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Abstract

State estimation is a fundamental part of monitoring, control, and real-time optimization in 

continuous pharmaceutical manufacturing. For nonlinear dynamic systems with hard constraints, 

moving horizon estimation (MHE) can estimate the current state by solving a well-defined 

optimization problem where process complexities are explicitly considered as constraints. 

Traditional MHE techniques assume random measurement noise governed by some normal 

distributions. However, state estimates can be unreliable if noise is not normally distributed 

or measurements are contaminated with gross or systematic errors. To improve the accuracy 

and robustness of state estimation, we incorporate robust estimators within the standard MHE 

skeleton, leading to an extended MHE framework. The proposed MHE approach is implemented 

on two pharmaceutical continuous feeding–blending system (FBS) configurations which include 

loss-in-weight (LIW) feeders and continuous blenders. Numerical results show that our MHE 

approach is robust to gross errors and can provide reliable state estimates when measurements 

are contaminated with outliers and drifts. Moreover, the efficient solution of the MHE realized in 

this work, suggests feasible application of on-line state estimation on more complex continuous 

pharmaceutical processes.
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1. Introduction

Development and application of advanced monitoring, control, and decision-making 

strategies for continuous pharmaceutical manufacturing require a good understanding of 

the current state of the system. However, obtaining accurate description of the state in real 

time can be very challenging due to several theoretical or practical complexities. First, it 

is impossible to directly measure all of the state variables that are related to the product 

quality attributes. In addition, many state variables cannot be measured in real time, leading 
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to time delays longer than the dynamic response of the process. As a result, some critical 

state variables, if not directly or instantly measured, must be estimated from available 

measurements. Moreover, measurements are subject to random errors which may arise 

from uncertainties in the process, change in ambient environment, and signal noise during 

transmission and conversion. To reduce undesirable effects caused by random noise, it is 

also necessary to reconcile the measured values. Therefore, real-time state estimation plays 

a crucial role in efficient monitoring and control of product quality attributes in continuous 

pharmaceutical manufacturing processes.

Given sufficient measurements, one can estimate the current state from a mathematical 

model which, either first-principles or data-driven, describes the relationships between 

the measured and unmeasured states. Additionally, state estimation usually considers 

measurement noise and/or process disturbances. The classical Kalman filter (KF) is an 

optimal state estimator designed for unconstrained, linear systems with random noise 

governed by some normal distribution. However, it is not directly applicable in many real-

world physical systems with hard constraints and nonlinear properties. As a result, a large 

body of KF-based extensions have been proposed, such as the extended Kalman filter (EKF) 

(Bryson, 1975), the unscented Kalman filter (UKF) (Julier et al., 2000), and the ensemble 

Kalman filter (Houtekamer and Mitchell, 1998). Other related state estimation techniques 

include the particle filtering (PF) (Arulampalam et al., 2002), nonlinear recursive dynamic 

data reconciliation (Vachhani et al., 2005, 2006) and multiple model (MM) approaches 

(Arulmaran and Liu, 2017).

On the other hand, moving horizon estimation (MHE) provides an alternative approach 

to estimate the state of the system, which uses a set of past measurements within a 

receding time horizon. The current state is estimated by solving an optimization problem 

which explicitly considers nonlinear system dynamics, multivariate relationships between 

state variables, and hard constraints arising from physical and/or operational limits. MHE 

is usually formulated as a dynamic optimization (DO) problem constrained by a set 

of differential algebraic equations (DAEs). Previous studies have shown that nonlinear, 

constrained MHE has desirable stability properties (Rao et al., 2003) and often outperforms 

the EKF (Abrol and Edgar, 2011; Haseltine and Rawlings, 2005). However, the high 

computational burden is the major challenge in real-time application of MHE (Ramlal et al., 

2007). Fortunately, advanced computational and solution strategies have made it possible to 

solve nonlinear MHE problems efficiently (Abrol and Edgar, 2011; Nicholson et al., 2014). 

In this paper we focus on developing an MHE framework for continuous pharmaceutical 

processes.

In conventional state estimators, measurement errors are usually assumed to be random and 

normally distributed. However, this assumption cannot always be validated since the actual 

distributions of random errors are often unknown. Moreover, traditional state estimators fail 

to consider gross errors or bias, which are relatively lower-frequency, nonrandom errors 

commonly caused by improper installation of instruments, incorrect calibration of sensors, 

or inadequate maintenance. The presence of gross errors can contaminate the reconciled 

measurements and estimates, causing undesirable “smearing” effects (Ozyurt and Pike, 
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2004). To improve the accuracy and robustness of estimators, research in state estimation is 

closely related to topics of data reconciliation (DR) and gross error detection (GED).

Robust estimators, also known as maximum likelihood estimators or M-estimators, are 

commonly used in reconciling measurements contaminated with gross errors. Tjoa and 

Biegler (1991) initially proposed a DR problem with the contaminated Normal function. 

The proposed approach was able to provide unbiased estimates in the presence of gross 

errors without requiring procedures involving iterative use of statistical tests. Subsequently, 

Arora and Biegler (2001) presented a data reconciliation and parameter estimation strategy 

implemented using the Fair function and the Hampel redescending M-estimator. Recently, 

these robust estimators have been implemented in an on-line state estimation framework and 

tested in nonlinear dynamic systems such as continuous stirred-tank reactor (CSTR) and 

distillation column (Nicholson et al., 2014). Other proposed robust estimation techniques 

use Lorentzian, Logistic, Huber, and Welsch estimators (Albuquerque and Biegler, 1996; 

Bourouis et al., 1998; Chen et al., 1998; Fuente et al., 2015; Johnston and Kramer, 1995). 

Systematic comparisons of these various robust estimators can be found in the literature 

(Ozyurt and Pike, 2004; Prata et al., 2008). Inspired by previous work (Nicholson et al., 

2014), we incorporate robust estimators within the standard MHE skeleton, leading to an 

extended MHE for dynamic state estimation with gross errors.

The proposed MHE technique is implemented and tested on two feeding–blending system 

(FBS) configurations. In continuous tablet or capsule production lines, the FBS is the 

last step at which major changes in product composition can be introduced, mitigated, or 

managed. Beyond this blending step, the product composition is largely fixed since final 

product or intermediate streams cannot be reworked. As a result, the optimal operation of the 

FBS is crucial in order to meet the critical quality attributes of the final product. Advanced 

operation strategies, especially model predictive control (MPC), have been proposed for 

continuous power blending (Rehrl et al., 2016). However, these techniques require accurate 

estimates of the current state of the system. To the best of our knowledge, however, little 

work has been done on the real-time state estimation of a continuous blending process.

The rest of this paper is organized as following. The extended MHE strategy and robust 

estimators are described in more detail in Section 2. The nonlinear dynamic model of the 

FBS is provided in Section 3. In Section 4, we compare the standard and extended MHE 

techniques on simulation runs. Finally, conclusions are provided in Section 5.

2. Moving horizon estimator

In this section, we first introduce the standard moving horizon estimation (MHE) approach. 

We then incorporate the robust estimators within the classic MHE skeleton, leading to an 

extended MHE framework which is suitable for nonlinear dynamic systems with gross 

errors.

2.1. Moving horizon estimation problem

MHE is a well-known strategy for constrained state estimation. The basic idea in MHE is 

to estimate the current state of the system using only the last L states and measurements 
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directly, where L is the horizon length. In MHE we split time into two sets Tpast = {t|0 ≤ t 
< k − L} and T = {t|k−L ≤ t ≤ k}, where k is the current time. Set Tpast includes all time 

in the past and increases as time goes by. Time in Tpast are not considered since the states 

in the past are not directly impacting the current state. Therefore, in an MHE problem we 

only consider the time steps in the current time horizon T. The mathematical formulation of 

a standard MHE problem is given by

min Φ(z(k − L)) + 1
2 ∑

t ∈ TM
vT(t)Q−1(t)v(t) + 1

2 ∑
t ∈ TM

wT(t)R−1(t)w(t)

s . t . z(t) = f(dz
dt , z, p*) + v(t) ∀t ∈ T

x(t) = ℎ z, p* + w(t) ∀t ∈ T
zL ≤ z(t) ≤ zU ∀t ∈ T

(1)

where TM = {k − L, k − L + 1, … , k − 1, k} is a set of time when state variables 

are measured, z (t) ∈ ℜN is a vector of state estimates at time t, v (t) ∈ ℜN is a vector 

of unknown disturbance, and w (t) ∈ ℜM is a vector of measurement errors. Q (t) ∈ 
ℜ N×N is the covariance matrix of the unknown disturbances and R (t) ∈ ℜM×M is the 

covariance matrix of the measurement noise. Matrices Q and R are obtained from previous 

measurements and regarded as constants in the MHE problem. The arrival cost function 

Φ(·) presents all the information in the past time horizon Tpast. Given a sufficient large 

horizon length L, the influence from the past is negligible and the arrival cost function Φ(·) 

can be ignored. In the constraints, f(·) is the system model, h(·) is the measurement model, 

x(t) ∈ ℜM is a vector of actual measurements, and p* is a vector of constants. Finally, zL 

and zU indicate lower and upper bounds of the state variables, respectively. In general, the 

standard MHE is formulated as a dynamic optimization (DO) problem constrained with 

differential algebraic equations (DAEs).

2.2. Robust estimators

In the standard MHE problem (1), measurement noise is assumed to follow a normal 

distribution with zero mean and known variance. However, this assumption is violated 

if the actual distribution of random noise is not normal or available measurements are 

contaminated with gross errors. In either case, unfortunately, the traditional weighted least 

squares (WLS) estimators will lead to inaccurate state estimates. Thus we need to introduce 

new estimators to improve the accuracy and robustness of the MHE.

Robust estimators, also known as the maximum likelihood estimators or M-estimators, are 

originally proposed for robust statistics. The inherent robustness of these estimators provides 

a way to handle unknown distributions of random noise and measurements contaminated 

with gross errors. By replacing the WLS with more generalized maximum likelihood 

function, the extended MHE problem is given by
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min Φ(z(k − L)) + 1
2 ∑

t ∈ TM
vT(t)Q−1(t)v(t) + ∑

t ∈ TM
ρ(w(t))

s . t . z(t) = f(dz
dt , z, p*) + v(t) ∀t ∈ T

x(t) = ℎ z, p* + w(t) ∀t ∈ T
zL ≤ z(t) ≤ zU ∀t ∈ T

(2)

where ρt(·) can be any reasonable monotonic function. To concentrate our focus on the 

measurement errors w(t), in the rest of this paper, we ignore the arrival cost function Φ(·) 

and assume that the unknown disturbances v(t) are still normally distributed.

A variety of robust estimators have been used in data reconciliation (DR) and gross error 

detection (GED) (Arora and Biegler, 2001; Chen et al., 1998; Johnston and Kramer, 1995; 

Tjoa and Biegler, 1991). Ozyurt and Pike (2004) first presented a comparative analysis 

among six different estimators. The numerical results show that the Cauchy distribution 

and the Hampel redescending M-estimator outperform over other alternatives in terms of 

solution quality and computational efficiency. Subsequently, Prata et al. (2008) extended 

previous work by comparing robust estimators on nonlinear dynamic data reconciliation 

(NDDR) in the presence of gross errors. The comparison indicates that the Lorenzian 

and Welsch estimators are more attractive. Recently, Llanos et al. (2015) proposed two 

estimation frameworks based on the biweight function and compared them with three robust 

estimators. The numerical results reported show no clear superiority of one M-estimator over 

the others on all of their test cases. In this paper we consider four robust estimators, whose 

gross features are shown in Fig. 1a. The first derivative of each robust estimator, also known 

as the influence function, shown in Fig. 1b, is useful in describing the penalty or weight 

which is contributed by the errors.

The Fair function (Fair, 1974) is widely-used in robust data reconciliation

ρF(ε) = 2cF
2 ε

cF
− ln 1 + ε

cF
(3)

where cF is a tuning parameter and ε = w/σ is the studentized residual. The Fair function is a 

close approximation of the least squares function for small errors. As the residuals increase, 

however, the Fair function becomes a linear function of |ε|. In other words, as |ε| approaches 

infinity, the Fair function put less weight on large errors compared with the least squares 

function. The shape of the Fair function is determined by the parameter cF. Smaller values 

of cF will cause the Fair function to become linear at smaller errors thus causing it to deviate 

more from the least squares function.

The Logistic function, given by

ρLo(ε) = 2ln 1 + exp 1 + ε
cLo

− ε
cLo

(4)
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has a similar shape as the Fair function. However, it does not provide a good approximation 

of the least squares function for small errors. Note that their influence functions increase 

monotonically and asymptotically approach some positive values as |ε| approaches infinity. 

Thus the Fair and Logistic functions are categorized as convex estimators in this work.

The Welsch estimator was introduced by Dennis and Welsch (1978)

ρW(ε) =
cW

2

2 1 − exp − ε
cW

2
(5)

Unlike the convex estimators, the influence function of the Welsch estimator increases 

within a relatively small range of |ε|, and then decreases as the error becomes larger. As a 

result, the nonconvex Welsch function belongs to the group of redescending estimators. The 

Lorentzian function is a redescending estimator introduced by Johnston and Kramer (1995)

ρL(ε) = 1 − 1
1 + ε2/2cL

2 (6)

Note that the Lorentzian function is not a good approximation of the least squares function. 

For both redescending M-estimators, the influence functions asymptotically approach zero 

as the error approaches infinity and no extra penalty will be put on a very large error. 

Therefore, redescending estimators are in general less sensitive to outliers and gross errors 

than the convex estimators. However, an MHE formulation with a non-convex redescending 

M-estimator may converge to inferior local solutions and initialization techniques are 

necessary to guarantee good solution quality in some cases (Nicholson et al., 2014; Ozyurt 

and Pike, 2004).

For the purpose of comparison, robust estimators must be carefully tuned to have similar 

efficiencies. In this work, however, our primary goal is to demonstrate the benefits obtained 

from using robust estimators in the MHE framework. Moreover, previous work has shown 

that performance of robust estimators is not sensitive within a range of parameter values 

(Nicholson et al., 2014). Therefore, systematical tuning of the robust estimators is not 

required. In this work, the parameters are fixed to the optimal values recommended in the 

literature (Nicholson et al., 2014; Ozyurt and Pike, 2004; Prata et al., 2008).

3. Dynamic model of feeding–blending systems

In continuous tablet or capsule production lines, the optimal operation of the feeding–

blending system is crucial in order to meet the critical quality attributes (CQAs) of the final 

product. Advanced monitoring and control strategies of a powder blending process require 

accurate estimation of the current state of the system. To demonstrate our extended MHE 

framework, we consider the feeding–blending system in the pharmaceutical continuous 

manufacturing pilot plant at Purdue University, consisting of loss-in-weight screw feeders 

and continuous blenders. Previous modeling approaches for continuous power mixing 

process are categorized as Monte-Carlo methods (Marikh et al., 2006), residence time 

Liu et al. Page 6

Chem Eng Res Des. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution (RTD) approaches (Gao et al., 2011), discrete element method (DEM) models 

(Dubey et al., 2011), population balance models (PBMs) (Sen and Ramachandran, 2013), 

and hybrid models combining the DEM and PBM (Sen et al., 2013). However, solving 

these models usually comes at the cost of long computational time. Moreover, it is 

challenging to directly integrate these models within the MHE framework. In this section, 

we focus on developing a reduced-order mathematical model for the FBS in the continuous 

manufacturing line, including a first-principles dynamic model for screw feeders and a semi-

empirical compartment-based model for continuous blenders. The extended MHE problem 

formulation is given in more detail with the proposed dynamics models as constraints.

3.1. Dynamic model for feeder

Loss-in-weight (LIW) feeders, particularly screw feeders, are widely used in continuous 

pharmaceutical processes as sources of material input to the systems. The screw-conveying 

mechanism of LIW feeders is most rigorously described using DEM-based models 

(Cleary, 2007; Hu et al., 2010; Imole et al., 2016). However, the resulting models are 

computationally too demanding to be solved within an MHE problem. By contrast, reduced-

order models, such as first-order transfer models, are usually used to approximate the 

dynamics of LIW feeders (Boukouvala et al., 2012; Singh et al., 2013).

In this work, we present a first-principle model of LIW feeders, where the mass flow rate 

is a function of mass hold-up in the hopper and rotation speed of the screw. The nonlinear 

dynamic model is given by

dMF(t)
dt = − FF(t)

FF(t) = αF
ωF(t)
ωF*

1 + βF
MF(t)
MF*

+ γF
MF(t)
MF*

2 (7)

where MF is the total mass hold-up in the hopper, FF is the mass flow rate of the feeder, 

and ωF is the rotation speed of the screw. Parameters ωF*  and MF*  are the standard rotation 

speed and the mass hold-up. In addition, αF is the proportional parameter, βF and γF are 

parameters related to the normalized mass hold-up. Note that values of these parameters are 

determined by the geometry of the feeder, configuration of the screw, and physical properties 

of the materials. As a result, these parameters must be carefully calibrated using the same 

materials and under the same normal operating and environment conditions.

3.2. Dynamic model for blender

Continuous blenders are used to mix multiple powders or granular materials into a 

blend of uniform composition. The performance of a blender is strongly related to the 

vessel geometry, agitator configuration and agitator rpm. While, as noted earlier, mixing 

mechanism has been represented using a variety of detailed an computationally demanding 

models, recently, Rehrl et al. (2016) proposed a “tank-in-series” model, where the blender 

is separated into N small compartments or tanks. The mass hold-up of each compartment 

is modeled by mass balance equations and the outlet active pharmaceutical ingredient (API) 

concentration is modeled based on the RTD approach.
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As an extension, we propose a “CSTR-in-series” model, where each compartment is treated 

as an ideal CSTR. Similar to the “tank-in-series” model, the outlet mass flow rate of each 

compartment n ∈ {1, …, N} is a function of the current mass hold-up and the blender 

rpm. In addition, the CSTR model allows us to explicitly consider the key component 

concentration in each compartment. The proposed “CSTR-in-series” model provides a 

reduced-order mathematical description of the dynamics of a continuous blender.

The dynamics of the mass hold-up MB,n in compartment n can be described by

dMB, n(t)
dt = FB, n − 1(t) − FB, n(t) ∀n (8)

where FB,n is the outlet mass flow of compartment n. Note that FB,n is also the inlet mass 

flow of compartment n + 1 for n < N. In particular, FB,0 and FB,N are the inlet and outlet 

mass flow rates of the blender, respectively. We assume that FB,n depends on the mass 

hold-up MB,n and the agitator rotation speed ωB

FB, n(t) = αB
ωB(t)
ωB*

βB MB, n(t)
MB, n*

γB
∀n (9)

where ωB* and MB, n*  are the rotation speed and the mass hold-up under the normal operating 

condition, respectively. Both of these variables are treated as given constants in our model. 

In addition, αB is the proportional parameter, βB and γB are the exponential parameters 

related to normalized rotation speed and mass hold-up, respectively. The values of these 

parameters are related to configurations of the agitator and physical properties of the 

mixture. Note that the number of compartments N is also a parameter in our model.

It is possible to consider various parameter values for different compartments. For instance, 

properties of a compartment, such as size and location, can impact the parameter settings. 

However, inclusion of that may lead to a large number of unknown parameters and the 

resulting dynamic model may be over-fitted. Thus αB, βB, and γB are treated as global 

parameters in our dynamic model, meaning that their values are shared by all compartments.

Another important part is the dynamics of the key component concentration CB,n. According 

to the ideal CSTR model, we have

dCB, n(t)
dt = FB, n − 1(t)

MB, n(t) CB, n − 1(t) − CB, n(t) ∀n (10)

Similarly, variable CB,n is also the concentration of the inlet flow of compartment n + 1 for 

n < N. In particular, CB,0 and CB,N are the inlet and outlet key component concentrations of 

the blender, respectively. Again, all CSTRs are assumed to have identical properties such as 

compartment volume and mixing uniformity.

To verify our dynamic model for continuous blender, we estimate parameters based on 

actual process data. Here a total number of 10 cases are considered including steady-state 

and dynamic operations. Various numbers of compartments are used and the corresponding 
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parameters are estimated. In particular, we assume all compartments, treated as ideal 

CSTRs, share the same parameter values. Numerical results indicate that process dynamic 

can be better captured as the number of compartment increases. However, the performance 

improvement is not significant if more than 6 compartments are included in our model. As 

a trade-off between model accuracy and complexity, the number of ideal CSTRs is set to 

6. The measured and simulated outlet flow rates are shown in Fig. 2. It is clear to see that 

the dynamics of the outlet mass flow can be adequately captured by our “CSTR-in-series” 

model.

3.3. Moving horizon problem formulation

In this work we first consider a pilot plant feeding–blending system where the API is fed 

from Feeder 1 (F1) and the excipient from Feeder 2 (F2). The API and excipient are mixed 

in Blender 1 (B1) and the mixture is conveyed to the next unit operation. Under the normal 

operation condition, the mass flow rate of the API is 1.0 kg/h and mass flow rate of the 

excipient is 9.0 kg/h.

State variables of this powder mixing system are defined as follows.

Measured variables

MF1 API mass hold-up of Feeder 1 (kg)

MF2 Excipient mass hold-up of Feeder 2 (kg)

ωF1 Screw rotation speed of Feeder 1 (rpm)

ωF2 Screw rotation speed of Feeder 2 (rpm)

FB1,out Outlet mass flow rate of Blender 1 (kg/h)

CB1,out Outlet API concentration of Blender 1

ωB1 Agitator rotation speed of Blender 1 (rpm)

Unmeasured Variables

FF1 Mass flow rate of Feeder 1 (kg/h)

FF2 Mass flow rate of Feeder 2 (kg/h)

FB1,in Inlet mass flow rate of Blender 1 (kg/h)

CB1,in Inlet API concentration of Blender 1

MB1,n Mass hold-up of compartment n (kg)

FB1,n Outlet mass flow rate of compartment n (kg/h)

CB1,n Outlet API concentration of compartment n

Constants

ωF* , ωB1* Normal rotation speeds (rpm)

MF* , MB1, n* Normal mass hold-ups (kg)

σ*, δ* Variances of noise of state variables

For each feeder, the weight of materials in the hopper and the rotation speed of the screw 

are directly measured. Although the feed mass flow rate is also reported, it is not directly 

measured. Instead, the mass flow rate is calculated from differences in the weight measured 

by the load cell. For the continuous blender, the rotation speed of the agitator is directly 

measured. The outlet mass flow rate and the corresponding API concentration are indirectly 
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measured by process analysis tools (PATs), such as X-ray and near-infrared (NIR) sensors. 

The resulting MHE problem formulation is given by

min ∑
t ∈ TM

∑
i

ρ Xi(t) − Xi(t)
σi*

+ ∑
t ∈ TM

∑
j

Zi(t) − Zj(t)
δj*

2

s . t . dMF1(t)
dt = − FF1(t)

FF1(t) = αF1
ωF1(t)
ωF1* 1 + βF1

MF1(t)
MF1* + γF1

MF1(t)
MF1*

2

dMF2(t)
dt = − FF2(t)

FF2(t) = αF2
ωF(t)
ωF2* 1 + βF2

MF2 t
MF2* + γF2

MF2 t
MF2*

2

FB1, in(t) = FF1(t) + FF2(t)
CB1, in(t) = FF1(t) + FB1, in(t)
FB1, 0(t) = FB1, in(t)
CB1, 0(t) = CB1, in(t)
dMB1, n(t)

dt = FB1, n − 1(t) − FB1, n(t) ∀n

FB1, n(t) = αB1
ωB1(t)
ωB1*

βB1 MB1, n(t)
MB1, n*

γB1
∀n

dCB1, n(t)
dt = FB1, n − 1(t)

MB1, n(t) CB1, n − 1(t) − CB1, n(t) ∀n

FB1, N(t) = FB1, out(t)
CB1, N(t) = CB1, out(t)

(11)

where t is continuous time, TM is a set of time when state variables are measured, i is 

index of measured variables and j is index of unmeasured variables. The objective function 

consists of two parts, the robust state estimators for measured variables X and the least 

square regularization terms for unmeasured variables Z. In the robust estimators, X = 

[MF1,MF2,FB1,out,CB1,out,ωF1,ωF2,ωB] is a vector of the measured variables, X is a vector 

of the actual measurements, and σ* is a vector of the variances of measurement noise. The 

random measurement errors are assumed to be independent and normally distributed. The 

values of σ* are provided in Table 1. These values are determined from our observations 

in our pilot scale powder mixing process. In particular, for rotation speeds the values of 

normalized variance are very small. As a result, we assume rotation speeds are accurately 

measured and they are not considered in the objective function. For either feeder, the weight 

is measured by a load cell located below the hopper. The weight measurements are always 

contaminated with high-frequency random noise since even small vibrations can impact the 

weight readings. The outlet mass flow rate and the API concentration of the blender are 

indirectly measured by spectrum-based sensors. Measurements of spectra, such as X-ray or 

NIR, are also very sensitive to random noise.

In this MHE case study we ignore the arrival function and assume there is no disturbance. 

We assume the robust estimator ρ(·) is time- and variable-independent. The same tuning 

constants are used for all case studies, for the Fair function cF = 1.40, for the Logistic 

function cLo = 0.602, for the Welsch function cW = 2.98, and for the Lorentzian function cL 

= 2.60. These values are used in the literature (Ozyurt and Pike, 2004; Prata et al., 2008) 

where they are tuned for good performance of robust estimators. Although they may not 
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be optimal for our particular case, previous work has shown that performance of robust 

estimators is not very sensitive to these parameter settings (Nicholson et al., 2014).

For unmeasured states MB1,n and CB1,n (n < N) we introduce least squares regularization 

terms in the objective function, where Z = [MB1,1,…,MB1,N−1,CB1,1,…,CB1,N−1] is a vector 

of unmeasured states, Z is a vector of the state estimates, and δ* is a vector of the 

corresponding variance values. Note that these unmeasured states introduce degrees of 

freedom into the system. The regularization terms, given by

∑
t ∈ TM

∑
n

MB1, n t − MB1, n t
σM, n*

2
+ ∑

t ∈ TM
∑
n

CB1, n t − CB1, n t
δC, n*

2

impose penalties on differences between the current and previous estimates of these 

unmeasured states. Without loss of generality and for the sake of similarity in demonstrating 

numerical results, we consider 3 compartments in our “CSTR-in-series” model for the 

continuous blender. To complete the MHE problem formulation, the values of the 

parameters in our dynamic models are provided in Table 2.

4. Results and discussions

In this section we test the proposed MHE framework on a simulation of the powder mixing 

system which consists of two feeders and one blender. Two major types of gross errors, 

outliers and measurement drifts, are introduced into our simulations. Four robust estimators, 

including the Fair function, the Logistic function, the Welsch redescending estimator, and 

the Lorentzian estimator, are compared with the traditional least squares function.

To better demonstrate the performance of different estimators, we focus on estimating 

eight key state variables: four measured variables including MF1, MF2, FB1,out, and CB1,out, 

and four unmeasured variables including MB1,1, CB1,1, MB1,2, and CB1,2. For the “CSTR-in-

series” model with 3 compartments, these unmeasured states are necessary to describe the 

dynamics of the mass flow rate and AIP concentration. However, the state variables from the 

last compartment, MB1,3 and CB1,3, are not considered as they are already represented by 

FB1,out and CB1,out.

4.1. Solution strategy for MHE

From a mathematical point of view, the MHE problem (11) is a dynamic optimization (DO) 

problem constrained by differential algebraic equations (DAEs). Among different solution 

strategies, the simultaneous approach has been shown to offer good solution quality at 

acceptable computational cost (Biegler, 2007, 2010). In the simultaneous approach the DO 

problem is discretized with respect to time and the differential equations are approximated 

by polynomials. Different orthogonal collocation methods can be used to discretize the DAE 

system. The discretization of the original DO gives a well-defined nonlinear programming 

(NLP) problem with only algebraic constraints, which can be solved with general nonlinear 

optimizers.
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The extended MHE framework is implemented in PYOMO, a flexible modeling language 

based on Python (Hart et al., 2017). In our simulations the time step is 1 s and the moving 

horizon includes 10 time steps. The MHE problem is discretized using the Radau collocation 

with 10 finite elements and 3 collocation points. Unless particularly mentioned, the same 

time horizon length and discretization scheme are used in all cases. The resulting large-scale 

NLP problem is solved with IPOPT, an open source nonlinear solver based on interior point 

algorithm (Wachter and Biegler, 2006). The computation is performed on a 64-bit MacBook 

Pro with CPU of Intel Core i5 @2.70 GHz and total memory of 16 GB.

4.2. Case study: outliers

Outliers are common gross errors, which usually have large measurement deviations but 

only exist for a short period of time. Outliers may be due to temporary sensor failures or 

signal transmission errors, and they should be excluded from the measurements. We first test 

the proposed MHE framework on measurements contaminated with outliers.

In our simulations the process is operated under the normal condition, where FF1 = 1.0 

kg/h and FF2=9.0 kg/h. For the blender the outlet mass flow rate FB1,out = 10 kg/h and the 

API concentration CB1,out = 10.0%. The simulations are run for 250 time steps. Outliers 

are individually introduced to each measured state, MF1, MF2, FB1,out, and CB1,out, at time 

step 50, 100, 150, and 200, receptively. For each outlier the corresponding measurement 

deviation is significantly larger than the standard deviation of random noise.

Fig. 3 shows the actual measurements and the state estimates using different estimators. It 

is evident that even a single outlier can significantly contaminate the state estimates when 

the traditional least squares function is used. Particularly, when an outlier is introduced into 

FB1,out or CB1,out, we observe “smearing” effects: the estimates of unmeasured states MB1,n 

or CB1,n also drift away from true values. Moreover, the undesirable contamination can last 

for a long period of time even though the outlier is only present in one step. By contrast, 

the robust estimators perform much better than the least squares function. Since they are 

able to reduce or even eliminate the negative influences caused by the outliers, these robust 

estimators lead to more accurate estimates of all state variables. It can be noted that the 

performance of redescending estimators, the Welsch function and the Lorentzian function, 

are slightly better than the convex estimators in this particular case.

4.3. Case study: drifts

Measurement drifts and biases are persisting gross errors in measurements. Unlike outliers, 

drifts or bias may last for a long time and their deviations from true values, while usually 

much smaller than outliers, can be constant or changing gradually over time. They may 

be caused by improper installation of instruments, incorrect calibration of sensors, or 

inadequate maintenance. In our feeding–blending system the measurements from the X-ray 

and NIR sensors, are usually contaminated with drifts and bias. For instance, powder 

dust slowly building up on the probe can gradually reduce the accuracy of the spectrum 

measurement. Even if all measurement is error-free, imperfections in the regression models 

used in the process analysis tools (PATs) can also lead to biased interpretation of the current 

state.
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In our simulations we consider measurement drifts in two state variables, the outlet mass 

flow rate FB1,out and the API concentration CB1,out, both of which are indirectly measured 

by spectrum-based sensors. In the first case we introduce a single drift into our simulations. 

The process is initially running under steady state at the normal condition. At time step 

250 the set point of CB1,out changes from 10.0% to 12.0% while the total flow rate remains 

the same value. A measurement drift is first introduced to FB1,out at time step 60. The drift 

increases at a rate of 0.108 kg/h per time step and reaches the maximum error of 2.16 kg/h 

at time step 80. It stays at the maximum error level for 50 time steps before it decreases to 

zero at the same rate of 0.108 kg/h per time step. A similar drift is then introduced to CB1,out 

shortly after the change of set point when the process is still under transition dynamics. This 

drift starts at time step 260, increases at a rate of 0.1% for 20 time steps, remains at the 

maximum error level for 50 time steps, and then decreases to zero at the same rate of 0.1%. 

The simulations are run for 400 time steps.

The actual measurements and state estimates are shown in Fig. 4. To better demonstrate 

performance of various estimators, we introduce the average estimation error as a 

quantitative metric. Here, the estimation error is defined as the absolute value of the 

difference between the true state and its estimate. To compute the average estimation error, 

we only consider the time periods when the measurement drifts are introduced. For the 

first measurement drift, we focus on average estimation errors of state variables MB1,1, 

MB1,2, and FB1,out from time step 60 to 150. For the second drift, we consider state 

variables CB1,1, CB1,2, and CB1,out from time step 260 to 350. The average estimation 

errors are shown in Table 3. It is clear that the performance of MHE with least squares 

is the worst, as the drifting errors cause inaccurate estimates of measured and unmeasured 

state variables. For instance, if drift is present in FB1,out, the estimates of MB1,1 and MB1,2 

are contaminated. Similarly, CB1,1 and CB1,2 are incorrectly estimated due to the presence 

of gross errors in CB1,out. The convex robust estimators, the Fair function and the Logistic 

function, outperform the least squares function by reducing the undesirable smearing effects 

in both cases. However, the estimated values are still contaminated especially when there 

exist measurement drifts in CB1,out. The redescending M-estimators, the Lorentzian function 

and the Welsch estimator, give the best performance. These estimators are minimally 

impacted by measurement drifts and give the most accurate state estimates.

In practice multiple drifts may happen at the same time. To test the robustness of the 

proposed MHE framework, we introduce two overlapped drifts into the measurements. The 

drift in MB1,out is the same as in the previous case. The drift in CB1,out starts at time step 

80, increases at the rate of 0.1% for 20 time steps, stays at the maximum error level for 

50 time steps, and then decreases to zero at the same rate. The simulations are run under 

the normal operation condition for 230 time steps. Similar results are shown in Fig. 5. The 

average estimation errors, shown in Table 4, are computed for the time period from step 

60 to 180. Again, the least squares function is the worst and the convex estimators perform 

significantly better. The redescending estimators give the best performance in this test case.
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4.4. Case study: control

Real-time state estimation is usually implemented to facilitate on-line monitoring, operation, 

and decision-making in continuous manufacturing processes. In particular, state estimation 

is crucial to advanced strategies relying on system models, such as model predictive control 

(MPC) and real-time optimization (RTO). To highlight the effect a state estimator has on 

the performance of an advanced process control, we integrate the proposed MHE within a 

nonlinear model predictive control (NMPC) framework. The structure of the control system 

is shown in Fig. 6.

The controlled variables x are outlet mass flow rate FB1,out and the API concentration 

CB1,out. We use y to indicate the measurements of these two controlled variables. The 

manipulated variables u are the rotation speeds of screws in both feeders, ωF1 and ωF2. 

The state estimator takes the values of manipulated variables u and the measurements y 
to estimate the real values of the controlled variables x. The objective of the NMPC is to 

minimized the differences between the estimated controlled variables x and the set point 

values xset. To isolate the influence of gross errors, we assume no model-plan mismatch and 

use the same dynamic model of the feeding–blending system for the process simulator, state 

estimator, and the NMPC controller.

We consider the same simulation setting previously used in the cases with single drift 

in Section 4.3. However, the control decisions are now made based on the current state 

estimates provided by the state estimator. The simulation results are shown in Fig. 7. It 

is worthwhile to point out that all values plotted here are true state values without any 

noise or error. We can see that the MHE can significantly impact the performance of the 

controller. When the measurements are contaminated with gross errors, the MHE with least 

squares reports unreliable state estimates. Based on wrong information of the current state, 

the NMPC gives unnecessary control moves which force the controlled variables to drift 

away from the set-point values. In particular, for a positive measurement drift, the controller 

will decrease the controlled values in order to reduce the gaps between the incorrect state 

estimates and the step-point values. As a result, obvious negative drifts in true values of 

FB1,out and CB1,out arise as shown in Fig. 7. For convex robust estimators, the control of 

FB1,out is not strongly impacted as measurement drift is correctly handled. However, the 

CB1,out is not properly controlled due to the undesirable effects caused by gross errors. 

The redescending estimators, again, give the best performance when incorporated within an 

NMPC framework.

4.5. Case study: system extension

To better demonstrate the proposed MHE framework, we consider a larger feeding–blending 

system with extensions in different aspects. First, we extend the feeding–blending system 

by introducing a third feeder (F3) and a second blender (B2). In particular, the lubricant 

(SiO2) is fed from F3 with a normal flow rate of FF3=0.05 kg/h. In the second blender 

B2, the lubricant is mixed with the powder (API and excipient) from the first blender B1. 

The mass flow rate (FB2,out) and the AIP concentration (CB2,out) are measured at the outlet 

of B2. In addition, we introduce 6 compartments in the blender models, leading to larger 

dynamic models with more intermediate, unmeasured states. In order to accommodate the 
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extra residence time of the second blender, we use a longer moving horizon with duration of 

30 s. As a result, the new dynamic system is significantly larger since more state variables 

are introduced by the additional equipment, more complex models, and larger time window. 

For the sake of simplicity, the same values of key parameters provided in Section 3.3 are 

used here.

According to the previous results, all robust estimators considered in this work perform well 

in eliminating the impact of outliers. Therefore, in this extended case, we only focus on the 

performance of different robust estimators in handling measurement drifts. Similar patterns 

of measurements drifts as presented in Section 4.3 are used here. However, these drifts are 

introduced to the outlet flow rate and AIP concentration of the second blender B2.

For single measurement drift, the results are plotted in Fig. 8. The average estimation errors 

are shown in Table 5. Similarly, we focus on state variables FB1,out and FB2,out for the first 

measurement drift from time step 60 to 150. For the second drift, we only consider the 

average estimation errors of CB1,out and CB2,out from time step 260 to 350.

It can be readily seen that the state estimates of least squares function can be strongly 

impacted by measurement drifts. The robust estimators, however, can significantly reduce 

the negative impact caused by measurement drifts.

The results of multiple measurement drifts are plotted in Fig. 9. The average estimation 

errors are shown in Table 6 where we only consider the time period from step 60 to 

180. Again, the least squares alternative leads to poor state estimates when there exist 

multiple measurements. The robust estimators lead to similar performance. In particular, the 

redescending estimators Lorentzian and Welsch give the best state estimates.

4.6. Computational results

In this section, we summarize the computational performance of the MHE framework for 

the basic and extended feeding–blending systems. The basic system consists of two WIL 

feeders and one continuous blender. In the MHE problem formulation, we consider three 

compartments in the blender model and the moving window is 10 s. The extended system, 

which is built on the basic one, consists of three feeders and two blenders. In addition, we 

introduce six compartments in the blender models and the moving window is extended to 30 

s. For both basic and extended systems, the dynamic optimization problems are discretized 

using the orthogonal collocation method, leading to large-scale nonlinear programming 

problems. Table 7 shows the size and computational time of these optimization problems, 

where the ‘Variable’ column indicates the number of variables in the nonlinear program, 

the ‘Constraints’ column indicates the number of (equality and inequality) constraints in the 

nonlinear program, and the ‘Time’ column shows the average computational time in solving 

each MHE problem. Note that the size of formulations with Fair and Logistic estimators 

are slightly larger, since the representation of absolute residual requires more intermediate 

variables and inequality constraints.
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In both cases, the MHE problem can be efficiently solved within the sampling time interval 

which is one second. However, the average computational time increases as the size of 

problem increases.

To indicate the impact of time horizon, we consider two more time windows for the 

extended system. The size and computational time of the resulting MHE problems are given 

in Table 8. It is clear to see that longer time horizons lead to larger optimization problems, 

which can be more challenging to solve due to more variables and constraints. However, it is 

worthwhile to point out that the solution of the NMPC formulation requires in excess of 20 

s. Therefore, the time window of 30 s for the MHE is a suitable compromise selection from 

the point of view of both control performance and computational efficiency.

5. Conclusions

Real-time state estimation plays a crucial role in on-line monitoring and control of 

continuous pharmaceutical manufacturing. The moving horizon estimation (MHE) approach 

has been extensively studied and widely used in various applications since it is well 

suitable for nonlinear systems with hard constraints. Recent development in numerical 

methods and solution strategies makes it possible to solve the large-scale MHE problem 

efficiently. Traditional MHE approaches assume random measurement noise governed by 

some normal distribution. However, this assumption is not always valid since the actual 

distributions are often unknown or exhibiting departures from normal form. In addition, 

conventional state estimators fail to consider gross or systematic errors, such as bias, 

outliers, and drifts. The presence of gross errors can contaminate the state estimates and 

the reconciled measurements, causing undesirable “smearing” effects. As a result, research 

on state estimation is closely related to topics of data reconciliation (DR) and gross error 

detection (GED).

Inspired by related work in DR and GED, we incorporate robust estimators within the 

classic MHE skeleton, giving an extended MHE framework which is suitable for dynamic 

systems with gross errors. In particular, we consider four robust estimators from two 

major categories, the convex estimators, such as the Fair and Logistic functions, and the 

redescending M-estimators, such as the Welsch and Lorentzian functions. We test the 

proposed MHE framework on a simple feeding–blending system (FBS) configuration which 

includes two loss-in-weight (LIW) feeders and one continuous blender. However, previous 

modeling strategies of the powder mixing process are not practical for use in our MHE 

framework. Therefore, a reduced-order dynamic model is proposed for the LIW feeder, 

where the mass flow rate is a function as screw rotation speed and mass hold-up in the 

hopper. We also introduce a “CSTR-in-series” model for the continuous blender, where the 

blender is separated into a number of ideal CSTRs as compartments.

To illustrate the performance of our MHE framework, we introduce gross errors, including 

outliers and single and multiple measurement drifts, into our simulations of the powder 

mixing system. Numerical results show significant benefits in applying our MHE framework 

with robust estimators. Compared with the conventional least squares function, robust 

estimators can indeed reduce the smearing effects caused by gross errors, leading to more 
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accurate and reliable estimates of the current state of the system. Furthermore, the proposed 

MHE is integrated into a model predictive control (MPC) framework to show the impact 

of state estimation on the performance of advanced process control. The redescending 

estimators, the Welsch and Lorentzian functions, give the best performance among all robust 

estimators considered in this work and the resulting optimization problems can be efficiently 

solved. The MHE framework is also tested on a larger FBS consisting of three LIW feeders 

and two continuous blenders. Computational results indicate that the MHE problem can be 

efficiently solved in real time.

In the future we will implement the proposed MHE framework to a pilot plant FBS which 

is part of a continuous dry granulation line and demonstrate the on-line state estimation 

capabilities. This requires further effort at improving solution reliability and robustness, 

reducing solution time, integrating MHE with advanced monitoring and control strategies, 

and dynamic parameter estimation of process models. The proposed MHE framework will 

also be tested on the complete dry granulation based continuous tableting line.
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Fig. 1 –. 
Robust estimators and influence functions.
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Fig. 2 –. 
Measured (dashed line) and simulated (solid line) outlet mass flow rates.

Liu et al. Page 21

Chem Eng Res Des. Author manuscript; available in PMC 2023 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3 –. 
State estimates for measurements contaminated with outliers.
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Fig. 4 –. 
State estimates for measurements contaminated with single drift.
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Fig. 5 –. 
State estimates for measurements contaminated with multiple drifts.
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Fig. 6 –. 
NMPC framework.
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Fig. 7 –. 
Performance of NMPC with different estimators.
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Fig. 8 –. 
State estimates for measurements contaminated with single drift in the extended system.
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Fig. 9 –. 
State estimates for measurements contaminated with multiple drifts in the extended system.
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Table 1 –

Variance values of random noise in the feeder and blender system.

Absolute variance Normalized variance

ωF1, ωF2, ω B 0.1 0.001

MF1, MF2 0.01 0.05

FB1, out 0.36 0.036

CB1,out 0.001 0.01
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Table 2 –

Parameter values of the dynamic model.

Values Values

αF1, αF2 1.11 × 10−5 α B 2.78 × 10−3

βF1, βF2 0.5 β B 1.0

γF1, γF2 −0.25 γ B 1.5
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Table 3 –

Average estimation errors of selected state variables for single drift.

Drift 1 Drift 2

MB1,1 MB1,2 FB1,out CB1,1 CB1,2 CB1,out

LS 0.0001 0.0004 0.6322 0.0016 0.0066 0.0116

Fair 0.0000 0.0001 0.2908 0.0005 0.0028 0.0073

Logistic 0.0000 0.0001 0.2421 0.0004 0.0019 0.0061

Lorentzian 0.0000 0.0000 0.0143 0.0000 0.0000 0.0001

Welsch 0.0000 0.0000 0.0620 0.0000 0.0001 0.0002
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Table 4 –

Average estimation errors of selected states for multiple drifts.

MB1,1 MB1,2 FB1,out CB1,1 CB1,2 CB1,out

LS 0.0001 0.0003 0.4808 0.0012 0.0051 0.0088

Fair 0.0000 0.0001 0.2190 0.0004 0.0021 0.0056

Logistic 0.0000 0.0001 0.1854 0.0003 0.0015 0.0047

Lorentzian 0.0000 0.0000 0.0127 0.0000 0.0000 0.0001

Welsch 0.0000 0.0000 0.0563 0.0000 0.0001 0.0003
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Table 5 –

Average estimation errors of selected state variables for single drift in extended system.

Drift 1 Drift 2

FB1,out FB2,out CB1,out CB2,out

LS 0.0479 0.2144 0.0004 0.0056

Fair 0.0116 0.0596 0.0001 0.0015

Logistic 0.0088 0.0456 0.0001 0.0010

Lorentzian 0.0007 0.0026 0.0000 0.0000

Welsch 0.0028 0.0079 0.0001 0.0001
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Table 6 –

Average estimation errors of selected state variables for multiple drifts in extended system.

FB1,out FB2,out CB1,out CB2,out

LS 0.0373 0.1514 0.0003 0.0044

Fair 0.0102 0.0464 0.0001 0.0012

Logistic 0.0080 0.0362 0.0001 0.0008

Lorentzian 0.0008 0.0024 0.0000 0.0000

Welsch 0.0032 0.0079 0.0001 0.0001
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