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Commercial autosegmentation has entered clinical use, however real-world performance may suffer in certain
cases. We aimed to assess the influence of anatomic variants on performance. We identified 112 prostate cancer
patients with anatomic variations (edge cases). Pelvic anatomy was autosegmented using three commercial tools.
To evaluate performance, Dice similarity coefficients, and mean surface and 95% Hausdorff distances were
calculated versus clinician-delineated references. Deep learning autosegmentation outperformed atlas-based and

model-based methods. However, edge case performance was lower versus the normal cohort (0.12 mean DSC
reduction). Anatomic variation presents challenges to commercial autosegmentation.

1. Introduction

Artificial intelligence (AI) is emerging as a powerful transformative
technology, with numerous applications in the radiation oncology clinic.
In particular, autosegmentation algorithms, which automatically
delineate structures of interest from imaging data, have demonstrated
compelling accuracy across numerous sites [1-3]. Autosegmentation
algorithms have also demonstrated the potential to improve clinical
efficiency [4,5], to standardize a high level of accuracy of segmented
volumes across providers [6], and to enable more complex tasks such as
automated treatment planning [7]. Accordingly, a wide variety of
commercial and home-grown autosegmentation tools are being rapidly
adopted and deployed in the clinic [8,9].

However, as autosegmentation algorithms proliferate in both their
existence and use in the clinic, the potential for real world harm in-
creases [10]. Al algorithms are frequently subject to deep, implicit
biases, potentially threatening their generalized use in more diverse
settings [11,12]. Identifying such issues prospectively, and on a per-
patient basis, remains a particularly daunting challenge. Edge cases —
situations that occur at extreme values [“edges”] of an expected distri-
bution and which may present scenarios not encountered during Al
training — are a principal source of this issue, and are an inherent result

of the real-world heterogeneity across individuals and circumstances
[13]. However, the radiation oncology literature is largely devoid of
edge case assessments of autosegmentation tools.

In this study, we sought to evaluate the influence of edge cases
(consisting in this case of eight different classes of uncommon anatom-
ical variation) on the performance of three distinct commercial auto-
segmentation algorithms.

2. Methods and materials
2.1. Clinical cohort classification

All work and other study activities were conducted under institu-
tional IRB approval.

We identified a cohort of 950 consecutive prostate cancer cases
receiving definitive external beam radiotherapy at a single institution
between 2011 and 2019. Each case was screened by a trained physician
for the presence of any one of the following eight classes of anatomical
variants: 1) prostate hypertrophy (i.e. median lobe hypertrophy, overall
glandular hypertrophy), 2) elongated — or so-called “droopy” — seminal
vesicles, 3) hip arthroplasty, 4) prostate surface irregularity or extrac-
apsular extension, 5) prostate-intrinsic metal content (i.e. prostatic
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calcifications, fiducials, or low dose rate brachytherapy seeds), 6) in-
dwelling Foley catheter, 7) SpaceOAR™ hydrogel, or 8) other notable
variation per clinician discretion (i.e. in-field bowel, narrow rectum,
morbid obesity [BMI > 50]). Each identified edge case (n = 112) was
annotated as being among any of these eight classes, and it was possible
for an edge case to have more than one flagged anatomical variant. A
separate cohort of “normal” cases (n = 19) was randomly selected from
individuals without any of the eight classes of anatomical variants
above. The cohort was summarized in Supplementary Table 1, and
detailed individually in Supplementary Table 2.

2.2. Structure segmentation

Target and organ at risk (OAR) contours (prostate, rectum, bladder,
and bilateral femoral heads) were manually delineated on simulation CT
scans by a single radiation oncologist, paying reference to co-registered
MRI images where available, and clinically approved and used for
treatment planning following peer review. Manual contours were
generated according to institutional standards derived from established
consensus protocols. Where relevant, a research-specific rectum struc-
ture was extended from the clinically-approved structure to include the
full length of rectum outside the delineated PTV. Three distinct auto-
segmentation tools were locally installed and run on hardware with a
10-core Xeon processor, 64 GB RAM, and 16 GB GPU implemented: 1)
multi-subject atlas-based autosegmentation (AB) via intensity-based
free-form deformable registration available from MIM Software Inc.
(using the off-the-shelf high risk prostate atlas version 2.014, 2016
package, without any customization), 2) model-based segmentation
(MB) available from RaySearch Laboratories (operating as a black-box
without the use of structure ‘hint’ tools), and 3) a U-Net architecture
[14] deep-learning segmentation (DL) model available from RaySearch
Laboratories version 9B (v. 2.3.0) [15], also operating as a black-box.
Note that the MB method is proprietary and employs statistical shape
models as ready-to-use groups of structures, with parameters for these
models specified internally by RaySearch. We refer the interested reader
to a more nuanced discussion of the distinctions between these different
autosegmentation approaches [16,17].

All imaging and manually-delineated structure data, along with edge
case labels and basic demographic data, have been deposited on the
Cancer Imaging Archive (TCIA; https://www.cancerimagingarchive.
net/) and are available for public access at https://doi.org/10.7937/F
qstf-st65.

2.3. Structure comparison

DICOM-RT structure set (RTSTRUCT) data was exported from
Eclipse, and subsequently imported for analysis using the RadOnc
package (v.1.1.8) [18] and R (v.4.0.3). For each structure type and
autosegmentation approach, Sgrensen-Dice similarity coefficients
(DSC), mean surface distances (MSD), and 95 % Hausdorff distances
(HD) were calculated for autosegmented structures compared to corre-
sponding manually-delineated structures. Structure comparisons were
detailed per individual in Supplementary Table 3-5.

3. Results

We identified 112 edge cases (11.8 %) that harbored one or more of
eight distinct anatomical variants, with prostatic hypertrophy (5.5 %)
being the single most common class of anatomical edge case (Supple-
mentary Table 1). While the vast majority of identified edge cases
contained a single class of anatomic variation, we identified a subset of
the cohort (15.2 %) possessing two or more different classes of anatomic
variation.

Averaging across all structures, we noted no differences in auto-
segmentation performance between AB, MB, and DL in the normal
cohort, with mean DSC [19] of 0.77, 0.76, and 0.78, respectively.
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However, AB and MB autosegmentation performance were significantly
worse overall for anatomical edge cases with either a single abnormality
(p < 0.001) or multiple classes of anatomic variation (p < 0.0001)
compared to normal (Fig. 1, Supplementary Fig. 1). Overall performance
of the DL algorithm was significantly worse among edge cases with
multiple abnormalities compared to single abnormalities (p = 0.03) or
the normal cohort (p = 0.04, with an average decrement of 0.12 DSC
units) (Fig. 1).

In keeping with a known limitation of the DL algorithm, performance
was especially poor across all structures in the presence of hip prostheses
(Supplementary Figs. 2-4). Whereas, the presence of a Foley catheter
appeared to primarily degrade performance for bladder segmentation
(median DSC 0.95 — 0.72; p = 0.02) but not for rectum or femoral
heads, while other anatomic variants (such as a narrow rectum or the
presence of in-field bowel) significantly degraded performance for rectal
segmentation (median DSC 0.63 — 0.37; p = 0.01). Presence of a
SpaceOAR did not appear to degrade prostate segmentation in the ma-
jority of cases, but demonstrated wide variability in performance be-
tween cases across all structures. The performance across different
classes of anatomical edge cases was distinct between algorithms
(Supplementary Figs. 5 and 6). Note that autosegmentation performance
was generally superior for bladder and femoral head structures
compared with prostate or rectum (Supplementary Fig. 7).

Interestingly, algorithm performance among individuals varied
widely, both among edge cases within a single class of anatomic varia-
tion and even within the normal cohort (Supplementary Figs. 2-6,
Supplementary Tables 3-5). For example, while prostatic hypertrophy
as a broad cohort of anatomic variants performed reasonably well
compared to the normal cohort, certain individual cases demonstrated
particularly poor segmentation (Fig. 2A). The same phenomenon
applied to other classes of anatomic variants, including so-called
“droopy” seminal vesicles, where individual cases were particularly
poor performers (Fig. 2B). The most significant outlier observed in the
normal cohort had a short CT scan length, which may have deleteriously
affected autosegmentation performance.

4. Discussion

This study assessed the influence of significant anatomic variants
(edge cases) on the real-world performance of three commercial pelvic
autosegmentation algorithms. Performance was compared with a cohort
of normal cases without such anatomic variants.

While multiple studies have demonstrated good performance and
clinical utility of autosegmentation tools [9,20], we found that
commercially-available autosegmentation algorithms differ substan-
tially in performance and reliability. Our work demonstrated improved
robustness of a deep learning algorithm over either an atlas or model-
based approach, and this finding is in keeping with the performance
improvements observed among various deep learning approaches in the
literature [17,21,22]. Nonetheless, we found that anatomical edge cases
pose distinct challenges for autosegmentation tools of at least three
different types. This finding is directly in keeping with the fundamental
caveats of machine and deep learning approaches that arise from mis-
matches between training and operational datasets [23]. We also
described significant variety in performance for different structures
among different edge cases, which may reflect structure-specific in-
fluences of different edge cases as well as innate discrepancies between
the level of difficulty segmenting certain structures with higher or lower
contrast soft-tissue boundaries [16]. To our knowledge, the evaluation
of radiation oncology specific models using such edge cases represents a
novel contribution to the field.

We note several limitations to this work. While we aimed for con-
sistency by leveraging manually-derived contours from a single clinician
at a single institution using images generated by a single CT scanner, we
did not assess inter-observer variability or practice-level variation in
contour delineation within or between institutions, nor technical
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Fig. 1. Overall performance of autosegmentation tools on normal and edge case cohorts. The distribution of Dice similarity coefficients (y-axis) is shown here as box
plots for each of three cohorts of individuals (“Normal” shown in gray, “Edge-case” with a single anatomic variant shown in pink, and “Edge-case ++" with two or
more simultaneous anatomic variants shown in dark red), where each datapoint is an average across all structures for that individual. Performance is reported for
each of three autosegmentation tools: atlas-based autosegmentation [AB], model-based segmentation [MB], and deep-learning based segmentation [DL]). Statisti-
cally significant differences between normal and edge case performance are denoted by asterisks, where (*) and (**) represent p < 0.05 and p < 0.001, respectively
(Wilcoxon Rank-Sum test). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Cross-sectional CT-based anatomy and autosegmentation performance
for representative edge cases. A) Hypertrophic prostate edge case. Each panel
depicts a focused excerpt from a single CT scan, centered about two different
structures (prostate, bladder) in three different planes (axial, sagittal, coronal).
Clinician-delineated “ground truth” contours (MD) for each structure are shown
in red, while atlas-based (AB), model-based (MB), and deep-learning based (DL)
autosegmented contours are depicted in green, orange, and blue, respectively.
Numerical values represent DSC for the corresponding autosegmented volumes
compared to MD volumes. B) So-called “droopy” seminal vesicles edge case.
Each panel depicts a focused excerpt from a single CT scan, centered about the
prostate in two different planes (axial, sagittal). All colors and labeling are as in
Panel A). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

variation in image quality or content associated with different CT
scanning devices or parameters (e.g. scan length). Moreover, we did not
assess the performance of many other available or emerging auto-
segmentation tools; while we hypothesize that the phenomena observed
here apply generally across algorithms and anatomical sites, we have not
demonstrated that explicitly in this work. We did not assess the potential
dosimetric or downstream impacts of autosegmention among edge
cases, nor the real-world implementation or clinical workflow incorpo-
ration of autosegmentation including time and effort savings, clinical
acceptability, or risks of error propagation. Accordingly, it remains
unclear whether statistically significant differences in performance
translate to clinical significance. We note that our normal cohort was
modestly sized and harbored its own outliers in algorithm performance.
We also note that we were statistically underpowered to detect differ-
ences from normal performance in certain categories of edge cases with
fewer examples (Supplementary Table 1). Finally, we were unable to
investigate the inner workings of autosegmentation algorithms to better
ascertain why performance varied so problematically for certain edge
cases but not others, even within the same class of anatomical variants.
Future work addressing these various limitations is certainly warranted.

As autosegmention is more widely adopted in the clinic, we antici-
pate that outliers may pose an ongoing need for identification and
correction to ensure quality of care. However, while autosegmentation
algorithm output may be readily apparent, numerous other classes of
algorithms such as for outcome prediction, could prove challenging to
interpret and therefore difficult to assess the robustness to anatomical or
other edge cases. Our work suggests the potential importance of stress-
testing existing algorithms (as well as those in-development) to account
for various sources of edge cases, in particular including different
sources of anatomical or clinical variation. In the future, specific edge
cases could also be integrated into model development, for instance
using the synthetic minority over-sampling technique [24].

We conclude that generalizability of an algorithm is never assured,
and that poor performance may be difficult to predict as individual cases
may serve as unanticipated outliers. As we embrace machine and deep
learning algorithms in the clinic, we must remain vigilant to potential
sources of error and bias.
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