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Background: Myelin oligodendrocyte glycoprotein (MOG)
antibody-associated disease (MOGAD) is an acquired
inflammatory demyelinating disease with optic neuritis (ON)
as the most frequent clinical symptom. The hallmark of the
disease is the presence of autoantibodies against MOG
(MOG-IgG) in the serum of patients. Whereas the role of
MOG in the experimental autoimmune encephalomyelitis
animal model is well-established, the pathogenesis of the
human disease and the role of human MOG-IgG is still not
fully clear.
Evidence Acquisition: PubMed was searched for the terms
“MOGAD,” “optic neuritis,” “MOG antibodies,” and “exper-
imental autoimmune encephalomyelitis” alone or in combi-
nation, to find articles of interest for this review. Only
articles written in English language were included and refer-
ence lists were searched for further relevant papers.
Results: B and T cells play a role in the pathogenesis of
human MOGAD. The distribution of lesions and their
development toward the optic pathway is influenced by the
genetic background in animal models. Moreover, MOGAD-
associated ON is frequently bilateral and often relapsing
with generally favorable visual outcome. Activated T-cell
subsets create an inflammatory environment and B cells are
necessary to produce autoantibodies directed against the
MOG protein. Here, pathologic mechanisms of MOG-IgG are
discussed, and histopathologic findings are presented.
Conclusions: MOGAD patients often present with ON and
harbor antibodies against MOG. Furthermore, pathogenesis
is most likely a synergy between encephalitogenic T and

antibody producing B cells. However, to which extent MOG-
IgG are pathogenic and the exact pathologic mechanism is
still not well understood.
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M yelin oligodendrocyte glycoprotein (MOG), a minor
component of myelin in the central nervous system

(CNS), is expressed in the outermost layer of myelin (1). It is a
Type 1 integral membrane glycoprotein of 26–28 kDa, only
found in mammals and is highly conserved between species
(2,3). Up to 15 splice variants have been described in humans
and nonhuman primates, but not in rodents, that mainly
differ in their cytoplasmatic domains (4). Despite intensive
research, the function of MOG still remains to be fully deter-
mined. Postulated biological roles include an adhesion mole-
cule, a compactor of myelin, or a stabilizer of microtubules
(5,6). Furthermore, it has been shown to interact with C1q,
nerve growth factor, dendritic-cell (DC)-specific intercellular
adhesion molecule-3 grabbing nonintegrin, and to be a cellu-
lar receptor for rubella virus (7–10). The extracellular site is
composed of an immunoglobulin (Ig)-V-like domain that is
highly immunogenic and can evoke inflammatory demyelin-
ating immune responses. It was used extensively to induce
inflammation in experimental autoimmune encephalomyelitis
(EAE), a proposed animal model of multiple sclerosis (MS).
However, the use of cell-based assays with full-length natively-
folded MOG for the detection of human MOG immuno-
globulin G antibodies (MOG-IgG) in patients with acquired
demyelinating diseases (ADS) showed that MOG-IgG-
associated disease (MOGAD) represents a disease distinct
from MS (1,11).

MOGAD is a rare disease with an incidence of 0.16/
100,000 people (12), but the spectrum of clinical symptoms is
ever expanding. The most common presentations are optic
neuritis (ON), acute disseminated encephalomyelitis (ADEM),
transverse myelitis, aquaporin 4 (AQP4)-IgG negative neuro-
myelitis optica spectrum disorders (NMOSD), brainstem syn-
drome, and cortical encephalitis (13). Moreover, there is a
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correlation between age and clinical presentation, with ADEM
being more common in children and optico-spinal lesions
being more present in adults (12,14–22).

Despite the increasing knowledge of clinical MOGAD
presentations, the pathophysiology and importantly, the
pathogenic role of human MOG-IgG, remains to be fully
determined. This review aims to summarize present studies
on MOG-IgG pathology and pathogenesis of this rare
inflammatory demyelinating disease with a focus on optic
pathway involvement.

HUMAN MYELIN OLIGODENDROCYTE
GLYCOPROTEIN-IgG—DETECTION AND
BINDING TO MYELIN
OLIGODENDROCYTE GLYCOPROTEIN

The introduction of state-of-the-art cell-based assays for the
detection of human MOG-IgG resulted in the character-
ization of a novel subset of ADS different from MS and
NMOSD (1,11,23). Importantly, only antibodies recogniz-
ing conformational epitopes present on the full-length pro-
tein were found to be of clinical interest (11,24). Therefore,
the use of linear peptides or unfolded proteins in ELISA and
immunoblots is not suitable for detection of MOG-IgG in
human serum samples (11,25). The epitopes recognized
most frequently in human MOG are located within the
extracellular IgV-like domain and are heterogenic. Proline
42 is the most important amino acid for antibody recogni-
tion, located in the CC9 loop, followed by histidine 103 and
serine 104 (26,27). The latter constitutes the main binding
site of the monoclonal antibody 8-18-C5 (28). Most
human MOG-IgGs are not or only weakly cross-reactive
with rodent MOG, with the important P42S mutation,
which hampers investigation in rodent models (26,29,30).
Moreover, it has been shown that in patients with persisting
MOG-IgG serostatus, the epitope remains constant (26).

Human MOG-IgG has a reduced binding to
paraformaldehyde-treated MOG (27). This further sup-
ports the dependence on binding to natively-folded con-
formational epitopes. MOG has a glycosylation site at
asparagine 31 and studies have shown conflicting results
regarding MOG-IgG binding in the absence of the glycan.
Using the mutant N31D, some serum samples revealed
better recognition of MOG (23,26,31). Nevertheless,
another study additionally using the mutant N31A found
that 60% of MOG-IgG binding was altered (32). The
human MOG gene undergoes alternative splicing and dis-
tinct MOG isoforms, that differ in their cytoplasmatic
domain, have been described (33–36). Intriguingly, the
hydrophobic cytoplasmatic membrane-associated domain
was recently described to play a pivotal role for the recog-
nition of human MOG-IgG and the authors propose that
this domain generates a certain distance between distinct
MOG proteins enabling bivalent binding of MOG-IgG

(37). A recent study investigated the binding of MOG-
IgG to 6 major MOG isoforms. A third of all patient
samples only recognized MOGa1 and MOGb1, both of
which have this hydrophobic domain. However, most of
the samples recognized all or most MOG isoforms tested,
despite the lack of this domain (38). These findings reveal
that human MOG-IgG has a complex and dynamic epi-
tope specificity.

T- AND B-CELL MEDIATED PATHOGENESIS
OF MYELIN OLIGODENDROCYTE
GLYCOPROTEIN-ASSOCIATED DISEASE

The encephalitogenic role of MOG has been analyzed since
decades because it is frequently used as an autoantigen in
the EAE model of CNS demyelination (39–42). In this
model, animals are actively immunized with different mye-
lin proteins/peptides or are used for passive transfer exper-
iments to study the underlying immunopathogenesis.
Dependence on T and B cells and their orchestration is
highly mediated by the type of antigen (i.e., the specific
myelin protein, recombinant protein/peptide) and the
genetic background of animals. MOG-IgG has been shown
to enhance T-cell mediated disease in some animal models,
whereas B cells were demonstrated to be unimportant for
disease development in other animals (reviewed in Refs.
1,43).

In patients with MOGAD, genetic studies showed no
strong correlation between human leukocyte antigen (HLA)
genotype and MOGAD development; importantly, no
cause for disease pathogenesis has been found. A recent
study found a protective effect of the HLA-C*03:04 allele
(44), whereas a Dutch study could not find any associations
(45). In addition, in a Chinese cohort, there was an associ-
ation between pediatric-onset MOGAD for DQB1*05:02-
DRB1*16:02, but not for adult MOGAD (46). Moreover,
in some cases, a viral infection preceded MOGAD diagno-
sis: Epstein–Barr virus, herpes simplex virus 1, rubella,
varicella zoster virus, and severe acute respiratory
syndrome–coronavirus-2 (47–52). A rare paraneoplastic
incidence of MOGAD has also been described (53). A few
patients developed MOGAD while given tumor necrosis
factor-a (TNFa) inhibitors, yet this is an uncommon
phenomenon (54).

Similar to the EAE animal, in human MOGAD, a
synergy between encephalitogenic T cells and B cells is
observed (Fig. 1). Under normal circumstances, the CNS
parenchyma is free of lymphocytes. In recent years, how-
ever, it has become clear that neuroimmune interactions are
important for CNS homeostasis (55–57). A pro-
inflammatory environment that enables opening of the
blood–brain barrier (BBB) for the entry of potentially
pathogenic antibodies is crucial for the pathogenesis of
MOGAD. There are 2 possible explanations for the gen-
eration of autoimmune responses against MOG: the
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“inside-out” hypothesis postulates primary damage of oli-
godendrocytes that leads to drainage of myelin antigens into
lymph nodes (LN) via lymphatic vessels of the dura mater
(58–61). These are transported as soluble antigens or by
DC of the choroid plexus or the meninges into the deep
cervical LN, where antigen presentation and priming of
T cells takes place (60,62–67). However, drainage of for-
eign antigens via this pathway has also been shown to
induce tolerance of immune cells toward self-antigens rather
than autoimmune activation; therefore, it is possible that a
certain threshold of drained CNS antigens has to be reached
(68–71). The second possibility, called the “outside-in”
hypothesis, posits an activation of lymphocytes in peripheral
LN through molecular mimicry or pan-activation after a
systemic viral infection (65). Cross-reactivity has been
shown between MOG-IgG and butyrophilin, a milk pro-
tein (72). Furthermore, negative thymic selection of T cells
toward MOG self-tolerance is believed to be incomplete
(73,74). In line, a lack of immune tolerance toward

MOG has been shown in knock-out mice (75) and immune
tolerance was restored using mRNA-based vaccination with
MOG peptides or transgenic expression of MOG within
immune cells (76,77).

In both cases, T-cells home to the brain after priming
where they most likely enter the brain parenchyma through
the meninges or the choroid plexus (55,65,78,79). After entry
into the CNS border regions, T cells need to be reactivated by
antigen-presenting cells (APC) to gain access to the CNS
parenchyma across the BBB. Production of cytokines/
chemokines and subsequent activation of nearby tissue includ-
ing the blood–meningeal barrier and BBB enables the infil-
tration of more immune cells and MOG-IgG into the CNS
parenchyma that directly damage neurons and glia (reviewed
in Refs. 80–84). Resident DC or infiltrating myeloid cells
likely contribute (78,85–88). Furthermore, CNS border-
associated macrophages get highly activated in the course of
EAE, which also includes upregulation of major histocompat-
ibility complex (MHC) 2 (89,90).

FIG. 1. Pathogenesis of MOGAD. Encephalitogenic T cells gain access into the CNS (mostly through the meninges), where
they seek contact with APC (DC) and get reactivated. After polarization toward Th1 and Th17 T-cell subsets, subsequent
release of cytokines leads to a breakdown of the BBB and to a massive infiltration of other leukocytes and MOG-IgG, that
were produced in the periphery. MOG-IgG bind to their target on the surface of oligodendrocytes and on myelin and can be
directly pathogenic via ADCC, altering the cytoskeleton of oligodendrocytes or also complement activation. The synergy of
activated immune cells and MOG-IgG eventually leads to damage of oligodendrocytes and to demyelination. A indicates
astrocyte; ADCC, antibody-dependent cellular cytotoxicity; B, B-cell; BBB, blood–brain barrier; DC, dendritic cell; G, gran-
ulocyte; IFNg, interferon-g; IL, interleukin; M, macrophage; Mi, microglia; MOG, myelin oligodendrocyte glycoprotein; N,
neuron; NK, natural killer cell; O, oligodendrocyte; T, T cell; Th1, T-helper 1 cell; Th17, T-helper 17 cell; TNFa, tumor necrosis
factor-a. Created with BioRender.com.
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As different T-cell subsets have diverse roles in immu-
nopathogenesis, it is important to understand toward which
lineages T cells are polarized. Different studies examining
the cytokine/chemokine profiles in patients with MOGAD
measured increased levels of T-helper (Th)17-related
cytokines/chemokines (interleukin [IL]-6, IL-8, IL-17a),
granulocyte-colony stimulating factor, Th1-related cyto-
kines (interferon-g, TNFa), and several B-cell associated
factors (a-proliferation-induced ligand, B-cell activating fac-
tor, C-X-C motif chemokine ligand 13) in cerebrospinal
fluid (CSF) and serum (91–93).

Tocilizumab (anti-IL-6 receptor antibody) is used off-
label for the treatment of AQP4-IgG seropositive NMOSD
and because of increased IL-6 levels in the CSF of MOGAD
patients (92,93), off-label treatment was evaluated in several
case series.

Increased neurofilament light chain levels were observed
in the serum of MOGAD patients that also correlated with
attack severity and could therefore serve as a potential
biomarker (97). In addition, another study found increased
CSF myelin basic protein levels in MOGAD and NMOSD
patients compared with MS and controls, but glial fibrillary
acidic protein levels were only increased in NMOSD (98).

In MOGAD, the detection of MOG-specific T cells is
still challenging. One study stimulated patient-derived
peripheral blood mononuclear cells of MOG-IgG-positive
patients with different MOG peptides, but could not find
any specific proliferation. The authors suggest that the use
of peptides could be insufficient for T-cell stimulation (99).
Another investigation used bead-coupled recombinant
MOG for stimulation of T cells in MS patients and
observed MOG reactivity in about half of them. However,
all patients were treated with natalizumab and only one
patient harbored MOG-IgG (100).

As MOGAD is associated with the presence of MOG-
IgG, the question arises whether these antibodies are
directly pathogenic, or the epiphenomena of a secondary
immune response against MOG. Understanding this
distinction can help to figure out the role of MOG-
specific B cells in disease development. B cells can damage
CNS tissue through diverse mechanisms including release
of toxic exosomes and cytokines, antigen presentation to
T cells, and antibody secretion (reviewed in Refs.
101,102). The importance and ability of B cells to suffi-
ciently activate T cells through antigen presentation in
EAE mouse studies has revealed contrasting results
(103,104). In human MOGAD, one study identified
MOG-specific B cells in 60% of patients; still, this did
not correlate with MOG-IgG serum titers (105). In con-
trast, B-cell activation associated with the production of
IL-10 in EAE mice has been shown to exert a beneficial
effect (106,107). Importantly, IL-10 producing regulatory
B cells were reduced in the periphery of MOGAD
patients, whereas pro-inflammatory memory B cells, and
follicular T cells, that drive B-cell differentiation toward

memory cells and long-lived plasma cells, were observed at
higher levels (108).

Several T- and B-cell targeting drugs are used off-label in
the treatment of MOGAD, including azathioprine and
mycophenolate mofetil (109–111). One of the most fre-
quently used drugs is rituximab, targeting CD20+ B cells
(84,109,110,112). However, despite efficient B-cell deple-
tion, only 55% of patients were relapse free in the first and
33% in the second year (113,114). Thus, B-cell depletion
was less effective as in AQP4-IgG-positive NMOSD, indi-
cating that B cells may be less important in MOGAD.

THE ROLE OF HUMAN MYELIN
OLIGODENDROCYTE GLYCOPROTEIN-IgG
AND NEUROPATHOLOGICAL FINDINGS

As mentioned above, the investigation of the pathogenic
potential of human MOG-IgG is hampered by the fact
that not all human MOG-IgG cross-react with rodent
MOG (26,29,115). Different possible mechanisms for
MOG-IgG-derived pathogenicity have been described
in the literature. Most MOG-IgG production is believed
to take place in the periphery as oligoclonal CSF bands
are missing in 90% of MOGAD patients (116). None-
theless, isolated CSF MOG-IgG positivity was observed
in rare cases (117,118). MOG-IgG are primarily IgG1
isotype, but IgG2, IgG3, and IgG4 are sometimes present
(119). The role of complement activation in MOGAD is
still under debate and not well-established. Only a por-
tion of monoclonal MOG-antibodies was able to activate
complement in vivo (120) and injection of human
MOG-IgG together with human complement resulted
in only low amounts of complement deposition (121).
In addition, an ex vivo study found complement activa-
tion in only one of 10 samples (29). In contrast, increased
serum levels of complement products were found in MO-
GAD compared with MS, and NMOSD (122). Interest-
ingly, after the transfer of human MOG-IgG cross-
reactive to rodent MOG into different rat models,
increased T-cell infiltration or complement deposition,
together with MOG- or MBP-specific T cells, respec-
tively, was observed (115).

MOG-IgG has shown a direct pathogenic effect on
oligodendrocytes: changing the cytoskeleton, repartitioning
of MOG into lipid rafts, altering the phosphorylation
pattern of different proteins (6,123,124), and furthermore,
changing the expression of axonal proteins (121). Moreover,
human MOG-IgG induced natural killer-cell-mediated kill-
ing of MOG expressing cells in vitro (125) and enhanced
antigen presentation through opsonization by APC
(126,127).

Systematic neuropathological examinations of patients
with MOGAD are rare and include several case reports
and 2 larger studies (128,129). The neuropathological
examinations of autopsies and biopsies from patients
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revealed a pattern of perivenous and confluent demyelin-
ation present in white matter, the cortex, and in deep gray
matter structures (128–130). Importantly, confluent
lesions were the result of fusion of perivenous lesions
rather than MS-like radial expanding lesions. Moreover,
slowly expanding plaques, as observed in MS, were miss-
ing, and in only one case, a rim of macrophages was pre-
sent (128). Meningeal inflammation was observed in 86%
of a biopsy cohort and furthermore, subpial lesions were
present and myelin-laden macrophages/microglial cells
were abundantly found within active demyelinating areas
(128). In contrast to MS, infiltrating lymphocytes were
mainly of the CD4+ type with only few B cells and
CD8+ T cells (128,129,131). Eosinophils and neutrophils
were observed in low-to-moderate numbers. Axons were
relatively preserved, but reactive astrogliosis was observed
without loss of AQP4 staining (128,132). Creutzfeldt-
Peter cells were observed in one study (128), but absent
in another cohort (129). Complement activation was dem-
onstrated in active lesions, resembling a Pattern II lesion
type in some studies (31,128,132,133), yet was largely
absent in another investigation of 11 biopsies (129). In
addition, destruction of oligodendrocytes was variable,
and selective loss of MOG was missing (31,128,132);
however, described in another study (129). Premyelinating
oligodendrocytes were found in lesions without evidence
of active remyelination (31,128). Interestingly, in a study
describing the MRI lesion resolution in patients with MO-
GAD, NMOSD, and MS, MOGAD lesions were found to
be resolving completely more frequently compared with
the other groups, suggesting better repair capacities
(i.e., remyelination and better axonal preservation) (134).

MYELIN OLIGODENDROCYTE
GLYCOPROTEIN-ASSOCIATED DISEASE
LESIONS OF THE OPTIC NERVE AND THE
VISUAL PATHWAY

The predominant phenotype in adult MOGAD patients is
ON, but it is also frequently found in pediatric cases.
Studies reported between 44% and 61% onset presenta-
tions with ON in adult MOGAD patients (12,14,16,135)
and in up to 38% of children (17–19,22). Moreover, stud-
ies examining the prevalence of MOG-IgG in ON patients
found MOG-IgG in 4%–31% of ON cases (136–141).
MOG-IgG-positive ON was associated with bilateral ON
in 24%–45% of patients (15–17,136–139,142) and pain
and optic disc swelling were observed frequently
(138,141,143) (Fig. 2). Around half of patients followed a
relapsing disease course (15,16,143). Interestingly, of those,
around 88% developed isolated ON as relapse, whereas the
remaining patients developed NMOSD-like relapses, trans-
verse myelitis, or an optico-spinal phenotype (15,16,143).
ON at follow-up was observed in 47% of children and 63%

of adult patients with MOGAD (15). Studies reported
between 4% and 16% chronic relapsing inflammatory optic
neuritis (CRION) patients within MOGAD-ON cohorts
and found that CRION patients positive for MOG-IgG
were younger, showed bilateral involvement more often
and had more relapses compared with seronegative patients
(15,143,144). The spectrum of ophthalmic manifestations
associated with MOG-IgG is however expanding and there-
fore, we would like to refer to a recent review (145).

Optical coherence tomography measurements of the
peripapillary retinal nerve-fiber-layer (pRNFL) thickness re-
vealed higher values in acute MOGAD-ON compared with
MS because of optic disc edema. PRNFL thickening could
serve as an indicator to distinguish MOGAD and MS in acute
ON (146). After thickening in the acute phase the RNFL and
ganglion-cell and inner-plexiform-layer (GCIPL) undergo
degeneration (136,147,148), but visual outcome was generally
favorable with only 6%–8% showing a poor visual acuity at
last follow-up (16,136,143). In MRI of the optic nerve,
enhancement was observed in all patients and 50%–88% also
showed perineural enhancement. Lesions are usually long,
affect the orbital portion more, and can also extend into the
orbital fat (141,143,149). Only about 2%–5% developed
optic tract abnormalities and 12%–16% showed involvement
of the optic chiasm, that was linked to longitudinally extensive
lesions in 54% (139,143,150). Prechiasmal and chiasmal
lesions were associated with a bad visual prognosis (151).

FIG. 2. Optic nerve lesions in MOGAD. In MOGAD, bilateral
ON is observed in up to 45% of patients and optic disc
edema is common. MRI shows enhancement of the optic
nerve and perineural abnormalities including optic nerve
sheath enhancements in half of the patients. Furthermore,
lesions are usually longitudinal extensive and affect pre-
dominantly the prechiasmic optic nerve (highlighted in yel-
low). Involvement of the optic chiasm and the optic tract is
only observed in 12% and 2% of patients, respectively. Data
from (Refs. 141,143). Created with BioRender.com. MO-
GAD indicates myelin oligodendrocyte glycoprotein-associ-
ated disease; ON, optic neuritis
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In EAE animal models immunized with MOG, the lesion
distribution was determined by different influences such as
gender, the genetic background and the immunization method
used (152–154). Double transgenic mice (MOG-specific T
and B cells, called 2D2/Th) developed spontaneous optico-
spinal phenotypes (155–158). However, single transgenic mice
(2D2) also developed ON, although at lower frequencies,
suggesting an enhancing role of antibodies (157,159).

Histopathologic examinations of animals revealed infiltra-
tion of inflammatory cells, demyelination with axonal loss, and
reactive gliosis in retina and optic nerves (152,156,157,160).
Besides, complement activation was found in one study (161).
The retinal ganglion cell layer was also shown to undergo
degeneration in mice after inflammatory responses and activa-
tion of microglia cells in later stages of EAE and may be the
product of secondary degenerative mechanisms, because there
are no MOG-expressing oligodendrocytes present in the retina
(157,162,163). As a result, authors observed reduced neuritic
density in the inner plexiform layer in mice (157). In contrast,
a study examining the pRNFL and GCIPL in MOGAD
patients found no evidence for attack-independent degenera-
tion (164). Activation of microglia was furthermore linked to
optokinetic tracking threshold decline in functional examina-
tions in experimental autoimmune ON mice (165). In addi-
tion, visual evoked potential recordings in dark agouti rats
immunized with MOG showed latency delay, a decrease in
amplitude, and MOG dose-dependent lack of flash evoked
response suggestive of axonal conduction block (160,166).
Intriguingly, investigations showed that MOG expression is
higher in the optic nerves than in the spinal cord and brain
on protein and mRNA levels in mice (155,159). However, the
vulnerability of the optic nerve head is likely the result of a lack
of microvessels with BBB characteristics and nonspecific per-
meability in this region (167–169).

CONCLUSION

To summarize, the spectrum of MOGAD-associated
symptoms is broad, but most patients present with ON,
that is usually associated with a good visual recovery.
Histopathology revealed perivenous demyelinating lesions
and infiltration of leukocytes. Nevertheless, the role of
human MOG-IgG is less clear and different pathogenic
mechanisms are discussed. Future studies that aim to define
the exact pathogenesis, are needed to further identify targets
for efficient treatment strategies.
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