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Mild cognitive impairment in Parkinson’s disease (PD-M) is related to a high risk of dementia. This study explored the whole-
brain functional networks in early-stage PD-M. Forty-one patients with PD classified as cognitively normal (PD-N, n = 17) and PD-M
(n = 24) and 24 demographically matched healthy controls (HC) underwent clinical and neuropsychological evaluations and resting-
state functional magnetic resonance imaging. The global, regional, and modular topological characteristics were assessed in the
brain functional networks, and their relationships to cognitive scores were tested. At the global level, PD-M and PD-N exhibited
higher characteristic path length and lower clustering coefficient, local and global efficiency relative to HC. At the regional level,
PD-M and PD-N showed lower nodal centrality in sensorimotor regions relative to HC. At the modular level, PD-M showed lower
intramodular connectivity in default mode and cerebellum modules, and lower intermodular connectivity between default mode and
frontoparietal modules than PD-N, correlated with Montreal Cognitive Assessment scores. Early-stage PD patients showed weaker
small-worldization of brain networks. Modular connectivity alterations were mainly observed in patients with PD-M. These findings
highlight the shared and distinct brain functional network dysfunctions in PD-M and PD-N, and yield insight into the neurobiology of
cognitive decline in PD.

Key words: functional connectivity; graph theory; mild cognitive impairment; Parkinson’s disease; psychoradiology; resting-state fMRI.

Introduction
Parkinson’s disease (PD), as well as its hallmark motor
symptoms, commonly causes a variable cognitive
decline. Around 25–30% of PD individuals without
dementia have mild cognitive impairment (PD-M),
and 10–20% present as such at the time of diagnosis
(Aarsland et al. 2017). Recognizing PD-M is clinically
critical, as these individuals are more likely to progress
to dementia: the conversion rate to dementia was 59%
in patients with persistent PD-M at 1 year versus 7%
in those with normal cognition during the first year
(Pedersen et al. 2017). However, the neurobiology of PD-M
is not fully understood.

Neuroimaging studies in PD find not only damage
in specific brain regions, but also widespread disrup-
tions of connections between different areas (“discon-
nection disorder”) (Hall and Lewis 2019). These are con-
veniently defined using the brain connectome approach

(Sporns et al. 2005), based on a graph theoretical analysis
which characterizes complex systems by quantifying the
topology of their network representations (Bullmore and
Sporns 2009). This approach is particularly suitable for
exploring cognition, which is not ascribable to individual
brain regions, but rather arises from the whole-brain
network organization and its interaction (Filippi et al.
2013).

Altered topological properties in both structural and
functional networks are reported in PD-M (Baggio et al.
2014; Pereira et al. 2015; Galantucci et al. 2017; Mijalkov
et al. 2017; Aracil-Bolanos et al. 2019). Functional net-
work studies reveal increased global network segregation
(Baggio et al. 2014) and nodal disruption centered on
insular and inferior parietal regions (Aracil-Bolanos et al.
2019) in PD-M relative to PD-N, while structural network
studies report decreased network integration and nodal
disruption affecting mainly frontal and parietal regions
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(Pereira et al. 2015; Galantucci et al. 2017). These studies
are often inconsistent in detail. A key factor underly-
ing these discrepancies is the clinical heterogeneity of
participants: for example, dopaminergic medication can
influence network metrics and mask the impact of PD on
cognitive functions (Pereira et al. 2015); also some studies
do not include healthy controls (HC), and thus lack a
comparison with a reference network (Hassan et al. 2017;
Lopes et al. 2017). Neurodegenerative diseases typically
involve a cascade of pathophysiological alterations, so it
is essential to investigate the early stages to minimize
confounding factors. A technical issue is that functional
networks capture the information transmission dynam-
ics between areas more directly than do structural net-
works (Kelly et al. 2012).

To address these issues, this study uses graph theoret-
ical analysis to compare the topology of brain functional
networks in early-stage medication-free PD-M and PD-N
individuals and a comparison group of HC. In the light
of previous findings (Baggio et al. 2014; Pereira et al.
2015; Galantucci et al. 2017), we hypothesized that 1)
there would be disruptions of network architecture, for
example, decreased network integration and increased
network segregation, in PD-M relative to PD-N and HC,
and 2) these network abnormalities would be correlated
with neuropsychological measures. Moreover, as PD-M
is widely recognized as the translational state between
normal cognitive functioning and dementia (Caviness
et al. 2007; Litvan et al. 2012), and there is a progressive
disruption of brain organization of functional network
with the deterioration of cognitive dysfunction (Hassan
et al. 2017; Lopes et al. 2017), we hypothesized that 3)
there would be more widespread topological alterations
in PD-M compared with PD-N.

Materials and Methods
Subjects
Individuals with PD were consecutively recruited from
the movement disorders outpatient clinic of West China
Hospital of Sichuan University between September 2013
and January 2016. We enrolled 24 PD-M individuals who
met the Movement Disorder Society (MDS) Task Force
criteria (Litvan et al. 2012) and 17 individuals with PD-N.
We recruited 24 age- and sex-matched HC from the local
area by poster advertisements. Exclusion criteria were
prior learning disability, atypical Parkinsonian disorder,
and history of other neurological conditions including
vascular dementia, stroke, and moderate or severe head
injury, major psychiatric or medical illness, as well as
standard magnetic resonance imaging (MRI) exclusions.
All patients were either drug-naïve (NPD-N = 8, NPD-M = 12)
or scanned in an off state (NPD-N = 9, NPD-M = 12) defined
as ≥12 h after the last dose of dopaminergic medication.
Further details of exclusion criteria and evaluation are
described in our previous studies (Suo et al. 2019; Suo,
Lei, Li, Li, Kemp, et al. 2021; Suo, Lei, Li, Li, Peng, et al.
2021). Power analysis using G Power software (Faul et al.
2007) indicated that we needed a sample of at least 66

participants to detect a large-sized effect (f = 0.4, α = 0.05,
1 −β = 0.8) by one-way analysis of variance (ANOVA).

This study was approved by the local human research
ethics committee, and written informed consent was
obtained from all participants before enrollment. All pro-
cedures in this study conform to the ethical standards of
the Declaration of Helsinki.

Clinical and Neuropsychological Assessments
Motor symptom severity was assessed using the MDS
Unified PD Rating Scale part III (UPDRS-III) (Goetz et al.
2007) and Hoehn and Yahr (H&Y) stage (Goetz et al.
2004); diagnostic guidelines in China define those with
H&Y stage ≤2.5 as early-stage PD (Chen et al. 2016).
All participants underwent a comprehensive neuropsy-
chological assessment of five cognitive domains (Litvan
et al. 2012): attention/working memory: Trail Making Test
Part A and Digit Span Backward task; executive function:
category fluency test and 10 points Clock Drawing Test;
language: Wechsler Adult Intelligence Scale-IV (WAIS-
IV) and Similarities and Boston Naming Test; memory:
Hopkins Verbal Learning Test (HVLT) and Brief Visuospa-
tial Memory Test–Revised; visuospatial function: Clock
Copying (CLOX-2) and Benton’s Judgment of Line Orien-
tation (JLO). Global cognitive screening was performed
using the Montreal Cognitive Assessment (MoCA) (Dal-
rymple-Alford et al. 2010) and Mini Mental State Exami-
nation (MMSE). All neuropsychological evaluations were
performed in the week before scanning. Mild cognitive
impairment status in PD was assessed following the MDS
Task Force level II criteria (Litvan et al. 2012), defined as
test scores 1.5 standard deviation (SD) below the norma-
tive mean values for at least 2 neuropsychological tests
within a domain or across different cognitive domains.
PD-M patients were further divided into cognitive sub-
types according to the Task Force criteria: single-domain
subtype, with impairment on two tests within only one
of the five cognitive domains; multiple-domain subtype,
with impairment on at least one test across more than
one cognitive domains (Cholerton et al. 2014).

Data Acquisition
MRI scanning was performed using a 3.0 T scanner (Tim
Trio; Siemens Healthineers). Resting state functional MRI
scanning parameters were as follows: repetition/echo
time 2000/30 ms, flip angle 90◦, matrix size 64 × 64, field
of view 24 × 24 cm2, voxel size 3.75 × 3.75 × 5 mm3, slice
thickness 5 mm without gap, 30 axial slices, and 240
volumes. Foam cushions were used to minimize head
motion. All participants were instructed to be awake
and relaxed with eyes closed. An experienced neurora-
diologist evaluated and verified the quality of acquired
images.

Data Preprocessing
Statistical Parametric Mapping (SPM12, http://www.fil.
ion.ucl.ac.uk/spm) was used for data processing. The
first 10 volumes were discarded to allow for magne-
tization equilibrium. After correction for intravolume
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acquisition time delay and intervolume head motion,
functional images were then spatially normalized to a
standard template (Montreal Neurological Institute) and
resampled into 3 mm isotropic voxels. None of the par-
ticipants showed excessive head motion in terms of the
criterion of translational movement >1.5 mm or rotation
>1.5◦. Next, the normalized data underwent temporal
bandpass-filtering (0.01–0.08 Hz) and smoothing (full-
width at half-maximum: 4 mm). The realigned images
were regressed by Friston 24-parameter motion correc-
tion, and the global mean signal, white matter and cere-
brospinal fluid signals were also regressed out. We used
“head motion scrubbing” to minimize the impact of head
movement (Power et al. 2014). Head motion measured by
mean frame-wise displacement (FD) did not differ among
the three groups (HC = 0.327 ± 0.142, PD-N = 0.238 ± 0.135,
PD-M = 0.309 ± 0.183, P = 0.192, F = 1.696).

Network Construction
Functional connectivity networks were analyzed using
the graph theoretical network analysis (GRETNA) toolbox
(http://www.nitrc.org/projects/gretna/) (Wang et al.
2015). To define network nodes, we used automated
anatomical labeling (AAL) atlas to parcel the brain into
116 regions of interest (ROIs) (Tzourio-Mazoyer et al.
2002). Pearson correlation coefficients of the mean time
series between every pair of ROIs were calculated as
network edges. This generated a weighted 116 × 116
correlation matrix for each participant.

In computing network metrics, a wide range of sparsity
from 0.05 to 0.40 with steps of 0.01 was applied to the
correlation matrices to ensure that the number of edges
among the three groups were same (Zhang et al. 2011).
Additionally, negative correlations were removed from all
functional brain networks, given their ambiguous inter-
pretation (Fox et al. 2009) and detrimental effects on test–
retest reliability (Wang et al. 2011).

Network Metrics
The global and nodal metrics of each network were cal-
culated at each sparsity threshold, after which the area
under the curve (AUC) for each metric across the range
of sparsity thresholds was computed (Zhang et al. 2011).
The global metrics examined included clustering coeffi-
cient (Cp), normalized clustering coefficient (γ ), charac-
teristic path length (Lp), normalized characteristic path
length (λ), and small worldness (σ ) (Watts and Strogatz
1998), as well as the network efficiency including global
efficiency (Eglob) and local efficiency (Eloc) (Latora and
Marchiori 2001). Nodal metrics calculated for each node
were nodal degree, nodal efficiency, and nodal between-
ness (Achard and Bullmore 2007).

A modularity metric Q was also calculated to evaluate
the degree to which the network is subdivided into
specific modules, defined as subdivisions that have more
intramodular than intermodular connections (New-
man 2006). A modified greedy optimization algorithm
(Danon et al. 2006) in GRETNA was applied to detect

the optimal modular architecture by averaging all
participants’ functional networks. We then calculated
the mean intra/within and inter-/between modular
connectivity after applying the derived modular archi-
tecture.

Statistical Analysis
ANOVA was performed to compare the demographic and
neuropsychological data between the three groups, and
post hoc contrasts with Sidak correction. The qualitative
variables were compared by the chi-square test. Clinical
characteristics between PD-M and PD-N groups were
analyzed using two-sample t tests.

Nonparametric permutation tests were performed to
compare the AUC values of network metrics between
the three groups, and post hoc analyses (10 000 permu-
tations) (Ma et al. 2020). Statistical significance was set
at P < 0.05. Partial correlations were used to explore the
relationships of network metrics that showed signifi-
cant group differences with neuropsychological variables
in PD-M group, with age, sex, education years, illness
duration, UPDRS III, and levodopa equivalent daily dose
(LEDD) as covariates. Clinical diagnosis-by-sex/age inter-
action was analyzed using two-way ANOVA; if statis-
tically significant interactions were observed, post hoc
contrasts assessed the simple main effects.

Validation Analysis
Head Motion

We combined a series of strategies to minimize the
effects of head motion, including removal of participants
with excess gross head motion (>1.5 mm in translation
or >1.5◦ in rotation), regression of 24-parameter head
motion profiles (Yan et al. 2013), and scrubbing to censor
“bad” volumes (FD > 0.5 mm) and volumes temporally
close to the “bad” volumes (1 before and 2 after) for
each participant before constructing individual func-
tional networks (Power et al. 2012). We also performed
statistical analysis on topological metrics with mean FD
as a covariate.

Brain Parcellation

How best to define brain network nodes is the subject of
ongoing research. Numerous brain parcellation methods
are available and there is no agreed optimal choice for
defining network nodes (Arslan et al. 2018). Choosing
network nodes based on anatomic templates is popular,
and so for this study we selected one of the most widely
used AAL atlas. However, as recent studies suggest that
this atlas cannot fully reflect functional organization of
the brain (Eickhoff et al. 2018), we also reconstructed
functional brain networks using a functionally defined
atlas (Dosenbach et al. 2010); this includes 160 ROIs
(5 mm radius spheres), identified from meta-analyses of
task-related fMRI studies.

http://www.nitrc.org/projects/gretna/
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Results
Demographic and Neuropsychological
Characteristics
Table 1 shows the demographic and neuropsychological
characteristics of the participants. ANOVA revealed no
significant differences in age, sex, or education years
among the three groups. The two PD subgroups had no
significant differences in the disease duration, mean age
of onset, H&Y stage, LEDD, or UPDRS III (all P < 0.05).

Significant overall differences were observed among
the three groups for MoCA and all the neuropsycholog-
ical tests (all P < 0.05, Table 1) except MMSE, Digit Span
Backward and CLOX-2 tests. In Sidak post hoc testing the
PD-M group performed less well than the PD-N and HC
groups on all the neuropsychological tests (all P < 0.05).
In the PD-M group, there were four cases (17%) with
single-domain impairment (2 executive, 1 attention, and
1 visuospatial domain) and 20 cases (83%) with multiple-
domain impairment.

Global Topological Organization of Functional
Brain Networks
The functional brain networks of the three groups exhib-
ited larger γ > 1 and almost identical λ ≈ 1 compared
with those of random networks (Supplementary Fig. 1).
Significant group effects were found in the AUCs of Cp,
Eloc, Eglob, and Lp (Table 2, Fig. 1). Post hoc testing showed
that relative to HC, both PD-M and PD-N had significantly
lower Cp (P = 0.007 and 0.017), Eloc (P = 0.007 and 0.017),
and Eglob (P = 0.010 and 0.010), and higher Lp (P = 0.002
and 0.005); there were no significant differences in global
metrics between PD-M and PD-N.

Regional Topological Organization of Functional
Brain Networks
Brain regions showing significant group differences in at
least one nodal metric were identified. Significant group
differences were revealed in bilateral Rolandic opercu-
lum (ROL), right Heschl gyrus, right superior temporal
gyrus, left paracentral lobule, left supramarginal gyrus,
right postcentral gyrus, and right fusiform gyrus (P < 0.05,
FDR corrected). Post hoc testing showed that relative
to HC, both PD subgroups had lower nodal efficiency
and nodal degree in these regions (Table 2, Fig. 2). No
significant differences in nodal metrics were observed
between PD-M and PD-N.

Modular Architecture of Functional Brain
Networks
Generated from all individuals, the detected modules
included a sensorimotor module (I), default mode mod-
ule (II), frontal–parietal module (III), subcortical mod-
ule (IV), visual module (V), and cerebellum module (VI)
(Fig. 3A, and Supplementary Material).

While modularity Q decreased as the cost of functional
connectivity increased (Fig. 3B), there was no significant
difference in the AUC between the three groups. Compar-
ing “intramodular connectivity” among the three groups

revealed significant group differences for sensorimotor,
default mode, subcortical, and cerebellum modules
(P < 0.05, FDR corrected). Post hoc testing revealed
that relative to HC, the PD-M group had significantly
decreased intramodular connectivity for sensorimotor,
default mode, subcortical, and cerebellum modules;
compared with HC, PD-N had significantly decreased
intramodular connectivity for the sensorimotor module;
compared with PD-N, PD-M had significantly decreased
intramodular connectivity for the default mode, sub-
cortical and cerebellum modules (Fig. 3C). Comparing
intermodular connectivity among the three groups,
there were significant group differences in intermodular
connectivity for sensorimotor and visual modules,
default mode and frontal–parietal modules, and default
mode and visual modules (P < 0.05, FDR corrected). Post
hoc testing revealed that relative to HC, PD-M showed
significantly decreased intermodular connectivity for
sensorimotor and visual modules, default mode, and
frontal–parietal modules, and default mode and visual
modules; compared with HC, there were no statistically
significant PD-N specific intermodular connectivity
alterations; relative to PD-N, PD-M had significantly
decreased intermodular connectivity for the default
mode and frontoparietal modules (Fig. 3D). No significant
differences were found among the three groups in
intermodular connectivity for other pairs of modules.

Relationships between Network Metrics and
Neuropsychological Data
As shown in Figure 4, in the PD-M group, MoCA scores
were positively correlated with intramodular connectiv-
ity of default mode module (II) (r = 0.510, P = 0.031) and
cerebellum module (VI) (r = 0.500, P = 0.035), and inter-
modular connectivity between default mode module
(II) and frontal–parietal module (III) (r = 0.488, P = 0.040);
WAIS-IV Similarities scores were positively correlated
with Eglob (r = 0.493, P = 0.037) and the nodal efficiency of
right ROL (r = 0.582, P = 0.011), and negatively correlated
with Lp (r = −0.521, P = 0.027). However, these correlations
did not survive multiple comparison corrections at FDR
corrected <0.05. There were no significant relationships
between other measures and cognitive scores (P > 0.05).

Interaction between Groups and Sex/Age with
Respect to Network Metrics
Two-way ANOVA revealed no significant diagnosis-by-
sex interaction or diagnosis-by-age interaction in any
of the network metrics that showed significant group
differences (all P > 0.05, Supplementary Table 1).

Reproducibility/Validity
The main results of functional networks were largely
reproducible when different strategies were used to con-
trol head motion (Supplementary Table 2), and to define
network nodes (Supplementary Table 3).
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Figure 1. Global network properties in the three groups. The y-axis is the area under the curve of each of the global network parameters (identified on
the x-axis) and the three groups are color coded as in the key. Error bars denote standard deviation. Asterisks indicate significant differences (P < 0.05) in
post hoc testing. Abbreviations: PD, Parkinson’s disease; PD-M, PD with mild cognitive impairment; PD-N, PD with normal cognition; HC, healthy control.
Network parameters: Cp, clustering coefficient; γ , normalized clustering coefficient; Lp, characteristic path length; λ, normalized characteristic path
length; Eloc, local efficiency; Eglob, global efficiency; σ , small worldness.

Figure 2. Brain regions showing abnormal nodal centrality in functional brain networks in the three groups. In (A), regions with significant group
differences (P < 0.05, FDR corrected) are visualized using the BrainNet viewer (http://www.nitrc.org/projects/bnv). The bar graphs show the post hoc
pairwise comparisons with significant differences in (B) nodal degree and (C) nodal efficiency. The y-axes are the area under the curve of the two
network parameters and the three groups are color coded as in the key. The x-axis shows the brain regions. Abbreviations: PD, Parkinson’s disease;
PD-M, PD with mild cognitive impairment; PD-N, PD with normal cognition; HC, healthy control; ROL, Rolandic operculum; FFG, fusiform gyrus; PoCG,
postcentral gyrus; SMG, supramarginal gyrus; PCL, paracentral lobule; HES, Heschl gyrus; STG, superior temporal gyrus; L, left; R, right.

Discussion
By investigating early-stage medication-free PD-M
individuals and demographically matched PD-N and
HC, we found global, nodal, and modular functional
network alterations relative to HC across the two PD
subgroups, generally more abnormal in PD-M than PD-
N. At the global level, we observed lower Cp, Eloc, and
Eglob, and higher Lp in PD-M and PD-N relative to HC;
Lp and Eglob were correlated with language domain
scores in PD-M. At the regional level, both PD sub-
groups had lower nodal metrics in sensorimotor regions
than HC. At the modular level, the PD-M group had,
compared with PD-N, lower intramodular connectivity
in default mode, subcortical and cerebellum modules,
and lower intermodular connectivity between default
mode and frontoparietal modules, correlated with MoCA
scores.

At the global level, network analysis of this kind
characterizes both integration (reflected by Lp, Eglob,

and λ) and segregation (reflected by Cp, Eloc, and γ ) of
neural information (Suo et al. 2018). Compared with HC,
individuals with PD had decreased network segregation
(lower Cp and Eloc) and decreased network integration
(lower Eglob and higher Lp), representing a shift toward
“weaker small-worldization” (Suo et al. 2018), possibly as
a result of neurodegeneration. These observations are
largely compatible with previous brain network studies
in PD (Pereira et al. 2015; Galantucci et al. 2017; Suo et al.
2017; Sreenivasan et al. 2019). Apparently at variance
with this, one functional connectome study reported
increased network segregation (higher Cp) in PD-M with
no significant change in network integration (Baggio
et al. 2014); however, that was in medicated individuals
in the on-state, and medication can affect network
measures (Achard and Bullmore 2007; Lopes et al.
2017). The correlation between altered Lp and Eglob and
language cognitive domain scores in PD-M is compatible
with, but of course does not prove, a causal role for

http://www.nitrc.org/projects/bnv
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Figure 3. Modular characteristics of functional brain networks in the three groups. (A) Six modules which were identified using combined data from all
three groups: Details are given in supplementary materials. (B) Network modularity (Q) as a function of sparsity: Modularity Q monotonically decreased
as a function of increasing cost, the AUC of which did not differ among the three groups. The bar graphs show data with post hoc pairwise comparisons
showing significant between-group differences in (C) intramodular and (D) intermodular connectivity. Abbreviations: PD, Parkinson’s disease; PD-M, PD
with mild cognitive impairment; PD-N, PD with normal cognition; HC, healthy controls; SMN, sensorimotor network; DMN, default mode network; FPN,
frontal–parietal network; SN, subcortical network; VN, visual network; CN, cerebellum network.

Figure 4. The relationships between network measures and clinical variables in Parkinson’s disease with mild cognitive impairment. Abbreviations:
Lp, characteristic path length; Eglob, global efficiency; WAIS, Wechsler adult intelligence scale; ROL, Rolandic operculum; MoCA, Montreal cognitive
assessment; module II, default mode network; module III, frontal-parietal network; module VI, cerebellum network.
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disrupted global network integration in the development
of specific cognitive impairments.

At the regional level, both PD subgroups had abnormal
nodal metrics in sensorimotor regions; most of these
regions have been reported to show other abnormalities
in nondemented PD, such as functional disconnection
(Agosta et al. 2017; Tuovinen et al. 2018), hypometabolism
(Hu et al. 2000), and cortical atrophy (Xu et al. 2018).
These regions also overlap with locations where cortical
Lewy neurites and Lewy bodies are found in symptomatic
PD, corresponding to Braak’s stages 4 and 5 (Braak et al.
2003). Nodal efficiency of right ROL, one of the major
regions involved in language processing (Indefrey et al.
2001), was positively correlated with language domain
(WAIS-IV similarities) scores, again at least compatible
with a causal role in cognitive impairment.

At the modular level, PD-M had widespread alterations
compared with HC, while PD-N had very few. On direct
comparison, we found distinct decreases of intramod-
ular connectivity in the default mode, subcortical and
cerebellum modules in PD-M relative to PD-N. We also
found significant correlations of modular properties with
global cognitive function (as measured by MoCA scores).
These modular abnormalities make some pathophysio-
logical sense. Disruption of the default mode network
is related to cognitive deficits in PD (Baggio et al. 2015),
and its functional integrity in PD-M has recently been
related to reversion to cognitively normal status (Chung
et al. 2019). These and our findings all implicate func-
tional disruption of the default mode network as part
of the neural substrate of PD-M. Cognitive abnormali-
ties, especially executive dysfunction, are assumed to be
caused by dopaminergic depletion involving subcortical
circuits (Kudlicka et al. 2011; Pan et al. 2021). This may
underlie the decreased intraconnectivity we observed
in the subcortical module. The cerebellum takes part
in both sensorimotor and cognitive processing (Kansal
et al. 2017; Lan et al. 2021; Suo, Lei, Li, Li, Dai, et al.
2021). Our finding of decreased intraconnectivity in the
cerebellar module, consistent with a recent functional
study showing cerebellar alterations in PD-M (Li et al.
2021), suggests that cerebellum may play a role in the
pathogenesis of PD-M. Moreover, cognitive impairment
can contribute to movement disorders (e.g., gait) in some
individuals with PD (Avanzino et al. 2018). This could be
related to our finding of lower intermodular connectivity
between visual and sensorimotor modules. These results
support the view that cognitive deficits in PD-M are
the consequence of modular level disruption of complex
brain functional networks.

Direct comparison revealed no significant difference
between the two PD subgroups at the global and nodal
levels. It may be that these differences are too subtle
to detect given our relatively small sample size, and the
fact that our patients were at the newly diagnosed early
stage with mean disease duration of 1.8 years, which
may give limited scope for topologic metrics to diverge
between the two PD subgroups. Although small-world

organization at global and nodal levels describes the
key topological properties of complex networks, it does
not provide information about the intermediate scale
organization, which is more completely described by the
modular architecture (Meunier et al. 2010). As disrup-
tion of modules is known to be closely associated with
cognitive impairment (de Haan et al. 2012; Wang et al.
2013), it is not surprising that our PD subgroups differed
significantly in modular characteristics.

It is notable that a generally consistent pattern
(increasing or decreasing) is observed across the three
groups (e.g., Figures 1 and 2). This is consistent with a
recent graph theory study finding increasing disruption
of topographic organization as cognitive impairment
worsens in PD (Hou et al. 2020), and earlier reports
of more severe disruption of network organization
in cognitively impaired compared with cognitively
preserved patients (Pereira et al. 2015; Hassan et al.
2017; Lopes et al. 2017). Altogether, the network metrics
support the idea of progressive decline from PD-N to
PD-M, although of course a longitudinal study would be
required to prove that.

Our study has several limitations. First, while it pro-
vides information about network topology, the detec-
tion of group differences may have been limited by the
relatively small sample size resulting from our strict
recruitment criteria. However, findings of several net-
work studies using the Parkinson’s Progression Markers
Initiative database (PPMI) (https://www.ppmi-info.org/)
(Pereira et al. 2015; Mijalkov et al. 2017; Sreenivasan
et al. 2019) are mostly in line with our results. Although
representative of early stages of PD, both our sample
and the PPMI database are research-based cohorts which
may not be fully representative of a community-based
sample. To develop a comprehensive model of base-
line topological network dysfunction will require larger
PD samples adhering to stringent criteria to maintain
a sufficiently homogenous group of subjects, while still
respecting the inherent heterogeneity of the disease. Sec-
ond, it was a cross-sectional design. Longitudinal studies
would give more direct information about functional
network progression from PD-N to PD-M. Third, although
medications were withdrawn prior to MRI scanning, the
potential confounding effects of chronic dopaminergic
medications cannot be completely eliminated. Fourth,
applying a more stringent cut-off score (e.g., <2 SDs
below normative data) may reduce the risk of Type 1
errors in research and clinical settings (Goldman et al.
2013). In keeping with previous studies, impairment on a
neuropsychological test was defined as a score at least
1.5 SDs below normative means in this study, which
was considered the best trade-off between type I and
II errors (Liepelt-Scarfone et al. 2011). Fifth, the optimal
strategy for node definition is still lacking. The AAL atlas
was used to divide the brain into 116 ROIs in our study,
and the functionally defined Dosenbach atlas (160 ROIs)
were used for reproducibility/validation analyses. How-
ever, available connectome studies are restricted to the

https://www.ppmi-info.org/
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macroscopic scale and do not provide information on the
functionally important microscopic dimension (Amunts
et al. 2013). It would be interesting to explore under-
lying patterns further by combining microscopic scale
techniques from the perspective of complex networks.
Future studies using different parcellation strategies will
provide more comprehensive insights. Finally, the corre-
lations between network measures and neuropsychologi-
cal tests did not survive multiple comparison corrections,
and should therefore be considered exploratory.

In conclusion, our findings provide evidence for shared
and distinct patterns of functional network disruptions
between PD-M and PD-N at global, nodal, and modular
levels. Most of the network measures have a common
trend, such that PD-M showed more abnormal values
than PD-N. Only PD-M had significantly widespread alter-
ations, especially at the modular level involving mul-
tiple networks including default mode, subcortical and
cerebellar regions. Specifically, this study adds to the
field of psychoradiology (Sun et al. 2015; Lui et al. 2016;
Gong 2020; Li et al. 2021; Suo et al. 2022), an evolving
subspecialty of radiology, which is primed to be of major
clinical importance in guiding diagnostic and therapeutic
decision making in patients with neuropsychiatric disor-
ders.
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