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Abstract

Motivation: Medical image analysis involves a series of tasks used to assist
physicians in qualitative and quantitative analyses of lesions or anatomical
structures which can significantly improve the accuracy and reliability of medi-
cal diagnoses and prognoses. Traditionally, these tedious tasks were finished by
experienced physicians or medical physicists and were marred with two major
problems, low efficiency and bias.

In the past decade, many machine learning methods have been applied to accel-
erate and automate the image analysis process. Compared to the enormous
deployments of supervised and unsupervised learning models, attempts to use
reinforcement learning in medical image analysis are still scarce. We hope that
this review article could serve as the stepping stone for related research in the
future.

Significance: We found that although reinforcement learning has gradually
gained momentum in recent years, many researchers in the medical analysis
field still find it hard to understand and deploy in clinical settings. One possible
cause is a lack of well-organized review articles intended for readers without
professional computer science backgrounds. Rather than to provide a com-
prehensive list of all reinforcement learning models applied in medical image
analysis, the aim of this review is to help the readers formulate and solve their
medical image analysis research through the lens of reinforcement learning.
Approach & Results: We selected published articles from Google Scholar
and PubMed. Considering the scarcity of related articles, we also included
some outstanding newest preprints. The papers were carefully reviewed and
categorized according to the type of image analysis task. In this article, we
first reviewed the basic concepts and popular models of reinforcement learn-
ing. Then, we explored the applications of reinforcement learning models in
medical image analysis. Finally, we concluded the article by discussing the
reviewed reinforcement learning approaches’ limitations and possible future
improvements.
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1 | INTRODUCTION

The purpose of medical image analysis is to mine and
analyze valuable information from medical images by
using digital image processing to assist physicians in
making more accurate and reliable diagnoses and prog-
noses. Common imaging modalities include computed
tomography (CT), magnetic resonance imaging (MRI),
ultrasound, single photon emission computed tomog-
raphy (SPECT), positron emission tomography (PET),
X-ray, optical coherence tomography (OCT), and micro-
scope. Medical image processing can also be classified
according to specific processing tasks, which typically
include classification, segmentation, registration, and
recognition. Figure 1 shows the range of our review
article.

Improvements in imaging technology and equipment
have reduced imaging time and improved image res-
olution. At the same time, the size of medical images
has experienced an unprecedented surge with the trend
of high dimensionality. As such, the traditional manual
analysis of medical images by physicians has become
tedious and inefficient. Partnered with engineers, physi-
cians moved to automate the process through machine
learning. Many excellent algorithms in the field of natu-
ral image analysis have also shown good results in the
field of medical imaging.’

Reinforcement learning (RL) is neither supervised nor
unsupervised learning. The goal of reinforcement learn-
ing is to achieve the maximum expected cumulative
reward?

Figure 2 shows the relationship between machine
learning, supervised learning, unsupervised learning,
reinforcement learning, and deep learning.

The number of published RL-related papers has
grown rapidly in the past two decades. State-of-the-art
RL models have been applied to solve problems that
are difficult or infeasible with other machine learning
approaches, such as playing video games>® natural
language processing,® and autonomous driving.” These
RL methods have achieved outstanding performances.
However, attempts to exploit the technical developments
in RL in the medical analysis field are scarce. Figure 3
shows the trends of number of published machine
learning and reinforcement learning papers in medi-
cal image analysis. Despite the growth, the number of
published RL papers still only constitutes a small sub-
set of machine learning in medical image analysis. On
the other hand, RL methods have unique advantages in
dealing with medical image data, including:

* RL models do not require a massive amount of data
annotation. It can learn to achieve the final goal by
interacting with the environment and exploiting past
experience. RL models are less biased since they
won’t inherit bias from the labels made by human
annotators.
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* RL agents can learn from sequential data through
a goal-oriented process. In addition to developing
experience from known data, it can also explore new
solutions. RL can even surpass human experts when
solving the same problem.
The review article is based on

Methodology?

The methodology Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) was
followed? First, the following pattern was searched in
Google Scholar and PubMed: Clustering AND (Medical
OR CT OR MR OR Ultrasound OR X-ray OR OCT) AND
IMAGE AND Segmentation. Then, the duplicate papers
were removed. We set the qualified publication date to
2010. The remaining papers went through qualitative
synthesis and quantitative synthesis. The summary of
the selection process is shown in Figure 4.

By reviewing content, analyzing common points, and
comparing differences between these papers, we aim
to enable our readers to have a better understanding
of RL so that they can formulate and solve their medi-
cal image analysis research through the lens of RL. For
the next two sections, we first prepared the readers with
basic knowledge of RL. Then, we showed how to apply
RL in different medical image analysis tasks. This sec-
tion will review the state-of-the-art works applying RL
in medical image analysis. Figure 5 shows a preview of
the main contents of the application section. Readers
who are familiar with RL algorithms can directly go to
the application section.

Synthesis

2 | REINFORCEMENT LEARNING
BASICS

In this subsection, we provided a list of terminologies
that frequently appear in RL papers. Some terminolo-
gies may appear in definitions of other terminologies
before they are defined.

» Action (A): The way that an agent interacts with the
environment and includes all possible actions that an
agent can perform.

» Agent: The model we attempt to build that interacts
with the environment and takes actions.

* Environment. The content that the agent is interacting
with. While providing feedback after the agent takes
action, the environment itself is also changing.

» State (S): A frame of an environment and includes all
states that an agent will go through.

* Reward (R): A value that the environment assigns to
the agent after an action. A positive reward means
an increased probability of achieving the goal, while
a negative reward means a decreased probability. R
includes all possible reward values the environment
may feed back to the agent.
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* Episode: The collection of states that an agent goes
through, from the initial state to the terminal state.

« Transition probability P(s'|s,a): The probability of
transiting to state s’ to from the current state s by
taking the action a.

* Policy m(a|s): Instructs the agent to choose among
actions A under the current state s.

* Return (G): The cumulative discounted future reward.

« G;=ri+yriq + y2ri.0,where tis the time and y is the
discount factor.

« State value V™(s): The expected amount of return
from the current state.

* V7(s) = E[Gy|s; = s], where E is the expectation.

* Action value Q™ (s, a) (Q value): The expected amount
of return from the current state, taking action s.
Q™ (s, a) = E[G¢|st = s, a; = a]

* Optimal action value: Q*(s,a): Q*(s,a): Q*(s,a) =
max Q" (st, at)

* Agent environment interaction: Figure 6 shows how
the agent interacts with the environment.

Numerous algorithms have been created through the
development of RL theory. Benefiting from its combina-
tion with deep learning, RL is now capable of handling
progressively more complex scenarios in modern appli-
cations. Regardless of how complex these state-of-the-
art algorithms are, they can be mainly divided into two
categories: model- based RL and model-free RL. As its
name indicates, model-based RL attempts to explain the
environment and create a model to simulate it. Model-
free RL, however, will only update its policy by interacting
with the environment and observing the rewards.

We can further divide the model-free RLs into value-
based and policy-based according to whether the
algorithm is optimizing the value or policy function.
Value-based RLs are widely applied for discrete action
space problems, while policy-based RLs are suitable
for both discrete and continuous action spaces. Some
RL algorithms are based on both value and policy,
like DDPG,"" TD3'2 and SAC.'® Figure 7 shows the
taxonomy of popular RL algorithms. In our review,
all the RL algorithms were model-free, and the most
popular ones were DQN, DDQN, A2C, and DDPG.
Below, we included brief introductions of these pop-
ular RL algorithms commonly used in medical image
analysis.

21 | DQN

The Deep Q-Network (DQN) was first proposed®*
to solve some complex computer perception vision
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problems. It combined the idea of the traditional Q-
learning method'* and the deep CNN.' The main
motivation of DQN was to solve the problem where
the Q-table can only store a limited number of states,
while in real-life scenarios, there could be an immense
or even infinite number of states. DQN adopted the
experience replay mechanism that randomly sampled a
small batch of tuples from the replay buffers during the
training process. The correlations between the samples
were significantly reduced, which led to better algorithm
robustness. Another improvement over Q-learning was
that DQN used a deep CNN to represent the current Q-
function and used another network to define the target
Q value. The introduction of the target Q value network
reduced the correlation between the current and target
Q values. Figure 8 shows the workflow of the DQN.

2.2 | DDQN

DQN is one of the most popular RL algorithms currently

applied in medical image analysis. The optimization

target in DQN is represented as r +y max Q(s', a'|6,).
a/

The selection and evaluation of actions are all based
on the network’s same parameter. The action is sim-
ply chosen according to the maximum Q value, which
may lead to overestimation of the Q value. The Double
DQN (DDQN)'® used two separate networks for selec-
tion and evaluation. Here, the target Q value was written
as r +yQ(s’, argmax,Q(s', al6;), 6;"), which achieved a
more stable learned policy than DQN.



JOURNAL OF APPLIED CLINICAL

2 | MEDICAL PHYSICS

HU ET AL.

Medical Image
Registration
STITIII L

! Rigid Registration |
. __ N 1

1 Non-rigid Registration {
| a

P ——

; I
) Lookahead Inference !

Semantic Map
Generation

Pixel Value Alteration

Synthetic Sample Selection

Dose Plan Generation

FIGURE 5 Overview of contents in the application section

state reward
r 1
! Y1
S Environment i_

t
FIGURE 6 Agent Environment Interaction (Key components of
RL models). Adapted from Rafati & Noelle.!®

action

a,

2.3 | Actor critic

The Actor-Critic (AC)'” algorithm mixed the idea of pol-
icy gradient and Time Difference (TD) learning and
could handle continuous action space problems and
update the policy in an efficient, stepwise manner. The
actor was the policy function 7g(als) that learned the
policy using gradient descent to achieve the highest pos-
sible reward and the critic was the value function V7(s)
that used the TD error to assess the current policy.

24 | A2C/A3C

A2C"8 and A3C'? are improved versions of the vanilla

AC algorithm that introduced the parallel architecture.

Each agent included a global network and multiple
workers that ran independently. Every worker gathered

different experiences and calculated different gradients.

A2C worked in a synchronous way and A3C worked in
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1
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an asynchronous way tackling the different parameters
and gradients. In this context, synchronous means that
different workers share the same policy and the time
to update the policy is the same, which leads to A2C
typically converging faster than A3C.

25 | DDPG

DDPG is a type of AC-based algorithm but learns the
off-policy. Like DQN, samples generated by the random
policy are stored in the memory replay buffer. How-
ever, DQN can only solve control problems with discrete
actions, while DDPG can solve the problems in the con-
tinuous action space and shows excellent efficiency in
finding the optimal policy. However, for some random
environments, such as low signal-to-noise-ratio images,
the deterministic policy gradient strategy adopted by
DDPG is not suitable.

3 | RLIN MEDICAL IMAGE ANALYSIS
3.1 | Medical image detection
3.1.1 | Overview of works

Landmark detection

Anatomical landmarks are biological coordinates that
can be reallocated repeatedly and precisely on images
produced by different imaging modalities, such as CT,
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ultrasound, and MRI. The accurate detection of anatom-
ical landmarks is the basis for further medical image
analysis tasks. Figure 9 is an example of vocal tract
landmarks from an MRI image.

Many automatic algorithms for anatomical landmark
detection predate the use of RL models. However,
landmark detection, especially 3D landmark detection,
can be challenging and cause the failure of these
algorithms.20 Moreover, the computation of features and
hyperparameter selection of the system may not be
optimal given the involvement of human decisions. The
researchers attempted a different paradigm to address
this problem, notably to translate the landmark detection
tasks to reinforcement learning problems, which was
the common goal of the papers we reviewed. The most
essential and intricate task in these papers is designing
the state space, action space, and reward space before
training the models.

Ghesu et al?' was one of the first papers that
attempted to use RL for anatomical landmark detection.
In an image |, pg7 denoted the location of anatomical
landmark, and p; denoted the location at the current
time. State space S was the collection of all possible
states s; = I(p;). Action space A was the collection of
all possible actions by which the agent can move to the
adjacent position, as illustrated by Figure 10. Reward

space R was defined as ||p; — pe7ll5 — [1Pi+1 — PeTll5
which impelled the agent to move closer to the
target anatomical landmark. A deep learning model
was applied to approximate the state value function.
The parameters were updated according to gradient
descent, and the error function was:

~ . 2
9/ =arg n'él.n Es,a,r,s’ [(y -Q (S, a; 9,')) + Es,a,r [Vs’ (y)]
(1)

This deep Q-learning-based method beat the existing
top systems not only in accuracy but also in speed. This
design of action, state, and reward spaces became a
standard method.

However, the approach mentioned above was still pre-
liminary. One of the biggest disadvantages was that it
could not fully use the information at different scale. So,
a multi-scale deep reinforcement learning method was
later proposed in.2° The search for the landmark started
from the coarsest scale. Once the search was conver-
gent, the work continued with progressively finer scales
until the search met the finest scale’s convergence crite-
ria. Figure 11 illustrates this non-trivial search process.
Ly is the scale level in the continuous scale-space L,
which can be calculated as:
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FIGURE 9 Vocal tract landmarks from MRI image Courtesy of
Eslami et al 82
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FIGURE 10 Possible actions of a 3D landmarks detection task.
Courtesy of'Ghesu et al?°

Lo(t) = 9o (o (t=1) 5Ly (t—1)) (@)

¥, is the signal operator and o is the Gaussian-like
smoothing function.

Alansary et al?? extended the work of Ghesu et al.
by evaluating different types of RL agents. They com-
pared the detection results DQN, double DQN (DDQN),
dual DQN, and dual double DQN (dual DDQN) on three
different modalities’ datasets, which included fetal US,
cardiac MRI, and brain MRI.

Rather than detecting a landmark per agent sep-
arately, attempts were made by?® to detect multiple
landmarks with multiple collaborative agents. With
the assumption that the anatomical landmarks have
implicit correlations with each other, the detection of
one landmark could indicate the location of some other
landmarks. For the action function approximator in
this paper, the collaborative DQN (Collab-DQN) was

proposed. The weights of the convolutional layers were
shared by all the agents, while the fully connected lay-
ers for deciding the actions were trained separately per
agent. Compared to the methods that trained agents
for each landmark separately, this multi-agent approach
reduced detection error by 50% while also using a
shorter training time.

Some other contributions to RL for anatomical land-
mark detection include estimating the uncertainty of
reinforcement learning agent?* reducing the needed
time to reach landmarks by using a continuous
action space/?° and localization of modality invariant
landmarks.2°

Lesion detection
Object detection, also called object extraction, is the pro-
cess of determining the class labels and locations of
target objects in images or videos. It was one of the pri-
mary tasks in medical image analysis?’ An exemplary
detection result can be used as the basis for improving
the performance of further tasks like segmentation.
The mainstream approaches for lesion detection still
rely on time-intensive exhaustive search methods and
deep learning methods that require a large amount of
labeled data. Facing the current challenges and inspired
by similar problems in landmarks detection 228 imple-
mented a deep Q-network (DQN) agent for active breast
lesion detection. The states ware defined as current
bounding box volumes of the 3D dynamic contrast-
enhanced MR images. The reinforcement learning agent
was able to gradually learn the policy to choose between
actions to move, scale the bounding box, and localize
the breast lesion. Specifically, the action set consisted
of nine actions that could translate the bounding box
forward or backward along the x-, y-, and z-axes, scale
up or scale down the bounding box, and trigger the
terminal state. To further evaluate the effectiveness of
applying reinforcement learning on lesion detection with
limited data,?®3° used a DQN as the agent to localize
brain tumors with very limited training data. Unlike,?®
their brain MR data comprised 2D slices. The environ-
ment was defined as the 2D slices overlaid with gaze
plots viewed by the radiologist. Instead of using the
bounding box, the states were the gaze plots the agent
located. Three actions—moving anterograde, not mov-
ing, moving retrograde—helped the agent transfer to
the next state. A positive reward was given if the agent
moved toward the lesion and a negative reward was
given if the agent moved away from the lesion. If the
agent stayed still within the lesion area, it received a
large positive reward or a large negative reward if out-
side of the lesion area. The experimental results showed
that reinforcement learning models could work as robust
lesion detectors with limited training data, reduce time
consumption, and provide some interpretability.
Addressing the lack of labeled training data,’’
exploited visual attention mechanisms to learn from a
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combination of weakly labeled images that only had
class labels and a limited number of fully annotated
X-ray images. This paper proposed convolutional net-
works with attention feedback (CONAF) architecture
and a recurrent attention model with annotation feed-
back (RAMAF) architecture. The RAMAF model can
only observe one part of the image, which was defined
as a state at a glimpse. The reinforcement learning
agent needed to learn the policy to take a sequence
of glimpses and quickly locate the lesion site. Each
glimpse consisted of two image patches that shared
the same central point, and the length of the glimpse
sequence was fixed to be 7. The rewards were decided
according to correct classification of the image and
the labeled bounding box containing the central point.
RAMAF detected 82% of overall bounding boxes with a
much faster detection speed than other state-of-the-art
methods.

In addition to detecting lesions in static medical
images (2D or 3D), the RL-based system could also
continuously track the lesions frame by frameS? pro-
posed a robust RL-based framework to detect and
track plaque in Intravascular Optical Coherence Tomog-
raphy (IVOCT) images. Despite the pollution prob-
lem of speckle- noise, blurred plaque edges, and
diverse intravascular morphology, the proposed method
achieved accurate tracking and could be applied broadly.

Three different modules were included in the pro-
posed framework. The features were extracted and
encoded by the encoding feature module. Then, the
information of scale and location of the lesion was
provided by the localization and identification mod-
ule. Another function of this module was to prevent
overtracking. The most important module was the
spatial-temporal correlation RL module. Nine different
actions were possible, including eight transformation
actions and one stop action. The state S was defined
as three tuples: S = (E, HL, HA).Here, the E represented

scale L,;(1): 8 mm

MEDICAL PHYSICS -2

“

continue
search

scale L,;(0):4 mm

(fine)

The trajectory of search the anatomical landmark across images of multiple scale-levels. Courtesy of Ghesu et al2°

the encoded output features from the FC1 layer, HL
was the collection of recent locations and scales, and
HA represented the recent ten sets of actions. 8000
IVOCT images were used to evaluate the framework.
With a strict standard (IOU > 0.9), the RL module could
improve the performance of plaque tracking on both the
frame-level and plaque-level.

Organ/anatomical structure detection

In addition to detecting lesions, reinforcement learning
can also be applied in organ detection® designed a
deep Q-learning agent to locate various organs in 3D CT
scans. The state was defined as voxel values within the
current 3D bounding box. Eleven actions, including six
translation actions, two zooming actions, and three scal-
ing actions, made sure that the bounding box can move
to any part of the 3D scan. The agent was rewarded if an
action improves the intersection over union score (IOU).
Seventy scans were used for training and 20 scans were
used for testing on seven different organs, including the
pancreas, spleen, liver, lung (left and right), and kidney
(left and right). This proposed method achieved a much
faster speed than the region proposal and exhaustive
search methods and led to an overall IOU score of
0.63.

Zang et al>* managed to detect and segment the
vertebral body (VB) simultaneously. The sequence cor-
relation of the VB was learned by a soft actor-critic
(SAC) RL agent to reduce the background interference.
The proposed framework consisted of three modules:
Sequential Conditional Reinforcement Learning net-
work (SCRL), FC- ResNet,and Y-net. The SCRL learned
the correlation and gave the attention region. The FC-
ResNet extracted the low-level and high-level features
to determine a more precise bounding box according
to the attention region. At the same time, the segmen-
tation result was provided by the Y-net. The state of
the RL agent was determined by a combination of
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the image patch, feature map, and region mask and
the reward was designed according to the change of
attention-focusing accuracy to elicit the agent to achieve
a better detection performance. This proposed approach
accomplished an average of 92.3% for IOU on VB
detection and an average of 91.4% for Dice on VB
segmentation.

The research of° was the first attempt to use the
multi-agent RL in prostate detection. Two DQN agents
located the lower-left and upper-right corners of the
bounding box while sharing knowledge according to the
communication protocol (Foerster et al., 2016). The final
location of the prostate was searched with a coarse-
to-fine strategy to speed up the search process and
improve the detection accuracy. In more detail, the
agents first searched on the coarsest scale to draw a
big bounding box and gradually moved to a finer scale
to generate a smaller and more accurate bounding box
to detect the prostate. Compared to the single-agent
strategy (63.15%), this multi-agent framework achieved
a better average score of 80.07% for IOU.

3.1.2 | Assessment

Detection is a type of problem that is straightforward to
formulate as a control or pathfinding problem. The states
are defined as the pixel values that the agents observe
at the current step, and the actions are defined as move-
ments along the different axes of the environment plus
some scaling factors. The simplicity of defining detec-
tions as RL problems is why agent-based detection
has the largest number of papers among all RL-related
image detection tasks. Though related work in this field
is still growing, some challenges exist. The generaliz-
ability and reproducibility of the agent-based methods
still need further investigation. In practical applications,
the quality and local features of the image may vary by
the noise and distortion introduced in the imaging pro-
cess. The trained agent may not always be capable of
finding the target in clinical settings. Furthermore, the
trigger of the termination state in the inference stage
needs to be improved. The most used criterion is the
presence of oscillation. However, adherence to this cri-
terion may lead to very ineffective convergence, and
the agent might even become trapped at a local opti-
mum and never reach the global optimum. Real-time
detection is another direction that has caused more
interest in recent years. RL has proven its fast detection
capability through its non-exhaustive searching strategy.
However, in some high dimensional data, such as 4D
images (3D plus temporal), the real-time detection and
tracking still need more investigation. Finally, the train-
ing process of the RL system, especially the multi-agent
system, is very time-consuming, which may take days or
even weeks to train on platforms with exceptional hard-
ware. The hyperparameter-tuning is also highly reliant

on the designer’s experience. A summary of the works
we reviewed in this section is given in Table 1.

3.2 | Medical image segmentation

3.2.1 | Overview of works

Threshold determination

Sahba et al36 first attempted to use RL for medical
image segmentation. The key idea was to formulate this
segmentation task as a control task with a simple Q-
learning agent that decides the optimal local thresholds
and the post-processing parameters. The quality of the
segmentation was considered when designing the state.
The segmentation threshold and size of the structuring
elements were changed by taking a series of actions.
Although it was preliminary research, the segmentation
quality was both acceptable and significantly reduced
the required human intervention when compared to the
mainstream methods at the time, like active contour.

Pre-locate the segmentation region

Most supervised learning-based catheter segmenta-
tion methods require a large amount of well-annotated
data. Yang et al.” proposed a semi-supervised pipeline,
shown in Figure 12, that first used a DQN agent to
allocate the coarse location of the catheter and then
conducted patch-based segmentation using Dual-UNet.
The RL agent reduced the need for voxel-level anno-
tation in the pre-allocation stage. The semi-supervised
Dual-UNet exploited unlabeled images according to
prediction hybrid constraints, which improved the seg-
mentation performance. The states were defined as the
3D observation patches, and the agent could update the
states by moving the patch center point (x, y, z) along
the x-, y-, and z-axes of the observation space. Like the
landmark detection problems, the agent gave a negative
reward if the patch moved away from the target, a pos-
itive reward if the patch moved toward the target, and
no reward if it stood still. Compared to the state-of-the-
art methods, this proposed pipeline required much less
computation time and achieved an improved Dice score
of at least 4% for segmentation performance.

Hyperparameters optimization

Instead of being directly involved in the segmentation
process, RL agents can be applied to optimize the exist-
ing medical image segmentation pipelines0 Bae
et al 3® used RL as the controller to automate the search-
ing process of optimal neural architecture. The required
search time and computation power were significantly
reduced by sharing the parameters while adopting a
macro search strategy. Tested on the medical segmenta-
tion decathlon challenge, the authors asserted that this
optimized architecture outperformed the most advanced
manually searched architectures.
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TABLE 1 Overview of RL in medical image object and lesion detection
Action
Author ROI Modality Algorithm State number Reward design
32 Heart OCT ADNet Spatial-temporal locations 9 Change of
correlation information intersection-over-union
(IOU) index
28 Breast MR DQN Current bounding volume 9 Change of
intersection-over-union
(IOU) index
83 Lung, Kidney, Liver, CcT DQN Voxel value of the current 11 Change of
Spleen, Pancreas bounding box intersection-over-union
(IOU) index
81 Lung Xray REINFORCE The part of the image Number of  Correctness of the
observed by the glimpse image classification; Location of
pixels the glimpse
34 Vertebral Body MR SAC Combination of the image 4 Change of attention-focusing
patch, feature map and accuracy
region mask.
29 Brain MR DQN The gaze plots the agent 3 Whether moving towards the
locate gaze plot that include the
tumor
35 Prostate MR DQN Voxel values contained in the 4 Change of the Distance and

bounding box

IOU between the bounding
box and the target

*Indicate that the missing part is not clearly defined in the original paper.

Reward

Patch Extractor
by Action

¥ Observed State
¥ Input volume and
|enviwnmeﬂt for RL

K]
o
&
2
oA
4
3
3
®
g
H
38

Conv(16@3X3X3)&Maxpoo

Action

Deep Q
Network

Localized (x,y,z)
> forcatheterin3D :
ys

Conv(48@3X3X3)&Maxpoo
FC: 48-32-16-6
Prediction action in (x,y,z)

Agent Patch Extraction

Around (x,y,z)

Dual-UNet

Patch-based Segmentation

Intra-
network
Constraint

My

Labeled
K

Unlabeled

> Ground Truth

ontextual
Constraint

Intra-
network
Constraint|

|- — — Constraint J— — L |o-:

—_—
Labeled
Input/output

-
Output by Noise &
Monte Carlo Dropout

—_—
Unlabeled
Input/output

Reconstruction

Dual-UNet for
Catheter
Segmentation

Catheter

Smaller Patch
than RL

FIGURE 12 The semi-supervised DQN-driven catheter segmentation framework. Courtesy of Yang et al.%’

Qin et al*° implemented an automated end-to-end
augmentation pipeline using Dual DQN (DDQN) agent
to reduce the effect of randomly augmented images
harming final segmentation performance. By conducting
trials and saving the experiences, the agent learned to
determine the augmentation operations that were bene-
ficial to the segmentation performance according to the
feedback Dice ratio. Twelve different basic actions were
used to change the state to achieve augmentation. The

state was defined as the feature extracted from U-Net.
Horizontal flipping and cropping were found to be two of
the most useful operations.

Yang et al*° from NVIDIA integrated the highlights
mentioned in the two previously reviewed papers. With
an RNN-based controller, this research automated the
design process of hyperparameters and image aug-
mentation to explore the maximum potential of the
state-of -the-art models. The optimal policy was learned
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using the proximal policy optimization to decide the train-
ing parameters. When tested on the medical decathlon
challenge tasks, the RL-searched model and augmenta-
tion parameters showed remarkable effectiveness and
efficiency.

Segmentation as a dynamic process

After observing that many existing automated seg-
mentation pipelines may often fail in real clinical
applications,*! implemented multi-agent reinforcement
learning to interact with the users that could achieve
iteratively refined segmentation performance. This multi-
agent strategy captured the dependence of the refine-
ment steps and emphasized the uncertainty of binary
segmentation results in design of states. Instead of
defining the state as the binary segmentation result,

it was formulated as s,(.t) = [b;, pﬁt),h(i)i, h(_t)l.], where b,
p, and h are the value, previous p’redic’:tion proba-
bility, and hint maps of voxel i, and t indicates the
current step. The actions changed the segmentation
probability by an amount a € A, where A is the action
set. Furthermore, the voxel-wise reward was defined
as rl.(t) = )(ft_” — )(ft) to refine the segmentation more
efficiently, where y was the cross entropy between
the label y; and the segmentation probability p;. The
refined final segmentation result outperformed Min-
Cut*? DeepGeoS(R-Net);*> and InterCNN** on all the
BRATS20015, MM-WHS, and NCI-ICBI 2013 datasets.
Though they published earlier than*' and adopted an
older RL method to learn the policy,* incorporated not
only the user’'s background knowledge but also their
intentions. The proposed framework follows a “Show-
Learn-Act”workflow, which reduces the required interac-
tions while achieving context-specific and user-specific
segmentation.

3.2.2 | Assessment

Tackling image segmentation problems using RL agents
provides us with an effective way to further optimize
existing state-of-the-art pipelines,*®~*° overcome a lim-
ited amount of training data, and interact with users
to incorporate prior knowledge. Despite the novel of
these methods, limitations still exist. The various defini-
tions of states and actions may significantly influence
the precision of the segmentation. In most works, the
states are updated by a series of finite discrete actions
to determine the final segmentation contours. Another
problem is that the state design makes the agent only
observe local or global information at any step. It would
be interesting to see some methods in the future that
can enable the agent to be capable of observing these
two pieces of information at the same time. A summary
of the works we reviewed in this section is given in
Table 2.

Predict
tumor
Reward =-1 Predict
tumor
Reward = -1

S
)
—

Normal image Predict
normal
Reward = +1

Predict
normal
Reward = +1

FIGURE 13 State transition and reward of a normal brain
image. Courtesy of Stember & Shalu.3°

3.3 | Medical image classification
Classification is one of the most basic tasks in medical
image analysis. Common medical image classification
tasks include disease diagnosis and prognosis,anomaly
detection, and survivorship prediction. A label among the
predefined classes would be assigned according to the
extracted information from the image. Since most of the
classification methods are fully supervised, these meth-
ods may often fail in real clinical settings due to a lack
of high-quality labeled data.

3.3.1 | Overview of works
Train with limited annotation
To overcome this limitation, Stember & Shalu published
two papers®?-° which used a DQN agent in tandem with
a TD model for accurate image classification with a mini-
mal training set. The main workflows of these two papers
were identical, except that the labels in the second paper
were extracted from clinical reports using an SBERT>®
By overlaying the images with red or green masks, they
formulated the classification problem as a behavioral
problem, shown in Figure 13. The states were defined
as the original greyscale image overlaid in green or red,
where the red mask indicated a wrong prediction and the
green mask indicated the correct prediction. The binary
action (0 or 1) predicted the label of the image as nor-
mal (0) or tumor-containing (1). If the prediction were
correct, a +1 reward would be given to the agent; other-
wise, a -1 reward would be given as a penalty. Compared
with the supervised learning model trained on the same
minimum dataset, the RL showed excellent overfitting
resistance and high classification accuracy.

Another popular method to solve the lack of anno-
tated data is to generate synthetic data. However, most
medical synthesis pipelines do not assess the influence



JOURNAL OF APPLIED CLINICAL

HU ET AL. 12 of 21
MEDICAL PHYSICS- 12

TABLE 2 Overview of RL in medical image synthesis

Author ROI Modality Algorithm State Action number Reward design

50 Lung CT DQN Control points * Classification
coefficient results of the
sequences pretrained

classifier
51 Liver MR Pix-GRL Pixel values of 3 Improvement of
(AC-based) current image each pixel (pixel

52

Cervix, Lymph node Histopathology PPO

53 Dose Volume

Histogram
(DVH)

Dose Volume
Histogram
(DVH)

Cervix Q-learning

54

Prostate Q-learning

level);
Improvement of
pixels and
surrounding
pixels (region

-level)

Synthetic images 2 Validation
classification
accuracy

Current DVH 4x5 Change of the plan

weights quality

Current DVH 5x5 Change of the plan

weights quality

*Indicate that the missing part is not clearly defined in the original paper.

of the quality of these synthetic images in downstream
tasks. Some misleading information in these synthetic
data may skew the data distribution and thus harm
the performance of the following tasks. To address this
problem,®?> designed a PPO RL controller that could
select synthetic images generated by HistoGAN which
adopted histogram-based method for controlling gener-
ated image’s color. Considering the potential relationship
between the generated and existing data, they used a
transformer to output the action decision with the fea-
tures extracted by ResNet34 as input. The reward was
designed according to the maximum validation accu-
racy in the last five epochs. Comparing the traditional
augmentation, GAN augmentation, triplet loss metric
learning, and centroid-distance-based selective aug-
mentation, this Transformer-PPO-based RL selective
augmentation achieved the best overall performance in
the given classification task with an AUC score as high
as 0.89.

Optimal sample/weight/ROI selection

In a clinical setting, it is common for radiologists to
have obtained a considerable number images, but the
annotation process might be time-consuming and labor-
intensive. A common approach to alleviate this problem
is using active learning methods to select the most infor-
mative samples for annotations to improve the following
tasks’ performance. Jingwen Wang et al.>’ formulated
active learning for medical image classification as an
automated dynamic Markov decision process. The cur-
rent state consisted of all the predicted values of the
unlabeled images. This state then was updated by
continuous actions to decide the unlabeled ones for

annotations according to the optimal policy. The model
was trained according to the deep deterministic policy
gradient algorithm (DDPG), which consisted of an actor
and a critic. A novice reward was designed to encourage
the actor to focus on those samples that were incorrectly
classified. Compared to other selective strategies, this
RL framework achieved the best F1 score with all differ-
ent percentages of training samples and a remarkable
0.70 score with only 40% labeled training data needed.®®
combined meta-learning and deep reinforcement learn-
ing for selective labeling. A bidirectional LSTM (BiLSTM)
was used as the selector, and a non-parametric clas-
sifier was used as the predictor. Instead of using the
RL agent as a controller, this work used the policy-
gradient algorithm to optimize the objective function of
the controller.

In clinical practice, an experienced physician usually
makes diagnostic decisions from a combination of multi-
modal images. Similarly, many state-of-the-art methods
attempt to extract and integrate the information from
various modalities to improve prediction performance.
However, the weights of different modalities in this
combination are hard to determine. Jian Wang et al.?°
automated this as an end-to-end process controlled by
a REINFORCE RL agent, as shown in Figure 14. There
were four US modalities involved in this pipeline: B-
mode, Doppler, SE, and SWE. The model parameters
were updated according to the global loss, which was
a weighted summation of loss from each of the four
modalities and a fusion loss calculated from the con-
catenated features. The state (weights) were updated
(—0.2 or +0.2 or 0) at each step. Compared with other
advanced single-modality and multi-modality methods
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FIGURE 14 Schematic of the proposed
multi-modal model. The weights of the losses are
determined by the RL module. Courtesy of Jian
Wang et al®’

on breast ultrasound datasets, this auto-weighted RL
method achieved the best overall performance with an
accuracy as high as 95.43%.

For some types of medical images, like histopathol-
ogy images, the resolution can be extremely high. Even
though we have sufficient labeled data, it is still hard
to perform the classification tasks due to the high com-
putational intensity. Holding the belief that not all parts
of the original images include valuable information (Xu
et al., 2020), proposed an RL-based pipeline for auto-
mated lesion region selection. Unlike the hard-attention
approaches, this RL selective attention method was end-
to-end and fully automated, which included two major
stages, the selection stage and the classification stage.
The backbone of the selection stage was a recurrent
LSTM that output a binary action that decided whether
a cropped patch was useful for classification. In the clas-
sification stage, a soft-attention network was used as the
classifier. The reward that was fed back to the selec-
tor consisted of two-parts, the training process reward,
which represented the training stage accuracy, and the
convergence reward, which represented the conver-
gence performance. This selective strategy reduced the
computation time by 50% and took less than 6 ms to
infer a single image.

User interaction

Like the cases we reviewed in the segmentation sec-
tion, well-designed interactions with users can also
improve the performance of classification tasks. How-
ever, instead of targeting the physicians as users,®°
designed an RL controlled QA system that interacts with
the patients. A CNN was pre-trained to output a vector of
the probabilities of the skin conditions. This vector was
then concatenated with the vector of the patient’s history
answers about the symptoms, where each binary value
in the vector represented the presence of a symptom.
The action was designed to decide the next question
to ask. The goal of the DQN agent was to maximize
the possibility of classifying the correct condition when
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asking a specific question. Compared to CNN-only and
decision-tree-based approaches, this RL-based symp-
tom checker improved the classification accuracy by up
to 20% and 10%, respectively.

3.3.2 | Assessment

The nature of image classification makes it hard to
define classification as a control problem. So, instead of
directly defining agent-based classification frameworks,
most works attempted to use RL agents to optimize the
existing classification models’ hyperparameters or the
image preprocessing process. The only two papers that
applied agents to the classification task itself came from
the same authors, who asserted that the agent-based
classification method is superior to other methods on
small training sets and still needs to be validated with
more relevant studies. We look forward to seeing more
research that can effectively design image classifica-
tion as the control problem. A summary of the works we
reviewed in this section is given in Table 3.

3.4 | Medical image synthesis

Medical image synthesis is the process of generat-
ing synthetic images that include artificial lesions or
anatomical structures of a particular or multiple image
modalities. There are typically two types of medical
image synthesis®': (i) inter-modality, which transforms
the image of a specific modality to another modality,
for example, CT to MRI; (ii)intra-modality, which trans-
forms the imaging protocol within the same modality, for
example, T1 sequence MRI to T2 sequence, or gener-
ates new images according to existing same-modality
images. Nowadays, medical image synthesis algorithms
are dominated by GAN 2 for their ability to produce syn-
thetic images with large diversity. Numerous GANs with
different frameworks and techniques, such as Bayesian
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TABLE 3 Overview of RL in medical image segmentation
Author ROI Modality Algorithm State Action number Reward design
38 Brain, Heart, MR REINFORCE Hyperparameters of * Change of the Dice
Prostate searched architecture Score
4 Brain, Heart, MR A3C Combination of the 6 Decreased amount of
Prostate voxel value, previous the cross entropy
segmentation
probability and hint
maps
39 Kidney CT DDQN Extracted high-level 12 Change of the Dice
feature ratio
36 Prostate Ultrasound Q-learning Segmented Objects 6 Change of
segmentation quality
45 Ventricle MR Policy-based Local image Continuous Difference between the
appearance, location given by
anatomical details model and user
40 Atrium, Lung, CT,MR PPO Parameter values * Change of
Pancreas, segmentation
Spleen performance
87 Catheter Ultrasound DQN 3D patches 6 Change of distance to

the target

*Indicate that the missing part is not clearly defined in the original paper.

Conditional GAN® progressive growing GANS* self-
attention module,%® and deep supervision,® have been
proposed and achieved state-of-the-art performance in
various medical image synthesis applications. For the
comprehensiveness of our review, we expanded the
concept of image synthesis while including the radiation
dose map planning in this section.

3.4.1 | Overview of works

Semantic map generation

Krishna et al.>® successfully combined reinforcement
learning and style transfer techniques to synthesize fine
CT images from a small image dataset. There were two
major steps in this pipeline. First, a DQN agent auto-
matically generated the semantic maps of the lung CT
images. Next, the B-splines and PCA interpolation were
adopted to interpolate the semantic masks, thus provid-
ing texture information. The generated images had high
resolution and were realistic enough to be used in other
image analysis tasks.

Pixel value alteration

By designing a novice pixel-level graph RL method,?’
generated gadolinium-enhanced liver tumor images
from non-enhanced images, thus avoiding the injection
of toxic contrast agents. It is worth noting that this was
the first paper that used an RL agent for image synthe-
sis and the first attempt at designing agents, actions, and
rewards at the pixel level. The design of agents was
based on the actor-critic structure but also integrated
the idea of graph CNN. This graph-driven, context-aware

mechanism enabled the model to capture both the small
local objects and global features. The reward func-
tion r! = r(e)! +A(w)! considered both the pixel-level
(first item) and region-level (second item) rewards to
make the measurement more accurate. According to the
current states and rewards, the pixel-level agents deter-
mined the actions to increase, decrease, or keep the
pixel intensity. Trained and tested on 24 375 images,
the model outperformed the existing state-of-the-art
method 53

Synthetic sample selection

Instead of focusing on directly synthesizing medi-
cal images, RL can also be applied in synthetic
image assessment and selection. Ye et al®? selected
HistoGAN-generated synthetic images according to
their reliability and informativity. The selection process
was formulated as a model-free, policy-based RL pro-
cess stabilized by the Proximal Policy Optimization
(PPO). The binary action was the output of the trans-
former model to decide if a fake image should be
selected or discarded. The reward was designed to
impel better accuracy in the following classification task.
Compared with the unselected case, image augmenta-
tion using the chosen synthetic images improved the
classification accuracy by 8.1% on the cervical data and
2.3% on the lymph node data.

RL has been widely applied in radiotherapy plan
optimization to determine the optimal adaption time,®’
tune the machine parameters®® and decide the beam
orientation.5? However, to keep in line with the scope of
our review, we will only discuss agent-based dose map
planning.
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Dose plan generation
Shen et al.>®> was among the first works that attempted
to use the RL agent to optimize the dose-volume-
histogram (DVH) in a step-by-step manner, which led
to the final dose map. The states were defined as
the current weights of the DVH, and five actions per
weight updated the states. The reward was defined
as the change in the dose plan’s quality, according to
the WTPN'’s guidance. Compared with humans, the RL
agents led to an average improvement of 10.7% of the
final dose plan quality in high dose-rate brachytherapy.
In one of their followed works,>* they applied the same
idea to the external beam radiotherapy for prostate can-
cer patients. An end-to-end virtual treatment network
(VTPN) was built to generate the optimum dose plan.
They used ten patients for training and 64 patients
for testing. With this VTPN-based treatment planning
pipeline, the original ProKnown score increased to 10.93
from 6.07.

Assessment

Works that use RL agents for image synthesis are still
scarce in the literature. There are three types of different
strategies for the general meaning synthesis: seman-
tic map generation, pixel-level value alteration, and
synthetic sample selection. Compared to other state-of-
the-art methods, the agent-based approach does not
perform significantly better and has time-consuming
training. Additionally, we observed that the authors of
these agent-based synthesis works did not continue to
publish any related works, which suggested a decline in
interest.

The main idea for the agent-based dose map gener-
ation is to update the DVHSs step by step. Though this
seemed to improve the treatment plan quality, the reward
function was not fully based on clinical criteria, and the
plan quality was only measured according to the DVHs,
which is too simple a criterion and can result in undeliver-
able plans. More works are encouraged to evaluate and
improve this agent-based method for more challenging
treatment planning scenarios. A summary of the works
we reviewed in this section is given in Table 4.

3.5 | Medical image registration

Image registration is the process of transforming two
different images into the same coordinate system. In
the medical imaging domain, the registration could be
inter-patient, intra-patient (but at different time points),
inter-modality (e.g., MRI, CT, CBCT, Ultrasound), and
inter-dimensionality (2D-3D). The transformation mod-
els may also vary depending on the properties of the
registration pair. It can generally be categorized into
rigid, affine, and deformable transformation, where the
rigid transformation is the simplest method that used

parametric models. Traditionally, the registration was
completed via optimizing the similarity metrics. However,
the high dimensionality of the medical images and the
tissues’ deformations and artifacts made this method
unstable or sometimes even unfeasible. The emergence
of agent-based methods tackled the registration prob-
lem from a different angle, the formulation of the MDP
process. Controlled by RL agents, the registration tasks
achieved unprecedented robustness and precision.

3.5.1 | Overview of works

Rigid registration

The first attempt to use an agent-based method to solve
the registration problems was by.! Unlike the standard
methods that focused on matching metrics optimization,
this agent-based approach attempted to find the opti-
mum sequence of actions that could align the images
for registration. To train the agent with limited data, they
first obtained synthetic data by dealigning the labeled
training pairs. The registration process was done in
a two-step hierarchical manner to ensure robustness
and accuracy. A coarse registration was first done in
a broader field of view (FOV) with lower resolution,
followed by the fine alignment on the full resolution
image. This proposed method outperformed the ITK
registration method, Quasi-global search, and semantic
registration methods on both the spine and heart 3D-3D
registrations to a large extent. This work confirmed the
feasibility of agent-controlled registration.

Based on the ideas from’"72 evaluated the perfor-
mance of this pipeline for 2D-2D and 3D-3D intra-
modality registration. This chapter of the book can serve
as an effective tutorial because they discussed the state,
action space, and reward design in detail. In,/3 they
attempted to use a multi-agent attention mechanism to
solve the 2D-3D registration for images with severe arti-
facts. Instead of choosing the commonly used CNNs,
this work adopted dilated fully-CNN (FCN) as the back-
bone of the agent. This strategy reduced the registration
problem’s degrees of freedom from eight to four, which
significantly improved training efficiency.

Moreover, they implemented the auto-attention mech-
anism to overcome the strong artifacts in the 2D images.
This attention was achieved through the use of multi-
ple local agents to learn and decide the actions, and
only the agents whose confidence scores were above
a certain threshold (0.67) were selected. There were
six pairs of actions (negative and positive) of the Spe-
cial Euclidean Group SE(3). The framework was tested
on both CBCT and more complex surgical data. In the
more complex scenario, the multi-agent attention mech-
anism showed much better robustness, signified by
less performance degradation, than the corresponding
single-agent system.
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TABLE 4 Overview of RL in medical image classification

Author ROI Modality Algorithm State Action number Reward design
60 Skin Dermascope DQN Patient’s history 300 Probability of correct
answers + output condition if asked
probability of the question
pretrained CNN
58 Chest Xray Policy Gradient ~ * * *
30 Brain MR DQN + TD Image overlaid inred 2 Classification
or green correctness
55 Brain MR DQN + TD Image overlaid inred 2 Classification
or green correctness
57 Breast Ultrasound REINFORCE Weights 3 Classification
correctness
57 Chest CT DDPG Predictions of the Continuous Possibility of being
unlabeled images classified
incorrectly
52 Cervix, Lymph Node  Histopathology PPO Selected images 2 Maximum validation
accuracy of last
epochs
70 Breast Histopathology Policy Gradient Learning status 2 Performance of the
representation + selection
Incoming data mechanism
statistics
*Indicate that the missing part is not clearly defined in the original paper.
A summary of the works we reviewed in this section is given in Table 5.
TABLE 5 Overview of RL in medical image registration
Action
Author ROI Modality Algorithm State number Reward design
75 Nasopharynx CT-MR A3C 3D tensor 8 Distance between the
composed of the transformed landmark and
moving and the the reference landmark
fixed image
4 Prostate MR-MR Q-learning Spatial 30 The reduction of distance
transformation between the current
parameters parameters to the ground
truth parameters
4 Spine, Cardiac CT-CBCT Q-learning The rigid-body 12 The reduction of distance
transformation between the current
matrix transformation to the ground
truth transformation
84 Chest, Abdomen CT-Depth Image Dueling DQN 3D tensor including 6 Small constant during the
cropped image exploration, and big constant
pair at termination with sign
determined by change of
constant
83 Brain, Liver MR-MR, CT-CT SPAC Pair of fixed images  * The change of the dice score
and moving image
73 Spine, Cardiac CT-CBCT Dilated FCN The rigid-body 12 The reduction of distance
transformation between the current
matrix transformation to the ground
truth transformation
72 Spine CBCT-Xray Q-learning Transformations in 12 Reduction of distance to the
SE(3) ground truth transformation
85 Nasopharynx CT-MR A3C Concatenation of 8 Distance between the

the fixed and
moving image

transformed landmark and
the reference landmark

*Indicate that the missing part is not clearly defined in the original paper.
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Non-rigid registration

So far, we have tackled exclusively rigid problems. Krebs
et al.’”* first attempted non-rigid registration with a lim-
ited number of real inter-subject pairs. Both the inter-
and intra-subject pairs were used for training. The intra-
subject pairs were generated as an augmentation step
to compensate for the insufficient number of inter-
subject pairs. The authors built statistical deformation
models to serve as a low-dimensional representation
of the problem because non-rigid registration has more
degrees of freedom than rigid registration. The fuzzy
action control both minimized the possible number of
actions and guaranteed the robustness of the. Exper-
iments were conducted on both the 2-D and 3-D MR
prostate images with median Dice scores of 0.88 and
0.76.

Lookahead inference

To further improve the registration performance of rigid
registration,”® % incorporated trained networks with the
lookahead inference. More specifically, the long-short-
term-memory-machine (LSTM), specialized in tackling
sequential data, was used to extract the spatial-temporal
features. The fixed and moving images formed a 3D
tensor to represent the state updated by transforma-
tions, including translations (+/— 1 pixel), rotations (+/—1
degree), and scaling (+/— 0.05). In the testing phase,
to make sure that the agent could reach the termi-
nal state, they adopted a Monte Carlo rollout strategy
to simulate different searching trajectories. The final
transformation matrix was calculated as the weighted
average of matrices from all the trajectories. Compared
with other regression-based and agent-based methods,
the addition of the lookahead and Monte Carlo rollout
mechanisms improved the robustness and accuracy of
multimodal image registration tasks.

3.5.2 | Assessment

From the works we have reviewed, it is not hard to see
that agent-based registration methods have compara-
ble or even better performance than the intensity/deep-
similarity-based methods. However, most of the papers
can only solve the rigid-registration problems. For the
non-rigid transformer, however, the high-dimensional
state-space and large number of degrees of freedom
may impede the agents from efficient convergence. So,
researchers may have to transform the transformation
space into a lower-dimensional space before applying
the RL agents for registration. Another problem is that
the agent may inherit the inefficiency from some similar-
ity metrics used as the loss function during the training
process, so novice loss functions should be designed for
the RL frameworks. Finally, the methods that directly pre-
dict the transformation are still developing quickly. Many
state-of-the-art papers are emerging, while only a few

papers are looking into agent-based registration, which
shows the low interest of researchers in this field.

4 | DISCUSSION

Among all of the methods reviewed in this paper, we
believe some future directions might be more promis-
ing. Medical image detection is the type of task RL has
been most widely applied to. It is natural to formulate
the detection problems as control problems optimized by
RL, with the current attention region as the state, mov-
ing a certain number of pixels along dimensions of the
image as actions, and defining the distance between the
current position and the target position as rewards. The
most effective method for this type of problem might be
using the multi-agent framework to search for the target
in a coarse-to-fine-resolution manner. This method may
achieve outstanding precision while significantly improv-
ing search efficiency to achieve real-time tracking. For
medical image segmentation, using RL agents to pre-
locate the segmentation region might be one of the most
promising directions. Cropping of the image is one cru-
cial preprocessing stage of image segmentation. So far,
this process still relies on human annotation, which is a
luxury and experience-demanding. RL agents, however,
can embed this process as part of the training pipeline
and learn the best segmentation region to boost the per-
formance of downstream segmentation tasks. Among
all of the RL methods used for classification, what we
find most interesting is RL-enabled user interaction. Dur-
ing the training process, errors and biases may occur,
so the inference from the human experts will provide
extra information to help the models learn the most
valuable features. This interaction can also proactively
choose what unlabeled data to label next, thus reduc-
ing the number of annotations needed while achieving
better classification performance. In the category of
image synthesis, what provokes medical researchers
most might be the synthetic sample selection. It is often
hard to qualitatively evaluate the quality of synthesized
images. The decision made by RL models guarantees
the reliability of these samples, thus further securing
the effectiveness of downstream tasks using these syn-
thetic images. Using RL for non-rigid registration may
gain even more attention in the future. Compared to
rigid registration, non-rigid registration is especially hard
due to its high dimensionality. RL surpasses this barrier
by decomposing the one-shot transformation prediction
into step-by-step parameter optimization to iteratively
refine image alignment.

Model-free vs. model-based

The agent-based frameworks we have reviewed
all belong to the model-free category. However, the
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model-based algorithm is another important subclass
of RL. One possible reason why researchers did not
attempt to use model-based RL is that it is hard to form
the internal model of the environment because of the
high dimensionality and large size of medical image
data. However, the model-based algorithms have higher
sample efficiency than the model-free algorithms. We
are looking forward to future works on model-based RL
for medical image tasks with small-scale labeled data.

4.0.1 | Challenges

Many challenges still impede medical imaging
researchers from applying RL in their works. The
long training times and intensive computational require-
ments are important considerations prior to starting
RL-related research. Though RL has proved its effi-
ciency in the inference phase of many tasks, it often
takes at least a few days longer, even on some of the
cutting-edge GPUs, to learn from numerous trials and
errors.

As previously mentioned, the design of the RL prob-
lems can be tricky. A slightly different design of the state,
action, or reward may lead to a totally different perfor-
mance and some models may even fail to converge. The
choice of hyperparameters of the RL frameworks also
depends on the designers’ experience with low explain-
ability. Researchers may take days to experiment to find
desirable parameters.

The low stability and reproducibility are other pri-
mary concerns.”” Following the same workflows, some
RL agents may fail to work as well as described in
the original paper. The lack of reproducibility is further
exacerbated when the input data source is changed.
Finally, the scarcity of RL-related works, especially those
with public source codes, greatly limits one’s ability to
reproduce results found in the literature.

Additionally, there are more accessible state-of-the-
art methods that can solve some types of medical
imaging problems, and RL did not show a significant
advantage over them. For example, it is still mainstream
to use GANs for medical image synthesis, and many
outstanding papers are emerging each year, which has
caused interest in agent-based methods in these fields
to fade away.

4.0.2 | Future perspectives

The field of RL has developed very quickly in recent
years, and many new theories or strategies have been
proposed. However, the applications of RL in medical
image analysis did not keep pace with this expansion.
Here, we summarized some improvements that may
lead to future trends of agent-based medical imaging.

MEDICAL PHYSICS

4.3.1 Hierarchical reinforcement learning

Hierarchical reinforcement learning (HRL) aims to
improve the agent’s efficiency when facing some com-
plicated problems. The main idea is to disassemble the
final task into several subtasks in a hierarchical struc-
ture. There are three major subclasses of this type of
framework: (i) HRL based on spatiotemporal abstraction
and intrinsic motivation’?; (i) HRL based on an inter-
nal option’?; (iii) Deep successor RL. These methods
can potentially improve the current agent-based pipeline
when solving some high-dimensional 3D image data or
even 4D tracking data.f?

4 .3.2 Multitask and transfer reinforcement
learning

For all reviewed works, the trained RL agent can only
perform the specific task trained for. While transfer learn-
ing is prevalent in deep learning for medical image
analysis, it is reasonable to consider reusing some
pre-trained RL agents for similar but different new
tasks. Agent-based transfer learning can be catego-
rized as behavioral transfer and knowledge transfer®’
By implementing the transfer learning in the current
RL frameworks, we no longer have to train the agent
to learn the complete policy from scratch. This would
significantly reduce the training time and improve the
frameworks’ generalizability.

4.3.3 Active reinforcement learning

Active learning has a two-fold meaning here: (i) Interac-
tion with the users to incorporate users’ prior knowledge;
(ii) The agent decides what data to be labeled and
what data will be trained. This active learning strategy
can help the agent to understand the users’ intentions
and get maximum performance with minimum anno-
tated data. However, this requires the involvement of
human users, physicians in our case, in the process, so
it might not be easy to be implemented in practice.

5 | CONCLUSIONS

In this work, we witnessed the success of some
researchers’ works that effectively turned traditional
image analysis tasks into RL-style behavioral or control
problems. The basic concepts of reinforcement learning
were first summarized, and then a comprehensive anal-
ysis of applications of RL agents for different medical
image analysis tasks was conducted in different sec-
tions. Under each section, the formulations of RL prob-
lems were discussed in detail from different angles. As
the essential elements of the RL systems, the choices of
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algorithms, state, actions, and rewards are highlighted in
the tables. In conclusion, our review paper offers a sim-
ple and clear way for medical researchers to understand
RL’s concept and importance, thus changing the nature
of research in medical image analysis in multiple ways.
By posing the traditional medical imaging problems as
controls optimization, these RL-based methods provide
researchers with a way to tackle problems and create
new paradigms for solving current obstacles, especially
with limited data and computation power. Equipped with
knowledge of RL, data scientists can further optimize
their models, thus pushing the performance bound-
aries forward. More importantly, RL methods can often
surpass the performance of human supervisors while
providing researchers and scientists with new perspec-
tives and deeper understandings of these medical
image analysis challenges. We hope that readers can
find commonalities from these works, further under-
stand the principles of reinforcement learning, and apply
reinforcement learning in their future research.
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