public 
health emergency, a traffic blockade in the infected areas and a public 
transportation shutdown, aiming to curb the spread of COVID-19 with 
these traffic control measures. On January 24, after the first case of 
COVID-19 was confirmed in Hunan Province, the government immedi-
ately activated the level 1 response to the public health event, while the 
prefecture cities of the Chang-Zhu-Tan urban agglomeration subse-
quently formulated traffic control measures at different time-points. 
Changsha launched the public health event level 1 response on 
January 24 before executing traffic controls on public transport and in 
the epidemic-affected areas. On January 27, Zhuzhou started to imple-
ment strict controls on the vehicles moving into and out of Hubei 
Province, before completely shutting down urban public transport on 
February 2. Xiangtan exercised epidemic controls for intercity, intracity 
and public traffic starting from January 28. The time-points and main 
details of the major traffic control measures implemented in the 
agglomeration are shown in Fig. 6 below: 

4.3. Data source 

The population migration data were sourced from the Big Data of 

24-Jan
25-Jan
26-Jan
27-Jan
28-Jan
29-Jan
30-Jan
31-Jan
1-Feb
2-Feb
3-Feb
4-Feb
5-Feb
6-Feb
7-Feb
8-Feb
9-Feb
10-Feb
11-Feb
12-Feb
13-Feb
14-Feb
15-Feb

Fig. 4. New daily cases in the Chang-Zhu-Tan urban agglomeration.  

Fig. 5. Trend in number of COVID-19 cases in the Chang-Zhu-Tan urban 
agglomeration. 
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Baidu Migration (http://qianxi.baidu.com/). Baidu Migration Big Data 
is calculated using massive amounts of spatial and temporal big data, 
combined with artificial intelligence technology. The sources include (1) 
the Baidu Map app; (2) third-party applications that require geolocation 
services from Baidu Map; (3) an open platform for transportation and 
travel big data built through a cooperation between Baidu Map and 
government transportation departments. As of 2020, the Baidu Maps 
open platform has provided location services for over 500,000 apps, 
with an average of over 120 billion location service requests per day, 
and some extremely large-scale mobile phone systems and apps are 
using the location services. In terms of the breadth of the Baidu migra-
tion big data sources, they include the numbers of people using various 
migration modes such as roads, high-speed rail and air, but do not give 
the individual numbers migrating using each transportation mode. 
Against the background of the popularity of smart devices, it has more 
advanced breadth, accuracy and validity than traditional population 
census data. 

For this study, Baidu migration data were used for the three cities in 
the Chang-Zhu-Tan agglomeration, from January 1 to February 15, 
2020, with the percentage of the migrations from original city to 
destination city (Fig. 7(a)-(c)), the total move-out scale (Fig. 7(d)), and 
total amount of intracity travel and migration (Fig. 7(e)). Due to the lack 
of migration ratio data in 2019, we adopted the migration ratio data 
from the same period of the lunar calendar in 2021 as a substitute. Based 

on that, we studied and analyzed the weights of the intercity population 
migration. According to the UAEMM, imported infection cases and 
intracity infection cases were fitted into the epidemic data of Chang- 
Zhu-Tan in 2020. In addition, the numbers of diagnosed COVID-19 
cases in the cities of the Chang-Zhu-Tan agglomeration from January 
24, 2020 to February 15, 2020 were retrieved from the official data 
released by the Municipal Health Committee of each city in that period. 

5. Results analysis 

Before proceeding to the analysis of the results, a special note is 
needed. In this paper, we consider all cities associated with the Chang- 
Zhu-Tan urban agglomeration and with a certain scale of epidemic in 
the simulation process but, due to the space limitations of the paper, we 
cannot analyze the case interaction between each city and the Chang- 
Zhu-Tan urban agglomeration. Specifically, we look at the cities 
outside the urban agglomeration uniformly as an input source, and then 
analyze the epidemic's spread between the Chang-Zhu-Tan urban 
agglomeration and the external cities. Reviewing the timeline of the 
actual COVID-19 outbreak, the overseas outbreaks did not reach a 
certain scale until March 2020. Therefore, since we study the time 
period from late January 2020 to mid-February 2020, the importation of 
overseas cases was not considered. 

Table 2 
Information about the three mainstream measures.  

Policy Decision-making 
levels 

Scope of 
policy's 
impact 

Impact on traffic Degree of policy 
implementation and 
disposition 

Permitted travel and conditions 

First-level response to 
major public health 
emergency 

Provincial 
government 

Provincial 
scope 

All modes of 
transportation 

Ultra strictly Allowing a family member to shop that needs to be 
nucleic acid negative; allowing people with serious 
illnesses to travel for medical treatment; allowing 
special workers (medical staff, community workers, 
etc.) who are nucleic acid negative to commute to work. 

Traffic blockades in 
infected areas 

Municipal and 
county 
governments 

Infected areas All modes of 
transportation in the 
infected areas 

More strictly Allow people in non-infected areas to travel for 
shopping, work, and school as normal if they are 
nucleic acid negative. 

Public transportation 
shutdown 

Municipal and 
county 
governments 

Intracity and 
intercity 

City buses, subways 
and cabs and intercity 
buses 

Strictly Allow cross-city travel for private vehicles with a 
negative 24-hour nucleic acid test certificate.  

Fig. 6. Time-points of traffic control measures of Chang-Zhu-Tan urban agglomeration.  
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(a). Percentage of Changsha migrating to Zhuzhou and Xiangtan

(b). Percentage of Zhuzhou migrating to Changsha and Xiangtan

(c). Percentage of Xiangtan migrating to Changsha and Zhuzhou

(d). the total move-out scale of Changsha, Zhuzhou and Xiangtan

(e). the amount of travel and migration inside city of Changsha, Zhuzhou and Xiangtan

0%

5%

10%

15%

20%

25%

1/1 1/16 1/31 2/15

P
er

ce
n

ta
g

e

Date

Zhuzhou-2020 Xiangtan-2020 Zhuzhou-2021 Xiangtan-2021

0%

20%

40%

60%

1/1 1/16 1/31 2/15

P
er

ce
n

ta
g

e

Date

Changsha-2020 Changsha-2021 Xiangtan-2020 Xiangtan-2021

0%

20%

40%

60%

1/1 1/16 1/31 2/15

P
er

ce
n

ta
g

e

Date

Changsha-2020 Changsha-2021 Zhuzhou-2020 Zhuzhou-2021

0

5

10

15

1/1 1/16 1/31 2/15

S
ca

le

Date

Chansha-2021 Changsha-2020 Zhuzhou-2021
Zhuzhou-2020 Xiangtan-2021 Xiangtan-2020

0

5

10

1/1 1/16 1/31 2/15

S
ca

le

Date

Changsha-2021 Changsha-2020 Zhuzhou-2021
Zhuzhou-2020 Xiangtan-2021 Xiangtan-2020

Fig. 7. Baidu migration data for each city of Chang-Zhu-Tan. 
(a). Percentage of Changsha migrating to Zhuzhou and Xiangtan. 
(b). Percentage of Zhuzhou migrating to Changsha and Xiangtan. 
(c). Percentage of Xiangtan migrating to Changsha and Zhuzhou. 
(d). the total move-out scale of Changsha, Zhuzhou and Xiangtan. 
(e). the amount of travel and migration inside city of Changsha, Zhuzhou and Xiangtan. 
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5.1. Weights of population migration 

There has been a significant correlation between population flow and 
the development of COVID-19 (Brockmann & Helbing, 2013), which 
makes the analysis of population flow quite helpful for this epidemic's 
simulation. According to the related intercity migration scale calculated 
using Eq. (1), we applied the chord diagram to analyze the population 
flow weights of four cities, namely the three in the Chang-Zhu-Tan 
agglomeration and Wuhan. The chord diagram is a digital visualiza-
tion method used to disclose the relationships between data in a matrix. 
It is mainly composed of nodes and chords. The node data are arranged 
radially along the circumference, while the weighted (with width) arc 
connecting any two points on the circle is called a chord, and the chord 
(the connecting arc between the two points) represents the correlation 
between the two points. Furthermore, the quantity of nodes in the chord 
diagram refers to the current target number, and the contact area be-
tween the arc and the node (the thickness of the chord) demonstrates the 
degree of relationship or proportional relationship between two target 
data points. 

Fig. 8 shows the changes in the population flow weights from before 
to after the outbreak, and it can be observed that there is no significant 
change in the pattern of population flow in the Chang-Zhu-Tan urban 
agglomeration, but that the weight of the population flow imported from 
other cities to Chang-Zhu-Tan decreases after the outbreak. It is inter-
esting to note that after 23 January, there was still population mobility 
within and between other cities in the urban agglomeration. Possible 
reasons for this are the following five special cases where travel within 
and between urban agglomerations is still possible. 1. military vehicles, 
police vehicles, ambulance, fire-fighting, rescue, sanitation and cleaning 
and other special vehicles; 2. vehicles undertaking tasks such as spec-
imen delivery, medical emergencies, epidemic prevention materials and 
personnel transportation, command and dispatch and other epidemic 
prevention and control tasks; 3. vehicles transporting pregnant women 
awaiting delivery, seriously ill people seeking medical treatment and 
other emergency situations; 4. vehicles for the protection of the liveli-
hood of the public;5. other vehicles with unit certificates for work 
purposes. Therefore, there is still population movement after a public 
health event. Each province declared a first-level response to major 
public health emergency after January 23, 2020. It is unlikely that other 

cities across the country will have exported cases to the Chang-Zhu-Tan 
urban agglomeration after this policy was enacted. Based on this control 
situation and the incubation period of the virus itself, the total number 
of cases imported into the urban agglomeration from other cities may 
have a strong correlation with the scale of the population migration in 
the first five days (Xing et al., 2020). Therefore, the predicted scale of 
the population migration into this urban agglomeration from other cities 
was taken from the five days prior to the emergence of infected cases in 
the Chang-Zhu-Tan urban agglomeration. For example, cases diagnosed 
in this urban agglomeration on January 24, 2020 were correlated with 
the population that migrated from other cities on January 19, 2020 
(Fig. 9). 

5.2. Model analysis 

The time delay between the onset of symptoms of COVID-19 and case 
reporting is noteworthy (S. J. Lai, Ruktanonchai, Zhou, Prosper, et al., 
2020b; Xu et al., 2020). As a result of this delay, the number of reported 
confirmed cases cannot be used directly to evaluate the accuracy of our 
model. According to the “China-WHO Novel Coronavirus Pneumonia 
(COVID-19) Joint Investigation Report”, it was found that the process of 
confirming COVID-19 cases is very complicated. When suspected 
symptoms are discovered, the suspected patient's data should be re-
ported to the municipal level, which should review the report, and if it 
was found to be positive then report it in turn to the provincial level. A 
case will be classified as a confirmed case of COVID-19 after it has been 
rechecked and found to be positive by the provincial experts. After the 
diagnosis is confirmed, the local disease prevention and control center 
will then need to report the confirmed case information to the provincial 
CDC, and then to the provincial health commission, which will then 
release the province's aggregated data the next day at 3 p.m. It takes two 
days from the onset of symptoms of COVID-19 to confirm the diagnosis 
with the case reporting process (China, 2020). Thus, the time delay 
between the onset of symptoms and the case reporting of COVID-19 is 
two days. This is largely consistent with the findings of the study by Lai 
et al. (S. J. Lai, Ruktanonchai, Zhou, Prosper, et al., 2020b). We consider 
this a two-day time delay and recount the number of confirmed cases on 
that day. For example, if the number of confirmed cases in city X is re-
ported to be 1000 on February 10, then it is assumed that the number of 

Before January 23                                                  After January 23  

Fig. 8. Weight map of population flow between Chang-Zhu-Tan urban agglomeration and other cities.  
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infectious disease cases in city X on February 8 is also 1000. 

5.2.1. Robustness 
In this subsection, we test the robustness of the model by adjusting 

the sample in the following ways: (a) A robustness test for a smaller- 
scale epidemic. An epidemic rebound event from July 28, 2021 to 
August 15, 2021, with Zhangjiajie as the center of the epidemic, is 
selected. The outbreak also involved Changsha, Xiangtan, and Zhuzhou, 
with 71, 2, 2, and 21 confirmed cases in the four cities, respectively, 
representing smaller-scale outbreak rebound events. We performed 
linear regression analysis and error analysis on the real and estimated 
cases, and the results are shown in Table 3. (b) Simulation of the 
epidemic for the non-Chinese New Year period when an outbreak of a 
certain scale occurred. To explore the robustness of the model in other 
time periods, a recent epidemic rebound in Sanya, which was the center 
of the epidemic, was selected. The outbreak affected 10 prefectural cities 
and states in Hainan Province, with a cumulative number of confirmed 
cases of 8530, representing a large-scale outbreak rebound event during 
the non- Chinese New Year, from August 1 to September 3, 2022. Again, 
the results of the regression analysis are shown in Table 4. 

The analysis of the results in Tables 3 and 4 shows that the precision 
and accuracy of our established UAEMM is low for outbreaks that do a 
smaller-scale epidemic, but for simulations of outbreaks of a certain 
scale, it does perform well and is robust at any stage. 

5.2.2. Sensitivity 
We also perform a sensitivity test for the empirical parameter θ in eq. 

(3). We fix the values of the other factors, set the initial value of θ to 0.1, 
and observe the case development of each city as θ increases to 1 with an 
increment of 0.1. We also compare RMSE and MAPE as θ increases. 

The sensitivity analysis of θ shows that the move-out of the model 
(number of cases) is sensitive to θ and positively correlated with it. By 

comparing the slopes for the cities, the number of cases is more sensitive 
to θ in Changsha than in Zhuzhou and Xiangtan, and the number of cases 
in Xiangtan has the lowest sensitivity. From the perspective of error, for 
the Changsha cases, MAPE changes little as θ increases from 0.1 to 0.5, 
and then increases gradually as θ increases from 0.5 to 1, while RMSE 
decreases and then increases as θ increases from 0.1 to 1. In Zhuzhou and 
Xiangtan, both RMSE and MAPE increase with the increase in θ. 

5.2.3. Policy factor and distance decay factor 
Based on the timing of the traffic control measures enacted for each 

city, that is the policy intervention nodes, we solve for the policy effects 
of the three traffic control measures, namely, the public health event 
level 1 response, traffic blockade in epidemic-affected areas and public 
transportation shutdown in each city, using the big data from Baidu 
migration from the same period of the 2021 lunar calendar as the control 
group, and present the results in the following Table 5. 

We obtain the distance decay factors of the different cities and the 
Chang-Zhu-Tan urban agglomeration. The constant d0 takes the straight- 
line distance between Shuangyu and Kashgar, which is 5414 km. The 
distance attenuation factor among the members of the Chang-Zhu-Tan 
urban agglomeration takes values between 0.915 and 0.912, and the 
distance attenuation factor between the other cities and Chang-Zhu-Tan 
is between 0.016 and 0.889. 

5.2.4. Accuracy analysis 
To assess the accuracy of the model, we apply the UAEMM and 

CEMM to simulate the number of COVID-19 cases in each city of the 
Chang-Zhu-Tan urban agglomeration from January 24, 2020 to 
February 15, 2020. Fig. 10 shows the results of the linear regression 
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Fig. 9. (a) Cases under different θ; (b) RMSE and MAPE.  

Table 3 
Simulation of indicators related to the Zhangjiajie outbreak.  

City R2 RMSE MAPE 

Zhangjiajie  0.897  6.955 23.061 % 
Changsha  0.338  2.225 97.328 % 
Zhuzhou  0.878  7.780 28.382 % 
Xiangtan  0.614  2.281 94.966 % 

Note: RMSE is root mean square error; MAPE is mean absolute percentage error; 
R2 is the goodness-of-fit. 

Table 4 
Simulation of indicators related to the Sanya outbreak.  

City R2 RMSE MAPE 

Sanya  0.993  7.477 2.188 % 
Ledong  0.986  2.651 9.629 % 
Zhanzhou  0.934  2.170 3.600 % 
Dongfang  0.973  3.104 3.027 % 
Wanning  0.948  3.819 6.235 % 
Lingshui  0.917  2.923 5.784 % 
Lingao  0.906  8.520 9.633 % 
Haikou  0.906  9.862 8.257 % 
Chengmai  0.881  8.332 7.152 %  
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analysis between the estimated cases and the actual cases of the offi-
cially published number of infection cases in each city. Table 6 presents 
the assessment of errors, using indicators such as RMSE (Root-Mean- 
Square-Error) and MAPE (Mean-Absolute-Percentage-Error). Overall, 

the model still has some accuracy in simulating the spread and spatial 
diffusion of the epidemic. 

5.3. Composition of cases in urban agglomeration 

Based on the UAEMM, we roughly estimate the composition of cases 
of disease imported from the cities outside of the urban agglomeration, 
and the urban agglomeration members. From January 24, 2020 to 
February 4, 2020, the percentage of cases imported from non-members 
of the urban agglomeration into the urban agglomeration was 36.40 %, 
and the percentage of cases coming from urban agglomeration members 
was 63.60 % (as shown in Fig. 11(a)). Therefore, urban agglomerations 
should focus on preventing intra-urban-agglomeration transmission, 
which may be due to the spatial structure of urban agglomerations, 
featuring not only highly developed transportation links between 
members but also many economic ties, making the internal prevention 
and control of disease among urban agglomeration members a greater 
issue. 

Specifically, the cases in the core city of Changsha, a member of the 
urban agglomeration, are made up of 54.5 % internal cases and 45.50 % 
imported cases, with 37.3 % of the cases imported from external cities, 
and 4.7 % and 3.4 % imported from Zhuzhou and Xiangtan, members of 
the urban agglomeration, respectively (as shown in Fig. 11(b)). This 
implies that, when an epidemic occurs in Changsha, the population flow 
within the city should be controlled, firstly to prevent the spread of cases 
within the city, and secondly to prevent the influx of cases from cities 
that do not belong to the urban agglomeration, such as Wuhan, which 
was the center of the epidemic, and is immediately adjacent to Chang-
sha, and Guangzhou and Shenzhen from where an influx of population 
into the Chang-Zhu-Tan urban agglomeration occurs in Chinese New 
Year. Zhuzhou city's cases comprise 26.9 % internal cases and 73.1 % 

Table 5 
Effects of different measures in Chang-Zhu-Tan.  

City Level 1 response Traffic blockades in infected areas Public transportation shutdown  

IIM IM IIN IIM IM IIN IIM IM IIN 

Changsha − 0.317*** − 0.164*** − 0.403*** − 0.437*** − 0.415*** − 0.307*** − 0.569*** − 0.592*** − 0.448*** 
Zhuzhou − 0.467*** − 0.329*** − 0.480*** − 0.484*** − 0.507*** − 0.374*** − 0.657*** − 0.615* − 0.394* 
Xiangtan − 0.517*** − 0.301*** − 0.422*** − 0.411*** − 0.480*** − 0.435*** − 0.565*** − 0.498 − 0.322 

Note:1. IIM indicates the impact of the traffic control measures on inward migration scale; IM indicates the impact of the traffic control measures on outward migration 
scale; IIN indicates the impact of the traffic control measures on inner-city activities. 2.*, **, *** denote p < 0.1, p < 0.05, p < 0.01. 
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Fig. 10. Scatter plot of actual and estimated cases in Chang-Zhu-Tan urban agglomeration.  

Table 6 
Accuracy analysis of UAEMM and CEMM for the Chang-Zhu-Tan urban 
agglomeration.  

Model City R2 MAPE RMSE Std. 
error 

sig 

UAEMM (without 
considering 
distance 
attenuation) 

Changsha  0.949 
22.125 
%  12.339  0.048  0.000 

Zhuzhou  0.989 
27.153 
%  7.800  0.025  0.000 

Xiangtan  0.991 26.581 
%  

9.540  0.017  0.000 

UAEMM 
(considering 
distance 
attenuation) 

Changsha  0.990 16.716 
%  

9.850  0.033  0.000 

Zhuzhou  0.992 
19.168 
%  3.362  0.024  0.000 

Xiangtan  0.935 
18.461 
%  5.172  0.016  0.000 

UAEMM 
(Considering 
distance decay 
and decreasing 
returns to scale) 

Changsha  0.993 7.740 
%  

8.617  0.017  0.000 

Zhuzhou  0.995 10.258 
%  

2.052  0.015  0.000 

Xiangtan  0.988 
11.970 
%  1.545  0.023  0.000 

CEMM 

Changsha  0.820 
39.078 
%  

20.158  0.076  0.000 

Zhuzhou  0.886 50.797 
%  

10.736  0.085  0.000 

Xiangtan  0.846 68.804 
%  

18.772  0.104  0.000  
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imported, with 33.30 % of cases imported from Changsha city and 35.9 
% of cases imported from other cities outside of the urban agglomeration 
(as shown in Fig. 11(c)). The composition of cases in Xiangtan and 
Zhuzhou was similar, but Xiangtan has a higher percentage of imported 
cases from Changsha (as shown in Fig. 11(d)). Thus, when an epidemic 
occurs in Zhuzhou and Xiangtan, their connections – both transportation 
and economic – with Changsha, the central city of the urban agglom-
eration, should be cut off first, and then measures such as checking the 
nucleic acid certificate, landing quarantines or banning entry should be 
implemented for other cities, according to the actual epidemic situation 
in those cities, to prevent the importation of cases. As for the intracity 
population movement, unlike in Changsha, a travel ban strategy does 
not have to be implemented, and economic intracity activities can be 
allowed under certain prevention and control measures. 

5.4. Effect of traffic control measures in urban agglomerations 

The theoretical values of infection case were calculated using the 
Baidu migration data for the same period of the 2021 lunar calendar, for 
a natural development state (without considering any medical or non- 
medical interventions, etc.), in the Chang-Zhu-Tan urban agglomera-
tion. In order to study the development of the epidemic under different 
traffic control measures, three traffic control measures were simulated, 
namely the first-level response to major public health emergency 
(labeled P1), traffic blockades in infected areas (P2) and public trans-
portation shutdown (P3). The effectiveness of these traffic control 
measures will now be analyzed from three perspectives.  

1. The impact of the traffic control measures on cases in the Chang-Zhu- 
Tan urban agglomeration 

If the Chang-Zhu-Tan urban agglomeration had not taken any means 
of epidemic prevention or control and allowed the epidemic to develop 
freely, the total number of cases would theoretically have been 11.61 
times the number of actual cases, by February 15, 2020, of which the 
number of cases imported from non-members of the urban agglomera-
tion would have been 3165 cases, 25.12 times the actual number of 
cases, while the number coming from all members of the Chang-Zhu-Tan 
urban agglomeration would have been 3.14 times the actual number of 
cases. The epidemic prevention and control measures taken by the 
Chang-Zhu-Tan urban agglomeration effectively controlled the devel-
opment of the epidemic. Comparing the development of the epidemic in 
the Chang-Zhu-Tan urban agglomeration under the different measures, 
we found that the first-level response to major public health emergency 
had the best effect in interrupting the spread of cases, which might be 
related to the time those measures were promulgated, the level of the 
decision making, and the organization and implementation of the 
emergency response. We also calculated the percentage difference be-
tween theoretical cases and actual cases under the different traffic 
control measures. The three traffic control measures reduced the num-
ber of imported cases by between 84.87 % and 92.74 %, while cases 
coming from within the urban agglomeration were reduced by between 
38.71 % and 58.06 %, showing that the traffic control measures were 
more effective in preventing and controlling the number of cases im-
ported into the urban agglomeration. The development of the epidemic 
under the different measures is shown in Fig. 12(a), and the composition 
of cases in the Chang-Zhu-Tan urban agglomeration under the different 
measures is shown in Fig. 12(b).  

2. Impact of traffic control measures on the cases in each member city 
of the Chang-Zhu-Tan urban agglomeration 

Fig. 11. Composition of cases. 
(a) COVID-19 case composition of Chang-Zhu-Tan. 
(b) COVID-19 case composition of Changsha. 
(c) COVID-19 case composition of Zhuzhou. 
(d) COVID-19 case composition of Xiangtan.   
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(a) Epidemic’s development under different 
measures in Chang-Zhu-Tan

(b) Composition of cases under different 
measures in Chang-Zhu-Tan
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Fig. 12. Total number and types of cases in Chang-Zhu-Tan under different measures. 
(a) Epidemic's development under different measures in Chang-Zhu-Tan. 
(b) Composition of cases under different measures in Chang-Zhu-Tan. 
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Fig. 13. Epidemic situation in Changsha. 
(a) Cases under different measures in Changsha. 
(b) Development of imported and internal cases in Changsha. 
(c) Internal and imported cases in Changsha under different measures. 
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Comparing the total number of cases in each city, the first-level 
response to major public health emergency is still the most effective in 
interrupting the spread of cases, followed by traffic blockades in infected 
areas, with the public transportation shutdown least effective (Figs. 13 
(a), 14(a) and 15(a)). However, it is worth noting that, in the early stages 
of the epidemic, Changsha city was dominated by imported cases while, 
after February 6, the number of internal cases dominated the number of 
imported cases, implying that Changsha city needed to adjust the focus 
of its epidemic prevention and control after February 6 (Fig. 13(b)). 
Comparing the effectiveness of the different measures in blocking in-
ternal and external cases in the city, it is clear that the three measures of 
the first-level response to major public health emergency, traffic 
blockades in infected areas and a public transportation shutdown were 
more effective in blocking imported cases, while the control of internal 
cases in the city was highly uniform and did not differ significantly 
across the measures (Figs. 13(b)(c), 14(b)(c) and 15(b)(c)). This is also 
consistent with our analysis of the composition of urban cases in Section 
5.3, where Zhuzhou and Xiangtan faced a greater risk of external than 
internal urban transmission, indicating that the measures developed by 
the policy makers were effective and precise. Also, comparing the pre-
vention and control effects of each measure in different cities, we found 
that the first-level response to major public health emergency was more 
effective in preventing and controlling the outbreak in Changsha, while 
the public transportation shutdown measure achieved the best preven-
tion and control effect in Xiangtan, and the traffic blockades in infected 
areas achieved good results in blocking the internal transmission in each 
city.  

3. Effect of traffic control measures on the mutual propagation among 
members of the urban agglomeration 

Fig. 16(a)-(c) show the real inter-transmission among cities, while 
Fig. 16(d)-(f) show that under different measures. In terms of the cases 

imported into Changsha, the number imported from Zhuzhou is greater 
than that from Xiangtan. Therefore, the traffic control measures enacted 
in Changsha were more effective at blocking the importation of cases 
from Zhuzhou, and the effects of the three traffic control measures range 
from 44.42 % to 73.33 %, showing again that the first-level response to 
major public health emergency was the best measure. Interestingly, the 
traffic control policy in Changsha was less effective in blocking imported 
cases from Xiangtan than from Zhuzhou, but no cases were imported 
into Changsha after February 8, probably due to the small scale of the 
outbreak in Xiangtan itself and the absence of any concentrated 
outbreak around February 8. Therefore, after February 8, Changsha 
could adjust its measures appropriately and resume some economic 
activities with lower risk under certain conditions. Changsha was the 
largest source of input cases for Zhuzhou, and the traffic control policy 
adopted by Zhuzhou reduced the influx from Changsha by >67.59 %, 
while it was not effect at reducing the number of cases imported from 
Xiangtan. Xiangtan has a similar case composition to Zhuzhou, with a 
reduction of >51.09 % of the cases imported from Changsha following 
the implementation of the measures. This also gives us the insight that 
cities with similar case compositions could learn from each other's 
experience in prevention and control. 

6. Discussion and conclusion 

6.1. Discussion 

Compared with some past studies, the UAEMM developed in this 
study is more applicable to the study of intercity epidemic transmission. 
First, the model is based on the reality of intercity transportation net-
works and the theory of correlation between intercity population 
mobility and infectious diseases, whereas traditional infectious disease 
models only consider transmission within a single city or case output 
from an epidemic center. Examples include the SIR-M proposed by 
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Fig. 14. Epidemic situation in Zhuzou. 
(a) Cases under different measures in Zhuzhou. 
(b) Development of imported and internal cases in Zhuzhou. 
(c) Internal and imported cases in Zhuzhou under different measures. 

W. Xiang et al.                                                                                                                                                                                                                                  



Cities 135 (2023) 104238

15

Muley et al. (Muley et al., 2021) traditional room models such as the 
SEIR developed by Liu et al. (Jielun Liu et al., 2022) and the deep- 
learning models proposed by Chimmula and Zhang (Chimmula & 
Zhang, 2020). These studies were mostly set in a closed space and only 
looked at the evolutionary pattern of the epidemic within the city, 
making it difficult to obtain information on intercity transmission. In 
contrast, we view each city in our study population as an outbreak 
center exporting cases to other cities (Fig. 2), which gives our model an 
intercity perspective and allows us to estimate the risk of cases imported 
from different cities, better reflecting the characteristics of case trans-
mission from an intercity perspective. Second, compared with Wei 
et al.'s (Wei et al., 2021) study, our model compensates for the inability 
of the CEMM to simulate specific urban structures, by considering urban 
inputs and active intra-urban populations, sharpening the focus on in-
ternal and external prevention and control. Finally, our model can 
accurately identify the sources of cases for the members of an urban 
agglomeration, and evaluate the effectiveness of various traffic control 
measures, which was not mentioned by Liu (J. Liu et al., 2021) in his 
discussion on the prevention and control of urban epidemics. 

Based on the results of this paper, we will now make some extended 
proposals, which are practical points that are applicable not only to the 
Chang-Zhu-Tan urban agglomeration but to epidemic control in other 
urban agglomerations as well. 

The first concerns epidemic prevention and control in urban ag-
glomerations. In the early stages of an epidemic, urban agglomerations 
face the likelihood of cases being imported from cities outside the urban 
agglomeration, including cities at the center of the epidemic and other 
cities that have reached a certain level of epidemic and population 
interaction. Simultaneous adoption of the first-level response to major 
public health emergency by urban agglomeration members was the most 
effective means of interrupting the importation of cases from outside 
cities into the urban agglomeration. Traffic closures in infected areas 
were more effective than public transportation shutdowns. This may be 

related to the timing of the measures, the level of decision making, and 
the organization and implementation of the emergency response. The 
first-level response to major public health emergency is a unified pre-
ventive and control measure taken at the provincial level in Hunan 
Province, which has a high degree of uniformity, and a compulsory 
impact on all members of the urban agglomeration, and will attract the 
attention of all administrative departments in each city, thus potentially 
reaping better preventive and control effects. This is consistent with the 
findings of Mayer's (Mayer & Boston, 2022) study of an “alert-level 
system” similar to this policy in New Zealand. However, it contrasts with 
the findings from Liu's (S. Liu & Yamamoto, 2022) study of “a state of 
emergency” in Japan, which was not mandatory and therefore did not 
achieve as good results in containing the epidemic in Japan. 

In addition, we found that the case structure of the core cities in the 
urban agglomeration changed as the epidemic developed, based on the 
results of the case study, e.g., the number of imported cases in Changsha, 
the core city in the Chang-Zhu-Tan urban agglomeration, was greater 
than the number of intracity-transmitted cases from January 24, 2020 to 
February 6, 2020, while after February 6, the case structure in Changsha 
changed, with more internal than imported cases (Fig. 14 (b)). However, 
this was not the case in the other, auxiliary cities, where the imported 
cases were always more than the internally transmitted ones (Figs. 15 
(b), 16(b)). A possible reason for this could be the gradual resumption of 
intracity traffic, as well as economic activities in Changsha, starting on 
February 6. The implication of this is that, as a core city in the urban 
agglomeration, it is important to gradually adjust the epidemic pre-
vention and control policy regarding social activities, with the preven-
tion of imported cases being the main focus in the early stages of the 
epidemic, while the management of the active population in the city 
should be a priority when economic activities within the city resume. 
There is no need for home isolation, travel restrictions and other more 
stringent measures, but it is necessary to require residents to wear a good 
mask and maintain social distance (Aghabayk et al., 2021).For auxiliary 
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Fig. 15. Epidemic situation in Xiangtan. 
(a) Cases under different measures in Xiangtan. 
(b) Development of internal and imported cases in Xiangtan. 
(c) Internal and imported cases in Xiangtan under different measures. 
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cities, preventing the importation of cases should remain the focus of 
outbreak prevention and control. 

The spatial pattern of “one main and two auxiliary” or “one main and 
many auxiliary” in the Chang-Zhu-Tan urban agglomeration is common 

all over the world, for example in the Pearl River Delta urban agglom-
eration in China. Examples from other countries include the Chicago- 
Pittsburgh urban agglomeration in the U.S., the London urban agglom-
eration in the United Kingdom and the Greater Paris urban 
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agglomeration in France. These urban agglomerations are economically 
prosperous, with close population interaction and highly developed 
transportation network patterns among their members. They are also 
currently suffering from the COVID-19 epidemic, and the UAEMM and 
related parameter calculations proposed in this paper are equally 
applicable to other urban agglomerations, requiring only local epide-
miological statistics and population migration data. Furthermore, the 
research framework and the findings in this paper may have the po-
tential to be applied to other countries for similar research purposes, 
which gives the study an international perspective and global relevance. 

This study can be used as a starting point for studying epidemic 
prevention and control in urban agglomerations. It should also be noted 
that it has some limitations: firstly, the UAEMM proposed in this paper is 
only applicable to the simulation of epidemics of a certain scale, and has 
low accuracy for smaller-scale epidemics; secondly, many traffic control 
measures are implemented simultaneously, and their impacts super-
imposed, while our treatment is too simple when we study individual 
measures; finally, we only consider propagation between cities within a 
country, while transmission between countries should also be 
considered. 

6.2. Conclusion 

With the development of global urbanization, urban agglomerations 
and metropolitan areas will become more and more common, and 
dealing with the prevention and control of infectious diseases will 
become a more complex issue in the future. In this paper, we have 
proposed a UAEMM with an urban perspective for studying the spread of 
epidemics in urban agglomerations. The model can be used to analyze 
case composition in cities and urban agglomerations, to simulate 
intercity propagation and to evaluate the effectiveness of traffic control 
measures taken. The Chang-Zhu-Tan urban agglomeration was selected 
for validation purposes. The main findings are as follows: (1) The pro-
posed UAEMM shows some accuracy in simulating the spread of cases 
between cities and is applicable for all time periods, but has low accu-
racy for smaller-scale outbreaks. (2) The pressure on prevention and 
control faced by urban agglomerations mainly comes from the spread 
among members of the agglomeration; the composition of the cases in 
core cities is likely to change with policy changes, requiring a dynamic 
adjustment of prevention and control measures, and auxiliary cities 
should always do their best to prevent imported cases. (3) The first-level 
response to major public health emergency, transportation blockades in 
infected areas and public transportation shutdown measures have 
obvious effects in interrupting the spread of cases. The three measures 
complement each other, and their combined use improves epidemic 
prevention and control. In terms of individual measures, the first-level 
response to major public health emergency works best. 

In addition, there are some ideas for future studies that need to be 
mentioned. The pattern and probability of case transmission in urban 
agglomerations under different shares of commuting modes could be 
studied. In addition, since the strain of COVID-19 is constantly mutating, 
infectious disease models can be developed to cope with different strain 
characteristics. Finally, considering the large number of urban ag-
glomerations in China and the recent changes in policy for epidemic 
control, our further work is to explore the pattern of case transmission 
between other urban agglomerations, to identify the composition of 
cases in different urban agglomerations, to evaluate the effectiveness of 
current epidemic control policies, and to demonstrate the wider suit-
ability of the proposed method. 
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