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Abstract

Background Microsatellites are a ubiquitous occurrence in prokaryotic and eukaryotic genomes. Microsatellites have
become one of the most popular classes of genetic markers due to their high reproducibility, multi-allelic nature,
co-dominant mode of inheritance, abundance and wide genome coverage. We characterised microsatellites in the
genomes and genes of two bat species, Pteropus vampyrus and Miniopterus natalensis. This characterisation was

used for gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment of coding
sequences (CDS).

Results Compared to M. natalensis, the genome size of P vampyrus is larger and contains more microsatellites, but
the total diversity of both species is similar. Mononucleotide and dinucleotide repeats were the most diverse in the
genome of the two species. In each bat species, the microsatellite bias was obvious. The microsatellites with the larg-
est number of repeat motifs in P vampyrus from mononucleotide to hexanucleotide were (A),, (AC),,, (CAA),, (AAAC),,
(AACAA), and (AAACAA),, with frequencies of 97.94%, 58.75%, 30.53%, 22.82%, 54.68% and 22.87%, respectively, while
in M. natalensis were (A),, (AC),,, (TAT),, (TTTA),, (AACAA), and (GAGAGG),,, with of 92.00%, 34.08%, 40.36%, 21.83%,
2542% and 12.79%, respectively. In both species, the diversity of microsatellites was highest in intergenic regions,
followed by intronic, untranslated and exonic regions and lowest in coding regions. Location analysis indicated that
microsatellites were mainly concentrated at both ends of the genes. Microsatellites in the CDS are thus subject to
higher selective pressure. In the GO analysis, two unique GO terms were found only in P vampyrus and M. natalensis,
respectively. In KEGG enriched pathway, the biosynthesis of other secondary metabolites and metabolism of other
amino acids in metabolism pathways were present only in M. natalensis. The combined biological process, cellular
components and molecular function ontology are reflected in the GO analysis and six functional enrichments in KEGG
annotation, suggesting advantageous mutations during species evolution.

Conclusions Our study gives a comparative characterization of the genomes of microsatellites composition in the
two bat species. And also allow further study on the effect of microsatellites on gene function as well as provide an
insight into the molecular basis for species adaptation to new and changing environments.

Keywords Genome-wide identification, Microsatellite, Diversity, GO analysis, KEGG enrichment, Chiroptera

Background
*Correspondence: Microsatellites or Simple-Sequence Repeats (SSRs) are
LiWei tandemly repeated DNA sequences composed of mono-
weiliweili2007@163.com leotid di leotid tri leotid tet 1
College of Ecology, Lishui University, Lishui 323000, Zhejiang, People’s n.uc eoude, IIIU(f eotide, rinucieo 1. € e{ ranucleo-
Republic of China tide, pentanucleotide and hexanucleotide units located

throughout the prokaryotic [1] and eukaryotic genomes
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[2—-4], in both non-coding and coding regions of DNA
[5]. Moreover, retrotransposons may also be associated
with microsatellites [6]. Furthermore, microsatellites
have become one of the most popular classes of genetic
markers due to their high reproducibility, multi-allelic
nature, co-dominant mode of inheritance, abundance
and wide genome coverage [3]. Despite their ubiquitous
occurrence, microsatellite density and distribution vary
significantly across genomes [7]. Moreover, high muta-
bility at microsatellite loci contributes to genome evolu-
tion by creating genetic variation within a gene pool [8,
9]. Slipped-strand mispairing and subsequent error(s)
during DNA replication, repair or recombination are the
primary cause of this genetic variation [10, 11]. Strand
slippage and unequal recombination results in the inser-
tion or deletion of one to several repeated units. This high
instability makes them attractive polymorphic molecular
markers [12].

In recent years, in silico mining of microsatellite
sequences from DNA-sequence databases has rapidly
replaced the conventional methods for generating micro-
satellite markers from genomic libraries [13, 14]. Sub-
sequently, several search tools are available for mining
microsatellite repeats in assembled genome sequences,
including Tandem Repeats Finder, Simple-Sequence
Repeat Identification Tool, Tandem Repeats Occurrence
Locator, SciRoko, MSDB and MIcroSAtellite (MISA) [3].
MISA is sophisticated and user-friendly microsatellite
mining software [15]. Furthermore, MISA was performed
for microsatellite mining in the genomes of Anopheles
sinensis [16], Epinephelus awoara [17], Boa constric-
tor and Protobothrops mucrosquamatus [18], Nanorana
parkeri and Xenopus laevis [19]. These investigations
indicate that microsatellites are found less frequently in
protein-coding sequences than in intronic and intergenic
regions [18]. Microsatellites in coding regions are more
diverse than those in non-coding regions due to higher
coding density [20]. The microsatellite length expansion
may affect gene regulation, transcription and protein
function of coding sequences (CDS), particularly for tri-
nucleotide repeats, which are associated with human
diseases [21], such as Huntington and Machado-Joseph
disease [22], neurological disease [23] and colorectal
cancer [24]. Microsatellite distribution characteristics
and functions may vary among genomes [25]. Therefore,
whole genome sequencing encourages the development
of microsatellite markers derived from the database [3,
26].

In the present study, we investigated the Chiroptera
genomes of the large flying fox (Pteropus vampyrus) and
Natal long-fingered bat (Miniopterus natalensis) that have
been reported in the open databases. P vampyrus is the
largest of any bat species belonging to Yinpterochiroptera
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that cannot vocalise echolocation calls [27], whereas M.
natalensis is a representative species of Yangochiroptera
that can produce modulated frequency (FM) echoloca-
tion calls [28]. Furthermore, we analysed the charac-
teristics and functional annotation of microsatellites
at the genomic level of the two bat species. These find-
ings should contribute to our understanding of the bat
genome and facilitates subsequent screening and devel-
opment of large numbers of high-quality microsatellite
markers.

Methods

The P vampyrus genome assembly was downloaded
from the National Center for Biotechnology Informa-
tion (NCBI) under BioProject accession PRJNA20325,
with annotation files downloaded from https://ftp.ncbi.
nlm.nih.gov/genomes/all/GCF/000/151/845/GCF_00015
1845.1_Pvam_2.0/, including CDS sequences. Similarly,
the genome assembly of M. natalensis was downloaded
from NCBI under BioProject accession PRJNA283550,
with annotation files downloaded from https://ftp.ncbi.
nlm.nih.gov/genomes/all/GCF/001/595/765/GCF_00159
5765.1_Mnat.vl/, including CDS sequences. Microsatel-
lites in the genome and CDS were identified using MISA
identification tool software, which has been used for
microsatellite analysis of several species, including Nano-
rana parkeri (high Himalaya frog), Xenopus laevis (Afri-
can clawed frog) [19], Boa constrictor (red-tailed boa)
and Protobothrops mucrosquamatus (brown-spotted pit
viper) [18]. Def in the misa.ini file was set as 1-12, 2-6,
3-5, 4-5, 5-4 and 6—4 to restrict the detection criteria
for perfect SSR of 1-6 bp with minimum repeat num-
bers of 12, 6, 5, 5, 4 and 4 for mononucleotide, dinu-
cleotide, trinucleotide, tetranucleotide, pentanucleotide
and hexanucleotide microsatellites, respectively [29, 30].
Further, when the distance between two microsatellites
was shorter than 100 bp, they were considered single-
compound microsatellites [31]. Moreover, repeats with
unit patterns being circular permutations and/or reverse
complements were considered as one type [32, 33], such
as the AAG contains CTT, AGA, TCT, GAA, and TTC or
GCGT contains ACGC, CGTG, CACG, GTGC, GCAC,
TGCG, and CGCA in different reading frames or on the
complementary strand.

Furthermore, the frequency and diversity of SSRs in
each bat genome were calculated. The frequency was
determined as the percentage of the total number of
SSRs per megabase (Mb) of the genome sequence. The
diversity of microsatellites, which is the SSR number per
Mb of the sequence analysed, was calculated using the
methods reported in the literature by Fujimori et al. [31],
Qian et al. [34], Nie et al. [18] and Wei et al. [19]. The
relative positions of the exon, intron, gene and intergene
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regions were extracted from the annotation files via cus-
tom Python scripts to explore the distribution of micros-
atellites in the genomes of P vampyrus and M. natalensis
[16]. The microsatellites on different regions of the genes
were then located. The genes were divided into 13 ele-
ments containing 500 bp upstream, the first exon/intron,
second exon/intron, middle left exon, middle intron,
middle right exon, last second intron, last second exon,
last intron, last exon and 500 bp downstream [18, 19].
Further, to avoid overlap in measurements, only genes
with more than six exons and five introns were consid-
ered [31]. The relative position (from P0.1 to P1.0) of a
microsatellite in a certain type of element is the distance
from the microsatellite to the left end of the element
divided by the distance between the length of the element
and the length of the microsatellite [19].

CDS with microsatellites were aligned against NCBI
non-redundant and SWISS-PROT protein databases
(http://www.uniprot.org) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (http://www.
genome.jp/kegg), using BLASTx with an E-value thresh-
old of 1e7° [35]. Protein functional annotations were then
obtained according to the best alignment results. The
Blast2GO software was used to analyse the gene ontology
(GO) annotation of genes [36], and WEGO software was
employed to investigate the functional classification of
genes such as biological processes, cellular components
and molecular function [37].

Results

Microsatellite frequency and distribution in the genomes
of the two species

Table 1 shows the results of the microsatellite analy-
sis. A total of 512,647 SSRs were found in the genome
assembly of approximately 2.20 Gb for P vampyrus,

Page 3 of 10

and a total of 448,674 SSRs were found in the genome
assembly of approximately 1.80 Gb for M. natalensis.
The SSR content of the genome between species was
similar, with 0.46% in P. vampyrus and 0.47% in M.
natalensis. Additionally, the total microsatellite diver-
sity between species was similar, i.e., 233.20 SSRs/Mb
in P. vampyrus and 248.83 SSRs/Mb in M. natalensis.
The mononucleotide motifs were the most abundant
category, followed by dinucleotide and tetranucleo-
tide motifs for P. vampyrus. Whereas in M. natalensis,
dinucleotide repeats were the most diversified cat-
egory, followed by mononucleotide and tetranucleo-
tide repeats (Table 1). The most diverse SSR types from
mononucleotide to hexanucleotide motifs in the P
vampyrus genome were (A),, (AC),, (CAA),, (AAAQC),,
(AACAA), and (AAACAA), and in M. natalensis were
(A),, (AC),, (TAT),, (TTTA),, (AACAA), and (GAG
AGG),. Moreover, similarities between species were
noted in dinucleotide (TA),, (GT),, (GA), and (GC),,
trinucleotides (CAT),, tetranucleotides (ATAG), and
(CATT),, in pentanucleotide (AACAA), (TTATT),
and (TTTCT), and in hexanucleotide (CTGTCT),.
Table 2 shows the concentration of differences in trinu-
cleotide, tetranucleotide, pentanucleotide and hexanu-
cleotide types (Table 2).

The 15 most diverse microsatellite repeats in the
P vampyrus genome were (A),, (AC),, (CT),, (TA),,
(CAA),, (AAAC),, (TAT),, (AACAA), (ATAG),,
(CATT),, (G),, (TTTA),, (CCTT),, (CAT), and (GAG),
comprising of 92.84% of all microsatellites identified.
Similarly, the 15 most diverse microsatellite motifs
in M. natalensis were (A),, (CT),, (AC),, (TA),, (Q),,
(TAT),, (TTTA),, (ATAG),, (CATT),, (CCTT),, (CAA),,
(TGGA),, (AACAA),, (AAAC), and (TTATT), compris-
ing of 94.10% of all microsatellites identified.

Table 1 Distribution of microsatellites in the genomes of Pteropus vampyrus and Miniopterus natalensis

Motif length Pteropus vampyrus Miniopterus natalensis
Numbers of Length(bp) Abundance Frequency (%) Numbers of Length(bp) Abundance Frequency (%)
microsatellites (SSRs/Mb) microsatellites (SSRs /Mb)
Mononucleotide 246,947 3,647,964 112.34 48.17 144,835 2,174,691 80.33 32.28
Dinucleotide 163,249 3,649,342 74.26 3184 235,344 4,030,076 130.52 5245
Trinucleotide 36,521 750,138 16.61 712 20,959 386,283 11.62 467
Tetranucleotide 43,966 1,409,268 20.00 8.58 32,493 1,259,172 18.02 7.24
Pentanucleotide 15137 382,635 6.89 295 10,320 367,900 572 2.30
Hexanucleotide 6827 199,332 3.1 133 4723 188,970 262 1.05
Total 512,647 10,038,679  233.20 100.00 448,674 8,407,092 248.83 100.00
Whole genome 2,198,284,804 1,803,099,001
length/bp
SSR content in the 0.46% 0.47%

genome
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Table 2 The most frequent microsatellite motifs found in the genomes of Pteropus vampyrus and Miniopterus natalensis

Motif length Pteropus vampyrus Miniopterus natalensis
Repeat unit Microsatellites Frequency (%) Repeat unit Microsatellites Frequency (%)
Mononucleotide A 241,850 97.94 A 133,249 92.00
G 5097 2.06 G 11,586 8.00
Dinucleotide AC 95,909 58.75 AC 80,208 34.08
cT 37,060 22.70 cT 126,869 5391
GC 1394 0.85 GC 467 0.20
TA 28,886 17.69 TA 27,800 11.81
Trinucleotide CAA 11,151 30.53 TAT 8458 40.36
TAT 9997 2737 CAA 3341 15.94
CAT 4202 11.51 CAT 2508 11.97
GAG 2974 8.14 ACC 2380 11.36
Tetranucleotide AAAC 10,035 22.82 TTTA 7092 2183
ATAG 6429 14.62 ATAG 5488 16.89
CATT 5268 11.98 CATT 3802 11.70
TTTA 4488 10.21 CCTT 3721 11.45
Pentanucleotide AACAA 8277 54.68 AACAA 2623 2542
TTATT 2174 14.36 TTATT 2515 24.37
TTTCT 851 562 TTTCT 621 6.02
CCACC 295 1.95 AGGGA 606 587
Hexanucleotide AAACAA 1561 22.87 GAGAGG 604 12.79
GGGTTA 1282 18.78 TATCTA 271 574
CTGTCT 442 6.47 CTGTCT 261 553
TATCTA 414 6.06 GGGTTA 215 4.55

Table 3 displays the distributions of microsatellites in
the genomes of P vampyrus and M. natalensis. Inter-
genic regions had the most numbers of microsatellites,
and CDS exhibited a few in both species. The number
of microsatellites in the intergenic, intron, exon and
untranslated regions of P vampyrus was greater than that
in M. natalensis; however, the diversity of microsatel-
lites in intron regions of P vampyrus was less than that
in M. natalensis. The numbers and diversity of micros-
atellites in CDS in M. natalensis were larger than those
in P vampyrus. Further, microsatellites in the CDS were
found to be less diverse than those in other regions. Fig-
ure 1 illustrates the frequency of different microsatellite
types in different genomic regions. In both species, tri-
nucleotides were the most diverse microsatellite type

in CDS, with 83.11% and 84.70% in P. vampyrus and M.
natalensis, respectively. The numbers of mononucleotide,
dinucleotide, trinucleotide, tetranucleotide, pentanucleo-
tide and hexanucleotide in the exons of P. vampyrus were
much greater than that of M. natalensis. The distribution
of SSRs in intergenic regions was similar to the distribu-
tion in whole genomes, with the most diversity among
mononucleotides and dinucleotides.

Location analysis of microsatellites in genes

All microsatellites in exons or introns were compared
with 979 and 1010 genes, with more than six exons and
five introns in P vampyrus and M. natalensis, respec-
tively. Microsatellite-enriched regions were upstream
and downstream of genes in both P vampyrus and M.

Table 3 The number and diversity (microsatellites/Mb) of microsatellites in different genomic regions of Pteropus vampyrus and

Miniopterus natalensis

Species Gene Intergenic

CDs Untranslated Exon Intron
Pteropus vampyrus 1143(355.55) 4710(1537.15) 7702(1226.66) 183,514(2244.51) 402,059(3050.79)
Miniopterus natalensis 1157(371.89) 2953(1323.03) 4503(842.76) 171,977(2436.11) 292,798(2805.33)
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Fig. 1 Distribution of microsatellite types in different genomic regions of Pteropus vampyrus and Miniopterus natalensis. 1-6 indicated
mononucleotide, dinucleotide, trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide unit length, respectively

natalensis genomes, with the numbers of microsatellites
in exons, gradually decreasing from the first exon toward
the last second exon and increasing toward the last exon
(Fig. 2). In each bat species, microsatellite diversity in
upstream and downstream regions was similar. Likewise,
microsatellite diversity in various introns was also similar

(Fig. 2).

Functional analysis of CDS with microsatellites for two
species

In genomes of P. vampyrus and M. natalensis, 1019 and
1043 CDS with SSR, respectively, were imported into
GO analysis based on sequence alignment. All these CDS
were assigned to 20572 (P vampyrus) and 21816 (M.
natalensis) GO in terms of their known functions. Fig-
ure 3 shows the number of CDS with SSRs assigned to
each subcategory. Further, 50 pairs were represented in
both species of these GO functional classifications. Car-
bon utilisation (GO: 0015976) and biological phase (GO:

0044848) in the biological process ontology were only
present in P vampyrus, while the virion (GO: 0019012)
and virion part (GO: 0044423) in cellular component
ontology were present only in M. natalensis. Further-
more, comparing the function distribution between the
two species, cellular process (GO: 0009987) in biological
process ontology was most frequent. Cell (GO: 0005623)
and cell part (GO: 0044464) were the top two terms in
the cellular component ontology. In the molecular func-
tion ontology, binding (GO: 0005488) was prominent.
CDS were assigned to 828 for P vampyrus and 847
for M. natalensis in terms of known functions for
KEGG annotation. Figure 4 shows these KO functional
classifications indicating that 41 and 43 pathways were
enriched in P vampyrus and M. natalensis, respec-
tively. All the enrichment pathways were divided into
six functional classification categories, i.e., metabo-
lism, environmental information processing, genetic
information processing, cell process, organismal
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systems and human diseases and drug development
(Fig. 4). The biosynthesis of other secondary metabo-
lites and metabolism of other amino acids in metab-
olism pathways were present only in M. natalensis.
Among these pathways, the signal transduction path-
way was the most enriched, with 110 genes in P
vampyrus and 115 genes for M. natalensis.

Discussion

Genome-wide identification of SSR markers have been
successfully performed in various animals [38]. To our
best knowledge, the present study is the comprehensive
report on the characterization of microsatellites in bat
species of P vampyrus and M. natalensis. Genome size,
total number of SSR and total length of SSR identified in
P vampyrus were all larger than those in M. natalensis
(Table 1). These differences in genomes of the two species
may be caused by their genome size, assembly quality, the
number of positions of the unknown base and specificity
of species [3, 39]. This phenomenon has been reported

in other species, such as B. constrictor and P. mucros-
quamatus [18], Tetranychus urticae and Ixodes scapula-
ris [40] and Phytophthora [41]. However, microsatellite
content in the genomes of P vampyrus and M. natalen-
sis was similar, accounting for 0.46% and 0.47%, respec-
tively. This result is consistent with other bat species
Rhinolophus ferrumequinum (0.58%, unpublished data)
and Hipposideros armiger (0.50%, unpublished data),
as well as previous studies in other mammals, such as
giant panda (Ailuropoda melanoleuca, 0.64%), the polar
bear (Ursus maritimus, 0.79%) [42] and forest musk deer
(Moschus berezovskii, 0.42%) [43]. Total SSR diversity in
the genomes of P vampyrus and M. natalensis are 233.20
SSRs/Mb and 248.83 SSRs/Mb, respectively, which were
lower in comparison to the diversity of R. ferrumequi-
num with 263.65 SSRs/Mb (unpublished data) but higher
compared to the diversity of H. armiger (222.61 SSRs/Mb
(unpublished data). This indicates that the genomic size
and quality of sequencing have a great influence on the
identification of microsatellites [18].
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The sequence proportions of six SSR types in P. vampy-
rus and M. natalensis genomes are different, as are the
four most diverse microsatellite types (Table 2). This
result has also been reported in patterns of genomic
SSRs of N. parkeri and X. laevis [19], B. constrictor and
P. mucrosquamatus (18], C. exilicauda and M. martensii
[44]. However, genomes of Eucryptorrhynchus brandti
and E. scrobiculatus exhibit similarities in the six SSR
types [45] suggesting that the differences and similarities
in microsatellite composition in the genome can reflect
the relationship among species to some extent [46]. Fre-
quency and abundance analysis of various motif repeats
in P vampyrus genome revealed that mononucleotide
repeats were the dominant type of SSRs (Table 1). These
results are in agreement with previous studies in other
eukaryotic organisms. For example, mononucleotide was
the dominant SSR types in Lophophorus lhuysii [47], M.
berezovskii [43] and Macaca fascicularis [48]. On the
contrary, dinucleotide was the dominant SSR types in
the genome of M. natalensis, which is in agreement with
other species of N. parkeri and X. laevis [19], Rhodeus
sinensis [49] and Eriocheir sinensis [50]. Dinucleotides
were the dominant types because of their higher muta-
tion rates [37]. For example, dinucleotides in human non-
pathogenic SSR loci have mutation rates of 1.5-2 times
higher than tetranucleotides [51].

In comparisons with P vampyrus and M. natalensis,
differences in both frequency and diversity of SSRs in
CDS were minor, whereas those in exon, intron, untrans-
lated and intergenic regions were significant (Table 3).
Furthermore, the diversity of microsatellites in untrans-
lated regions was greater than those in CDS regions,
indicating that microsatellites aggregate in untranslated
regions, presumably influencing gene transcriptional
activity [52]. Coding regions are generally conservative
among different species and are subject to high-selective
pressure [53]. In this study, trinucleotide SSRs in the CDS
were the most diverse SSR types in both bat species. Fur-
ther, the diversity of trinucleotide SSRs in the CDS of
the M. natalensis genome is greater than that in the P
vampyrus, possibly due to the faster rate of evolution of
M. natalensis. This phenomenon could be explained by
an increase in trinucleotide repetitions in coding regions,
which can increase trait diversity and facilitate adaptive
changes in response to environmental alterations [54].
Therefore, the characteristics of microsatellite repeats in
the genomes of various species could be reflected in their
different dominants [3].

P vampyrus and M. natalensis had different SSR loca-
tions in genes (Fig. 2). SSRs in the upstream and down-
stream regions of both species were similar, with the
highest diversity. Instead, SSR diversity in upstream and
downstream regions of P. vampyrus was greater than
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in M. natalensis, predicting the underlying reason for
the larger genome size of P vampyrus. In each species,
SSR diversity in exons showed a “U” shape that gradu-
ally decreased from the first exon toward the last sec-
ond exon and then increased toward the last exon. This
phenomenon is consistent with C. exilicauda and M.
martensii reported by Wang et al. [44], and B. constric-
tor and P. mucrosquamatus reported by Nie et al. [18],
respectively. SSR diversity in various introns was simi-
lar in each of the two species. Therefore, comparisons
of SSR diversity in gene regions between the two species
revealed that different numbers and diversity of SSR in
genes may facilitate adaptation to evolutionary history. P
vampyrus is a fruit-eating bat that usually roosts in trees
and has non-echolocation calls, whereas M. natalensis is
an insectivorous bat with echolocation calls that primar-
ily live in caves and mines that are used for hibernation
and reproduction [27].

For functional annotation of coding genes, GO analysis
found two (GO: 0015976 and GO: 0044848) for P. vampy-
rus and two (GO: 0019012; GO: 0044423) unique GO
terms for M. natalensis, respectively, indicating a signifi-
cant difference in the genomes between species. Moreover,
many CDS with SSRs are associated with environmental
interactions, such as metabolic processes (GO: 0008152),
cellular processes (GO: 0009987), signalling (GO: 0023052)
and response to stimulus (GO:0050896), which may be
related to the different adaptability to the environment of
the two bats. This pattern is also reported in a study of N.
parkeri and X. laevis [19]. In KEGG annotation, 41 and 43
pathways were enriched in P. vampyrus and M. natalensis,
respectively. We found that two (Biosynthesis of other sec-
ondary metabolites and metabolism of other amino acids)
unique metabolism pathways were presented only in M.
natalensis, which may further indicate some significantly
different functions in the genes between species. In both
species, genetic information processing has the fewest
pathways, with only 3 pathways containing 146 genes in
P vampyrus and 144 genes in M. natalensis. Human dis-
eases and drug development have the most pathways, with
11 pathways containing 228 genes in P. vampyrus and with
9 pathways containing 236 genes in M. natalensis, respec-
tively, suggesting that bats are one of the most important
natural hosts of mammalian viruses [55]. There are 28 fam-
ilies of viruses found in bats [56]. A recent study showed
that the homology of the outbreak of the new coronavirus
(Covid-19) in late 2019 is 79% compared to SARS-CoV at
the genome-wide level and up to 89% compared to SARRr
ZC45 sampled from a Rhinolophus bat in Zhejiang, China
[57]. As different coronaviruses recombine to produce new
viruses, SSRs in the genes of bats may evolve in adaptive
changes to internal alterations and, consequently, remain
fit in zoonosis [58—60].
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Conclusions

As summarised above, characteristics of microsatellites
at the genomic level of P vampyrus and M. natalensis
were analysed and compared in this study. Further, the
classification and functional evolution of genes with SSRs
in these two bat species should continue; results will con-
tribute to a further understanding of the evolutionary
history of other Chiroptera species.
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