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Genome-wide RNA polymerase stalling 
shapes the transcriptome during aging

Akos Gyenis1,2,6, Jiang Chang1,6, Joris J. P. G. Demmers1, Serena T. Bruens1, 
Sander Barnhoorn1, Renata M. C. Brandt    1, Marjolein P. Baar1,3, Marko Raseta1, 
Kasper W. J. Derks1,4, Jan H. J. Hoeijmakers    1,2,5 & Joris Pothof    1 

Gene expression profiling has identified numerous processes altered 
in aging, but how these changes arise is largely unknown. Here we 
combined nascent RNA sequencing and RNA polymerase II chromatin 
immunoprecipitation followed by sequencing to elucidate the underlying 
mechanisms triggering gene expression changes in wild-type aged mice. 
We found that in 2-year-old liver, 40% of elongating RNA polymerases are 
stalled, lowering productive transcription and skewing transcriptional 
output in a gene-length-dependent fashion. We demonstrate that this 
transcriptional stress is caused by endogenous DNA damage and explains 
the majority of gene expression changes in aging in most mainly postmitotic 
organs, specifically affecting aging hallmark pathways such as nutrient 
sensing, autophagy, proteostasis, energy metabolism, immune function and 
cellular stress resilience. Age-related transcriptional stress is evolutionary 
conserved from nematodes to humans. Thus, accumulation of stochastic 
endogenous DNA damage during aging deteriorates basal transcription, 
which establishes the age-related transcriptome and causes dysfunction 
of key aging hallmark pathways, disclosing how DNA damage functionally 
underlies major aspects of normal aging.

Aging is characterized by progressive molecular, cellular and physi-
ological decline resulting in reduced vitality, age-related diseases and 
increased mortality. Because many processes decline or are altered 
with age1, surprisingly little is known about the functional status of 
the basal transcription process in aging. Aged rat and fruit fly brains 
produce fewer messenger RNAs2,3 and cell-to-cell variation in transcrip-
tion is increased in several tissues4–6, while gene-to-gene transcriptional 
coordination is decreased in aging7. However, transcription in aging 
is mainly studied in relation to gene expression changes. Transcrip-
tomics significantly contributed to the identification of numerous 
cellular pathways and processes affected in aging8–10. Although part of 
age-related, organ-specific gene expression changes can be explained 

by transcription factors, microRNAs11,12, altered cell type composition8,13 
and epigenetic changes14,15, a recent transcriptomics meta-analysis 
indicated that most gene expression similarities between aged mouse 
organs could not be attributed to these known regulatory mechanisms8.

DNA damage accumulation has been postulated as an underlying 
cause of normal aging16,17 and the aforementioned transcriptional 
phenotypes6,7,18,19, mainly based on similarities to cells exposed to 
DNA-damaging agents or premature aging DNA repair disorders 
such as Cockayne syndrome and trichothiodystrophy. These con-
ditions have defects in transcription-coupled repair (TCR), which 
leads to stalled RNA polymerases on DNA lesions20, suggesting that 
transcription-blocking DNA damage could also be involved in normal 
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changes in general, particularly affecting life span-determining 
aging hallmark pathways.

Results
RNAPII transcription is altered in aging liver
To investigate the process of transcription in normal aging, adult 
(15 weeks) and aged (2 years) WT male mice (n = 3 per group) received 
a single intraperitoneal injection with ethynyl-uridine (EU), a uridine 
analog that is incorporated into newly synthesized RNA in vivo26. 
Five hours after injection, fluorescence staining of EU revealed a 

aging. Although endogenous transcription-blocking DNA lesions 
accumulate in normal aging21–25, it is currently not clear whether they 
elicit significant transcriptional responses. In this study, we analyzed 
the basal transcription underlying gene expression changes in nor-
mal wild-type (WT) aged mice using an in vivo nascent RNA sequenc-
ing method combined with RNA polymerase II (RNAPII) chromatin 
immunoprecipitation followed by sequencing (ChIP–seq) and confo-
cal imaging. We reveal a strong age-related transcriptional decline 
and skewing of transcriptional output by accumulating DNA damage 
as a general aging phenotype, causing age-related transcription 
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Fig. 1 | Reduced RNA synthesis and increased RNAPII levels in aged liver. 
a, EU-labeled nascent RNA (green) in hepatocyte nuclei (DAPI counterstain, 
blue) in adult (blue) and old mouse liver (red). Right, Fluorescence intensities 
quantified in box and whisker plots. The center lines show the medians, the 
box limits mark the IQR, and the whiskers indicate the minimum and maximum 
values. P = 2.1129 × 10−129 (two-sided unpaired t-test). Counted nuclei: adult 
n = 506; old n = 500; n = 3 mice per group. b, XY scatterplot of fluorescence 
intensity of EU-labeled nascent RNA (arbitrary units (a.u.)) and corresponding 
nuclear sizes measured in individual hepatocytes of WT adult (blue) and old 
(red) liver. c–e, Total RNAPII (c), RNAPII phosphorylated at ser5p (d) and RNAPII 
phosphorylated at ser2p (e) immunofluorescence staining (red) in hepatocytes 
(counterstained by DAPI, blue) in adult and old liver. Box and whisker plots of 

fluorescence intensities. The center lines show the medians, the box limits mark 
the IQR, and the whiskers indicate the minimum and maximum values. P values 
by two-sided unpaired t-test, n = 3 mice per group. Counted nuclei and P values: 
c, adult: n = 206; old: n = 155, P = 6.64186 × 10−21; d, adult n = 2,926; old n = 2,643, 
P = 0.323195587; e, adult n = 2,697; old n = 2,708. P = 0. Scale bar, 50 μm. f, Flow 
chart of the experimental procedure for EU-labeled nascent RNA sequencing.  
g, Fraction (%) of EU-seq reads synthesized by different RNA polymerases. 
RNAPI–II and mtRNAP (left) and RNAPIII (right), with total sequence reads of 
adult and old normalized to 100%. Data are the mean ± s.e.m. n = 3 mice per 
group. P = 0.012868073 (two-sided unpaired t-test). h, Fraction (%) of EU-seq 
reads by RNAPII from intronic and exonic regions. Data are the mean ± s.e.m. n = 3 
mice per group. P = 0.013520897 (two-sided unpaired t-test).
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1.5-fold-reduced EU signal in old livers (Fig. 1a). The decrease was 
liver-wide, affecting nearly all hepatocytes and was not restricted 
to age-related polyploidization (Fig. 1b). Because the reduction of 
EU signal was pan-nuclear, except for nucleoli (Fig. 1a), pointing to 
reduced RNAPII-dependent transcription, we tested whether lower 
RNAPII levels could explain the reduced transcription. Surprisingly, 
immunofluorescence staining of RNAPII using the same liver sam-
ples indicated a 1.4-fold increase, rather than decrease in aged liver 
(Fig. 1c and Extended Data Fig. 1a). RNAPII initiation and promoter 
proximal pausing as marked by phosphorylation of serine 5 residues 
(ser5p) in the C-terminal domain (CTD) did not significantly differ  
(Fig. 1d and Extended Data Fig. 1b), suggesting that genome-wide 
RNAPII promoter activity is largely unaltered in aging. However, 
elongating RNAPII marked by serine 2 CTD phosphorylation (ser2p) 
demonstrated a 1.5-fold increase (Fig. 1e and Extended Data Fig. 1c). 
These data indicate that basal transcription is altered in aged liver.

To examine these seemingly conflicting observations of reduced 
transcription and increased RNAPII abundance, we selectively iso-
lated and sequenced in vivo EU-labeled nascent RNA (EU-seq), which 
resulted in a significant higher proportion of intronic reads com-
pared to total RNA sequencing (Fig. 1f and Extended Data Fig. 2a–c). 
Control experiments pointed to identical EU incorporation densities 
in adult and old livers (Extended Data Fig. 2d–g), ruling out lower EU 
uptake as the explanation for the lower EU signal in old liver. Next,  

we determined the contribution of each RNA polymerase to the 
cellular nascent RNA pool by assigning reads to RNA species tran-
scribed by each of the different polymerases. As expected, the 
majority of EU-labeled RNA originated from RNAPII (Fig. 1g and 
Extended Data Fig. 2h), the only RNA polymerase displaying a sig-
nificant age-related reduction in RNA synthesis as also apparent 
from the approximately 1.5-fold decrease in intron-derived sequence 
reads (Fig. 1h). As splicing events were not significantly altered 
(Extended Data Fig. 2i,j), the disparity between reduced de novo 
RNA synthesis and increased elongating RNAPII suggests a specific 
lower RNAPII productivity in aging.

Genome-wide promoter activity is normal in aging
To further examine the discrepancy between RNAPII abundance and 
transcription, we performed ChIP–seq using antibodies against total, 
ser5p and ser2p RNAPII from the same livers described above. We first 
investigated whether genome-wide promoter silencing could explain 
the reduced transcription. In agreement with the immunofluorescence 
results (Fig. 1), total and ser5p RNAPII occupancy genome-wide at tran-
scriptional start sites (TSS) across all genes did not significantly differ 
in aging (Fig. 2a,b). Also, the transition of RNAPII from promoter to 
productive elongation was unaltered (Fig. 2c). To assess transcription 
proceeding into early elongation, we measured genome-wide nascent 
RNA production in the first kilobase as measured in the first kilobase 
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Fig. 2 | RNAPII promoter activity in aged liver. a,b, Mean total RNAPII and RNAPII 
ser5p ChIP–seq read abundance around TSS (TSS ± 750 bp region) of all genes 
in adult (blue) and old (red) livers. The gray line represents input DNA control 
ChIP–seq. c, XY scatterplot of RNAPII travel ratio of all expressed genes from adult 
(x axis) and old (y axis) liver in total RNAPII ChIP–seq data. Each dot represents a 
gene. Each gene is the average of n = 3 mice per group. d,e, XY scatterplot depicting 
nascent RNA synthesis the first 1 kb of introns from the TSS (d) or from the TSS 
to 1 kb downstream (e) of all genes in adult (y axis) and old (x axis) livers. Each dot 

represents a gene in which the signal represents the mean of n = 3 mice. f, Three-bin 
heatmap of log2 fold changes (old/adult) of nascent RNA (left) and total RNAPII 
(right) on gene bodies of promoter-upregulated and downregulated clusters 
genes. Each row represents one gene. g,h, Bar diagram showing the overlap 
between all GSEA aging datasets from mice (g) or rat (h) and the transcriptionally 
upregulated and downregulated clusters. The significance and FDR for each 
overlap were calculated by Fisher’s exact test and multiple testing correction by 
Benjamini–Hochberg method. FDR < 0.05 defined as significant.
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of intronic regions (Fig. 2d) or from the TSS (Fig. 2e). We observed 
an almost 1:1 correlation in the first kilobase of transcription across 
all genes, indicating that overall promoter activity effectively pro-
ceeding into transcription is largely unchanged. While genome-wide 
reduced promoter activity could not explain the reduced transcrip-
tion phenotype, we expected altered transcription by higher or lower 
promoter activity. All expressed genes (n = 3,970) that represent 
>90% of RNAPII-dependent nascent RNA production were split into 
3 equal bins from its TSS to the transcription termination site (TTS) 
and corresponding reads from nascent RNA and of RNAPII ChIP–seq 
mapped in each bin were compared between old and adult liver. Using 
clustering analysis, we identified genes that were transcriptionally 
upregulated or downregulated in aging over all bins both in nascent 
RNA and RNAPII ChIP–seq (Fig. 2f and Extended Data Fig. 3a–c), which 
reflect promoter regulation. To analyze whether the identified tran-
scriptionally upregulated (n = 778) or downregulated (n = 394) genes 
are biologically relevant for aging, we used the Enrichr tool for gene 
set enrichment analysis (GSEA)27,28 to compare these gene signatures 
with the published aging perturbation database containing 34 mouse 
liver and 15 rat liver mRNA expression profiles. The transcriptionally 
upregulated and downregulated gene signatures closely resembled 
the published rodent liver aging profiles (Fig. 2g,h), indicating that 
promoter regulatory programs during aging are conserved across 
transcriptomics studies. In summary, the approximately 1.5-fold lower 
nascent RNA synthesis in old liver is not due to reduced promoter activ-
ity or RNAPII transition to elongation.

Gene-length-dependent stalling of transcription elongation
Close inspection of the three-bin heatmap revealed a consistent pat-
tern of gradually declining nascent transcription across bins over gene 
bodies in the transcriptionally upregulated genes, whereas RNAPII 
levels displayed the opposite trend (Fig. 2f). To assess the general-
ity of this phenomenon, we extended the three-bin heatmap to all 
expressed genes sorted according to the degree of transcriptional 
decline. Interestingly, almost all genes experienced gradually declin-
ing transcription in aging liver and concomitantly increasing RNAPII 
occupancy throughout gene bodies, disclosing this as a genome-wide 
phenomenon (Fig. 3a). Promoter-upregulated genes in aging also exhib-
ited this transcriptional decline independent of promoter regulation 
(Fig. 2f and Extended Data Fig. 3b,c). To better quantify nascent RNA 
and elongating RNAPII behavior, all expressed genes were divided 
into 20 bins from TSS to TTS. To exclude reads mapping to the TSS 
and TTS, we only analyzed bins 2–19, which represent elongation. As 
expected, we observed an age-independent general gradual decline 
in nascent RNA across all expressed gene bodies (Fig. 3b), because 
of the directional nature of transcription, and sequencing complete 
(growing) nascent RNA molecules and not only the RNAPII footprint. 
While transcription in the first kilobase of gene bodies is similar  
(Fig. 2d,e), the decline over the entire genes was significantly stronger 
in old liver (Fig. 3b). We termed this age-related excess drop in transcrip-
tion ‘gradual loss of productive transcription’ (GLPT). In contrast, total 
and ser2p RNAPII levels gradually increased in gene bodies during aging 
(Fig. 3c,d), which is consistent with Fig. 1. Transcriptional loss during 
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indicate the minimum and maximum values. P values: 7-week-old Xpg−/− versus 
WT P = 2.4688 × 10−285; 14-week-old Xpg−/− versus WT P = 0; two-sided unpaired 
t-test, 3 mice per group; counted nuclei n = 916, 864 and 738 for WT, Xpg−/− aged 
7 and 14 weeks. c,d, Percentage EU-seq read density changes between TSS and 
TTS in Xpg−/− (c) and Ercc1Δ/− mice (d) compared to WT liver aging (104 weeks, 
black line). e, Percentage decline in nascent RNA production in Xpg−/−, Ercc1Δ/− and 
WT quiescent MDFs after 1, 2 and 4 weeks of culturing under hypoxic (3%) and 
normoxic (20%) conditions. Data are the mean ± s.d. P values (two-sided unpaired 
t-test) are: week 2: Ercc1Δ/− versus WT: P = 0.002353336; week 4, Xpg−/− versus WT: 
P = 6.13324 × 10−9; Ercc1Δ/− versus WT: P = 1.21727 × 10−9. Number of nuclei: 3% O2, 
week 1: 14 Xpg−/− and 14 WT; 17 Ercc1Δ/− and 14 WT; week 2: 15 Xpg−/− and 16 WT;  
17 Ercc1Δ/− and 13 WT; week 4: 29 Xpg−/− and 27 WT; 34 Ercc1Δ/− and 28 WT.  
f, Box and whisker plot of fluorescent EU-labeled nascent RNA in Ercc1Δ/− MDFs 
24 h after UVC irradiation. The center lines show the medians, the box limits mark 
the IQR, and the whiskers indicate the minimum and maximum values. P values 
(two-sided unpaired t-test): 2 J m−2 versus 0 J m−2 = 5.66445 × 10−8; 4 J m−2 versus 

0 J m−2 = 2.92531 × 10−28; 6 J m−2 versus 0 J m−2 = 5.59594 × 10−52. Counted nuclei: 
0 J m−2, n = 146; 2 J m−2, n = 118; 4 J m−2, n = 132; 0 J m−2, n = 137. g, Percentage of 
EU-seq read densities of genes >110 kb from the TSS to 10 kb upstream in Ercc1Δ/− 
MDFs 24 h after UVC irradiation compared to nonirradiated cells. Black line: 
>110 kb gene class from normal liver aging data. h, Bias (fraction) of sequencing 
reads mapping to the coding strand during WT aging from total RNAPII and 
RNAPII-ser2p ChIP–seq data across all genes (n = 3,809), short (10–22 kb, n = 512) 
and longest genes (>110 kb, n = 779). P < 0.0001, two-sided unpaired t-test 
compared to genes with gene length 1–10 kb, 3 mice per group. Data are the 
mean ± s.e.m. i, Bias (fraction) of sequencing reads mapping to the coding strand 
during WT aging from total RNAPII and RNAPII-ser2p ChIP–seq data through 
gene body (3 bins) in all genes and the longest genes (>110 kb, n = 779). Data are 
the mean ± s.e.m. j, Sequencing read density profiles of the Ghr gene from EU-seq, 
total RNAPII (all reads aggregated) and total RNAPII split in coding and template 
strand in WT adult (blue) and aged (red) liver. k, Phosphorylated ATM (red) and 
γH2A.X (green) in adult and aged mouse liver. Right, Fluorescence intensities 
shown as box and whisker plots. The center lines show the medians, the box limits 
mark the IQR, and the whiskers indicate the minimum and maximum values. 
P = 7.19752 × 10−27 (two-sided unpaired t-test). Counted nuclei: adult n = 313; old 
n = 315; n = 3 mice per group. Scale bar, 50 μm.
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elongation provides an explanation for reduced transcription, which, 
paradoxically, concurs with increasing levels of elongating RNAPII.

Previously, we reported the preferential loss of long gene mRNA 
expression in aged rodent liver and human hippocampus29, later also 
noted in fruit fly photoreceptors30 and brain aging31,32. Therefore, we 
tested whether gene length is implicated in GLPT. We first selected 
the genes from Fig. 3b with the largest age-related transcriptional 
decline. These GLPThigh genes (n = 914) were indeed on average sig-
nificantly longer compared to all expressed genes or transcription-
ally upregulated or downregulated genes (Extended Data Fig. 3d). 
Next, we grouped all expressed genes in six gene-length classes, each 
containing a similar number of genes, and determined the percent-
age nascent RNA and RNAPII change across the gene body in aging. 
This analysis revealed clear gene-length-dependent opposite trends: 
declining transcription and increasing RNAPII occupancy (Fig. 3e,f). 

Interestingly, when we plotted the mean gene length of each gene 
class against the percentage transcriptional decrease over the gene 
bodies, all classes exhibited a similar linear transcriptional regression  
(Fig. 3g), averaging approximately 0.35% loss per kilobase in old liver. 
As confirmation, the transcriptional decline in the first 20 kb from the 
TSS was similar across all gene lengths (Fig. 3h). Because genes >70 kb 
already comprised approximately 60% of the RNAPII-dependent nas-
cent RNA pool (Extended Data Fig. 3e), long genes disproportionally 
contributed to reduced nascent RNA levels. The decrease in de novo 
RNA synthesis and increased RNAPII abundance in gene bodies entail 
longer residence times and lower transcriptional output of RNAPII. 
By quantifying the discordance between nascent RNA levels and total 
RNAPII occupancy (Extended Data Fig. 3f), we estimated an overall 
approximate 40% nonproductive RNAPII in gene bodies in 2-year-old 
liver in a gene-length-dependent fashion (Fig. 3i), which implies that 
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they are stalled. Assuming that mouse hepatocytes have a similar 
number of RNAPII molecules per cell as cultured human fibroblasts33, 
we believe that the average 2-year-old mouse hepatocyte contains 
at any time >18,000 stalled RNAPII complexes during elongation 
(Extended Data Fig. 3g). In summary, liver aging is characterized by a 
gene-length-dependent, genome-wide loss of transcription elongation 
and increased RNAPII stalling.

DNA damage causes transcription stalling in aging
Subsequently, we assessed whether various potential parameters were 
correlated with the degree of GLPT to identify a mechanism explain-
ing RNAPII stalling. We did not find significant differences between 
GLPThigh genes and other gene categories (transcriptionally upregu-
lated and downregulated; remainder) in nucleotide content across 
gene bodies, transcriptional error rate, alternative splicing, chromatin 
accessibility, histone modifications associated with euchromatin or 
DNA methylation patterns, which would point to epigenetic changes 
being responsible (Extended Data Figs. 4–6). These factors do not 
correlate with the degree of age-related GLPT, which is expected when 
such a factor is causally involved, and hence do not explain the observed 
transcriptional decline.

In view of gene-length-dependent transcriptional stalling, a plau-
sible explanation is accumulation of transcription-blocking DNA dam-
age because long genes have a higher probability to acquire stochastic 
lesions26,29. Therefore, we monitored de novo RNA synthesis in the 
livers of Xpg−/− mice, which display many features of widespread pre-
mature aging and a 20-week life span due to defects in the DNA repair 
pathways TCR and global genome nucleotide excision repair by which 
they are unable to remove transcription-stalling lesions34. Both EU 
staining and EU-seq at the age of 7 and 14 weeks (Fig. 4a–c) revealed 
an age-dependent, progressive, pan-nuclear decline in transcrip-
tion. EU-seq in premature aging global genome nucleotide excision 
repair and TCR-defective Ercc1Δ/− mice that display more severe liver 
aging pathology due to an additional defect in interstrand cross-link 
repair35,36, exhibited already high transcription loss at 4 and even more 
at 10 weeks (Fig. 4d), showing that the extent of transcriptional decline, 
DNA repair deficiency and severity of liver pathology are correlated.

To further examine spontaneous, endogenous DNA damage as 
instigator of transcription decline, we cultured quiescent mouse der-
mal fibroblasts (MDFs) from Xpg−/−, Ercc1Δ/− and WT mice for 1, 2 and 4 
weeks to allow endogenous DNA damage to accumulate. Quiescence 
avoids lesion dilution, which occurs when cells proliferate. Interest-
ingly, Xpg−/− and Ercc1Δ/− MDFs demonstrated a time-dependent decline 
in nascent RNA synthesis cultured at 20% oxygen (Fig. 4e). MDFs cul-
tured at 3% oxygen did not display significantly reduced transcription, 
suggesting oxidative DNA damage as a cause of transcription loss. Next, 
we assessed the level of DNA damage inducing the same degree of tran-
scriptional decline as observed in aged liver. Quiescent Ercc1Δ/− MDFs 
were exposed to increasing doses of ultraviolet C (UVC) light, which 
induces known quantities of transcription-blocking DNA lesions37. EU 
staining and EU-seq demonstrated a dose-dependent transcriptional 
decline, in which 2 J m−2 UVC, which corresponds to approximately 1.6 
transcription-blocking lesions per 100 kb DNA37, induced transcription 
levels 24 h after UV exposure similar to the livers of WT 2-year-old mice 
(Fig. 4f,g). These damage levels in combination with 0.35% transcription 

reduction per kilobase also explain why RNAPI, RNAPIII and mitochon-
drial RNAP (mtRNAP) do not show a significant decline as their target 
RNA species are very small.

If a significant fraction of elongating RNAPII in aging is stalled 
by endogenous transcription-blocking lesions, it is expected that 
during the strand-specific DNA amplification step in the RNAPII ChIP–
seq library protocol the lesion in the template strand that actually 
stalls the RNAPII will also impair DNA amplification of that strand, 
in contrast to the undamaged (coding) strand. This should lead to 
a strand amplification bias in favor of the coding strand that can be 
visualized by strand-specific ChIP–seq as shown for UV-induced 
transcription-blocking lesions38. First, we confirmed that UV-induced 
DNA damage leads to a coding strand bias in our ChIP–seq protocol, 
which disappeared after time for repair (Extended Data Fig. 7a). Impor-
tantly, in old livers we found an age-related gene-length-dependent 
coding strand bias in the total and RNAPII-ser2p ChIP–seq datasets 
(Fig. 4h). Regions with a high coding strand bias had both unaltered 
local DNA methylation status or nucleotide content (Extended Data 
Fig. 7b–f), indicating that polymerase-blocking perturbations are pre-
sent in the isolated, purified DNA from aged livers, identifying them as 
damaged DNA. Moreover, the age-related coding strand bias increased 
toward the gene ends, especially in long genes (Fig. 4i), correlating with 
RNAPII stalling in gene bodies (Fig. 3) and TCR being more active at the 
beginning of genes39. An example is the growth hormone receptor (Ghr) 
gene, a >265-kb long gene frequently downregulated in aged livers 
across numerous independent studies40, in Xpg−/− and Ercc1Δ/− mutant 
mice18,34 and in cell cultures exposed to UV light41. Ghr demonstrates 
a clear GLPT and increased RNAPII abundance across the gene body. 
We also noticed a 20% shift in reads toward the coding strand in aged 
livers (Fig. 4j), indicating that Ghr downregulation is the direct result of 
transcription-blocking lesions. DNA damage-induced RNAPII stalling 
causes noncanonical DNA damage checkpoint ATM phosphorylation in 
the absence of double-stranded DNA breaks42, which we also observed 
in aged livers (Fig. 4k), thereby further demonstrating frequent tran-
scriptional stress in aging. Because the extent of coding strand bias cor-
responds with the expected level when extrapolated from UV-treated 
cells38, our data reveal that endogenous transcription-blocking lesions 
cause RNAPII stalling in a gene-length-dependent manner, which we 
designated age-related transcriptional stress.

Biological significance of age-related transcriptional stress
To assess the functional significance of transcriptional stress, we quanti-
fied its effect at the most relevant level, mature mRNA. Transcriptional 
loss across gene bodies affected both introns and exons, as exemplified 
by the Igf1 gene (Fig. 5a,b), a key regulator of nutrient sensing implicated 
in health and life span determination43,44, whose expression declines 
with age45,46. As expected, RNAPII accumulated on the 79-kb Igf1 gene 
body. Interestingly, the coding strand bias was not present in the first 
third of the gene body that was also characterized by normal or even 
higher nascent RNA and RNAPII levels, indicating that transcriptional 
decline correlates with coding strand bias. Thus, DNA damage-induced 
transcriptional stress and not promoter silencing is the driver of lower 
IGF1 expression in aged liver. To quantify the consequences of transcrip-
tional stress on exons genome-wide, we calculated the first-to-last exon 
loss in nascent RNA, which was increased approximately 1.5-fold in aging 

Fig. 6 | Transcriptional stress in different species and tissues. a, Percentage 
EU-seq read density changes of transcription elongation between TSS and TTS 
of expressed genes (5-bin distribution) in EU-seq data from WT aged mouse 
liver (black, this study, n = 3 per group, n = 3,970 genes), aged mouse kidney 
(n = 2 per group, n = 2,135 genes, 7.5 weeks versus 104 weeks, blue) and total 
RNA-seq of human tendon (n = 4 per group, n = 773 genes, 69.5 ± 7.3 years 
versus 19 ± 5.8 years; brown) and C. elegans (n = 3 per group, n = 2,872 genes, 
day 10 versus day 1 after young adult stage; green). Data are the mean ± s.e.m. 
b, Bar diagram of the overlap between GSEA aging datasets and TShigh, 

promoter-upregulated and downregulated gene classes identified in our study. 
Significance and FDR were calculated by Fisher’s exact test and Benjamini–
Hochberg method. c, Gene enrichment ratio (x axis) between identified gene 
groups and GSEA aging datasets in three species: mouse (top), rat (middle) 
and human (bottom); TShigh (left), promoter-downregulated (middle) and 
promoter-upregulated (right). Dot size represents the number of GEO aging 
datasets. If >1 dataset of a tissue was present, the mean ± s.d. and aggregated  
P value (Fisher’s exact test) are shown.
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across all expressed genes and was gene-length-dependent (Fig. 5c).  
This was consistent with lower mRNA production in aging (Fig. 5d),  
providing a mechanism for previously observed decreased cellular 
mRNA content during aging2,3. This implies declining transcriptional 
output and skewing of gene expression toward small genes during aging.

Since transcriptional stress reduces and skews transcriptional 
output, we analyzed which cellular processes and pathways were 
most susceptible. We selected genes with a >1.5-fold first-to-last 
exon transcriptional loss in aging (n = 830), representing genes with 
high transcriptional stress levels (TShigh), for functional examination. 
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Notably, we found a highly significant overlap with the overall profiles 
of six independent studies representing downregulated mRNAs after 
UVC-induced DNA damage (Supplementary Table 1), further supporting 
the link between transcription-blocking DNA lesions and age-related 
transcriptional stress. Functional examination identified several sig-
nificantly overrepresented cellular pathways previously classified as 
hallmarks of aging1 (Fig. 5e and Supplementary Table 2), such as the 
nutrient sensing pathways IGF1, insulin, growth hormone and mTOR 
signaling, which are all known to influence life span1,44. Autophagy, 
the unfolded protein response and the endoplasmic reticulum stress 
pathway were also identified, linking transcriptional stress to loss of pro-
teostasis. Furthermore, we found key energy metabolic processes such 
as oxidative phosphorylation and pyruvate metabolism, which were 
functionally reduced by transcriptional stress in the livers of Ercc1Δ/− 
mice26. Additional identified processes included immune factors, fatty 
acid metabolism and the NRF2 antioxidant pathway, which are all caus-
ally involved in life span and/or age-related diseases47–50. In conclusion, 
transcriptional stress appears to be a critical cause of deregulation of 
aging hallmark pathways and processes in WT aging mice.

Transcriptional stress is a widespread aging phenotype
Finally, we addressed whether transcriptional stress was confined to liver 
or also occurs in other organs and species. The promoter-upregulated 
gene set contained a B cell signature, which indicates age-related B cell 
infiltration8 that also displayed transcriptional stress (Fig. 2f). EU-seq 
of 2-year-old mouse kidneys also showed similar GLPT as aged mouse 
liver (Fig. 6a). Next, we searched for and reanalyzed public total RNA 
sequencing aging datasets that contained sufficient reads mapping 
to introns representing nascent RNA. In two suitable and extensive 
datasets, aged human tendon51 and Caenorhabditis elegans52, we dis-
covered a similar GLPT as in WT aged mouse liver (Fig. 6a). Since most 
public datasets are derived from mRNA sequencing, we also used our 
TShigh gene set to match all selected age-related gene sets (n = 198) 
in the aging perturbation library using the Enrichr tool for GSEA.  
For comparison, transcriptionally upregulated and downregulated 
gene sets were also included. We found a significant presence of TShigh 
genes in 65% of all aging datasets (Fig. 6b). The transcriptionally upregu-
lated or downregulated signatures scored much lower (Fig. 6b), while 

no overlap was found with six similarly sized random gene sets, indi-
cating that transcriptional stress is a prime driver of transcriptional 
changes across aging organs.

Next, we visualized which organs and tissues were significantly 
enriched. For organs that have multiple entries in the database, we 
calculated the average overlap and false discovery rate (FDR)-corrected 
aggregated P values. As expected, age-related liver mRNA profiles 
from mouse and rat shared the highest similarity to the TShigh gene set  
(Fig. 6c). In fact, transcriptional stress was a more dominant mechanism 
shaping the liver aging transcriptome than transcription regulation 
by promoter activity. In addition, many other organs such as kidney, 
heart, adipose tissue, retina, muscle, lung, neocortex and spinal cord 
also appeared significantly enriched for genes prone to RNAPII stall-
ing, revealing that many organs exhibit age-related transcriptional 
stress, which explains overlapping gene expression patterns and also 
has a greater impact on gene expression than age-related promoter 
regulation. Not all organs displayed an mRNA transcriptional stress 
signature. This could be due to our transcriptional stress query gene 
list being biased toward liver-specific genes and/or that some organs 
are less prone to transcription stalling; the latter is in agreement with 
the segmental nature of the premature aging phenotype in TCR syn-
dromes and corresponding mutant mice34,36. Proliferative tissues, for 
example, hematopoietic stem cells, skin and intestine appeared less 
vulnerable, which can be explained by the ability of DNA replication to 
resolve DNA damage-stalled RNAPII, which shields lesions from repair 
by other mechanisms20. Moreover, cell division dilutes DNA damage 
and may also enable repair. Thus, we identified transcriptional stress 
as a main factor shaping age-related transcriptomes and as general 
aging phenotype across many tissues and species.

Discussion
This study provides evidence that transcription-blocking DNA dam-
age during normal aging causes frequent genome-wide elongating 
RNAPII stalling, which leads to reduced, gene-length-dependent tran-
scriptional output resulting in dysregulation of many pathways known 
to affect aging (Fig. 7). Based on transcription-stalling similarities in 
UV-treated cells38, we estimate that an initial RNAPII stalled on a lesion 
will block approximately three subsequent RNAPII complexes causing 
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Fig. 7 | Age-related transcriptional stress model. Model describing RNAPII stalling by DNA damage and its consequences in aging.
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queuing. Underlying mechanisms responsible for age-related gene 
expression changes have been largely elusive and often thought to 
result from active regulatory mechanisms such as promoter regula-
tion8, also in DNA repair mutant premature aging mouse models17. 
However, we suggest that passive transcriptional stress by DNA damage 
in combination with gene architecture, that is, gene length, accounts 
for a substantial fraction of these changes.

Each cell may suffer up to 100,000 DNA lesions per day53, of which 
most are quickly repaired by dedicated repair processes. DNA damage as 
cause of aging is to a large extent based on premature aging syndromes 
with underlying genome instability, such as TCR-defective Cockayne 
syndrome and trichothiodystrophy, which exhibit short life span and 
many premature aging features predominantly in postmitotic tissues. 
Corresponding mouse models34,35,54 display mRNA transcriptomes that 
significantly overlap with aged WT mice18,19. We now show that passive 
transcriptional stress, instead of active gene regulation, is responsible 
in shaping the aging transcriptome. Although we did not rule out all 
putative reasons explaining the observed transcriptional stress pheno-
type, we identified a bias toward the nontranscribed strand in RNAPII 
ChIP–seq data from WT aged livers, indicating transcription-blocking 
DNA damage in template strands as the most likely cause for RNAPII 
stalling. Although DNA damage accumulates during aging, it was hith-
erto unclear whether these levels are sufficient to elicit aging responses 
in WT organisms. Candidate endogenous transcription-blocking 
lesions, aldehydes21, advanced glycation end products22 and cyclopu-
rines23–25, can accumulate in aged organs to sufficient levels to explain 
the observed transcriptional stress. Thus, spontaneous, endogenous 
DNA damage accumulation, similar to progeroid Cockayne syndrome 
and trichothiodystrophy, causes transcriptional stress in normal aging.

Our data indicate how DNA damage causes aging via transcrip-
tional stress. Transcriptional stress largely determines aging expression 
profiles in multiple organs impacting organ function and particularly 
causes the dysfunction of many aging hallmark pathways. Additionally, 
the stochastic nature of DNA lesions may explain transcriptional noise, 
which increases in aging4–6. Transcriptional stress could further impact 
cellular functioning by promoting loss of protein complex stoichiom-
etry, a phenotype seen in aged killifish55 and C. elegans56. Also, imbal-
anced expression of large and small genes due to transcription-blocking 
lesions in cell cultures can induce cell death and has been proposed to 
be a premature aging signal in Cockayne syndrome57. Finally, RNAPII 
stalling itself is also a direct cue for aging. Genetic dissection of TCR 
and corresponding hereditary syndromes indicates that molecular 
consequences of TCR mutations correlate with the severity of premature 
aging20. TCR defects that permanently stall RNAPII on DNA lesions lead 
to more severe forms of accelerated aging than repair defects that still 
permit accessibility of the lesion for other repair pathways20. This was 
further proven in mutant mice with a point mutation in RNAPII that 
abolishes the DNA damage-induced ubiquitination required to remove 
stalled RNAPII from a DNA lesion, which exhibited reduced life span 
and premature aging38. RNAPII stalled on a DNA lesion leads to R-loop 
formation and activation of DNA damage checkpoint ATM42, which 
can induce cell death or senescence58, thereby providing a mechanism 
for how RNAPII stalling leads to aging. R-loops increase in the eyes of 
aged fruit flies, predominantly in long genes59, providing further proof 
for this scenario. We show that approximately 40% of all elongating 
RNAPII complexes are stalled by DNA damage in WT aged livers; thus, 
the identical aging signal that causes progeroid syndromes also occurs 
in normal aging. Interestingly, brains from patients with Alzheimer’s 
disease also displayed reduced expression of long genes compared to 
age-matched controls60, suggesting that the magnitude of transcrip-
tional stress is involved in age-related disease etiology. Conversely, 
longevity-promoting intervention dietary restriction restores the loss 
of long gene expression29, indicating that longevity interventions can 
alleviate transcriptional stress. In conclusion, we propose that endog-
enous DNA lesion accumulation with age triggers transcriptional stress 

that shapes age-related gene expression profiles in many organs and 
tissues, is present over wide evolutionary distances and can explain 
how accumulating DNA damage causes functional decline, thereby 
strengthening the primary role for DNA damage in the aging process16,17.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-022-01279-6.

References
1.	 López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, 

G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
2.	 Lindholm, D. B. Decreased transcription of neuronal 

polyadenylated RNA during senescence in nuclei from rat brain 
cortex. J. Neurochem. 47, 1503–1506 (1986).

3.	 Davie, K. et al. A single-cell transcriptome atlas of the aging 
Drosophila brain. Cell 174, 982–998 (2018).

4.	 Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell 
transcriptional variability upon immune stimulation. Science 355, 
1433–1436 (2017).

5.	 Işıldak, U., Somel, M., Thornton, J. M. & Donertas, H. M. Temporal 
changes in the gene expression heterogeneity during brain 
development and aging. Sci. Rep. 10, 4080 (2020).

6.	 Bahar, R. et al. Increased cell-to-cell variation in gene expression 
in ageing mouse heart. Nature 441, 1011–1014 (2006).

7.	 Levy, O. et al. Age-related loss of gene-to-gene transcriptional 
coordination among single cells. Nat. Metab. 2, 1305–1315  
(2020).

8.	 Schaum, N. et al. Ageing hallmarks exhibit organ-specific 
temporal signatures. Nature 583, 596–602 (2020).

9.	 Zahn, J. M. et al. Transcriptional profiling of aging in human 
muscle reveals a common aging signature. PLoS Genet. 2, e115 
(2006).

10.	 Zhuang, J. et al. Comparison of multi-tissue aging between 
human and mouse. Sci. Rep. 9, 6220 (2019).

11.	 Harries, L. W. MicroRNAs as mediators of the ageing process. 
Genes 5, 656–670 (2014).

12.	 Jung, H. J. & Suh, Y. MicroRNA in aging: from discovery to biology. 
Curr. Genomics 13, 548–557 (2012).

13.	 Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. 
Physiol. 75, 685–705 (2013).

14.	 Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes 
genomic stability but alters gene expression during aging. Cell 
135, 907–918 (2008).

15.	 Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic 
mechanisms of longevity and aging. Cell 166, 822–839 (2016).

16.	 Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The 
central role of DNA damage in the ageing process. Nature 592, 
695–703 (2021).

17.	 Yousefzadeh, M. DNA damage-how and why we age? eLife 10, 
e62852 (2021).

18.	 Schumacher, B. et al. Delayed and accelerated aging share 
common longevity assurance mechanisms. PLoS Genet. 4, 
e1000161 (2008).

19.	 Fuentealba, M., Fabian, D. K., Donertas, H. M., Thornton, J. M. & 
Partridge, L. Transcriptomic profiling of long- and short-lived 
mutant mice implicates mitochondrial metabolism in ageing 
and shows signatures of normal ageing in progeroid mice. Mech. 
Ageing Dev. 194, 111437 (2021).

20.	 Lans, H., Hoeijmakers, J. H. J., Vermeulen, W. & Marteijn, J. A. The 
DNA damage response to transcription stress. Nat. Rev. Mol. Cell 
Biol. 20, 766–784 (2019).

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-022-01279-6


Nature Genetics | Volume 55 | February 2023 | 268–279 278

Article https://doi.org/10.1038/s41588-022-01279-6

21.	 Tiwari, V. & Wilson, D. M. 3rd. DNA damage and associated DNA 
repair defects in disease and premature aging. Am. J. Hum. Genet. 
105, 237–257 (2019).

22.	 Tamae, D., Lim, P., Wuenschell, G. E. & Termini, J. Mutagenesis and 
repair induced by the DNA advanced glycation end product N2-
1-(carboxyethyl)-2′-deoxyguanosine in human cells. Biochemistry 
50, 2321–2329 (2011).

23.	 Robinson, A. R. et al. Spontaneous DNA damage to the nuclear 
genome promotes senescence, redox imbalance and aging. 
Redox Biol. 17, 259–273 (2018).

24.	 Wang, J., Clauson, C. L., Robbins, P. D., Niedernhofer, L. J. & Wang, 
Y. The oxidative DNA lesions 8,5′-cyclopurines accumulate with 
aging in a tissue-specific manner. Aging Cell 11, 714–716 (2012).

25.	 Mori, T. et al. High levels of oxidatively generated DNA damage 
8,5′-cyclo-2′-deoxyadenosine accumulate in the brain tissues 
of xeroderma pigmentosum group A gene-knockout mice. DNA 
Repair 80, 52–58 (2019).

26.	 Milanese, C. et al. DNA damage and transcription stress cause 
ATP-mediated redesign of metabolism and potentiation of 
anti-oxidant buffering. Nat. Commun. 10, 4887 (2019).

27.	 Subramanian, A. et al. Gene set enrichment analysis: a 
knowledge-based approach for interpreting genome-wide 
expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 
(2005).

28.	 Kuleshov, M. V. et al. Enrichr: a comprehensive gene set 
enrichment analysis web server 2016 update. Nucleic Acids Res. 
44, W90–W97 (2016).

29.	 Vermeij, W. P. et al. Restricted diet delays accelerated ageing and 
genomic stress in DNA-repair-deficient mice. Nature 537, 427–431 
(2016).

30.	 Hall, H. et al. Transcriptome profiling of aging Drosophila 
photoreceptors reveals gene expression trends that correlate 
with visual senescence. BMC Genomics 18, 894 (2017).

31.	 Stoeger, T. et al. Aging is associated with a systemic 
length-associated transcriptome imbalance. Nat. Aging 2, 
1191–1206 (2022).

32.	 Lopes, I., Altab, G., Raina, P. & de Magalhaes, J. P. Gene size 
matters: an analysis of gene length in the human genome. Front. 
Genet. 12, 559998 (2021).

33.	 Steurer, B. et al. Live-cell analysis of endogenous GFP-RPB1 
uncovers rapid turnover of initiating and promoter-paused RNA 
Polymerase II. Proc. Natl Acad. Sci. USA 115, E4368–E4376 (2018).

34.	 Barnhoorn, S. et al. Cell-autonomous progeroid changes 
in conditional mouse models for repair endonuclease XPG 
deficiency. PLoS Genet. 10, e1004686 (2014).

35.	 Weeda, G. et al. Disruption of mouse ERCC1 results in a novel 
repair syndrome with growth failure, nuclear abnormalities and 
senescence. Curr. Biol. 7, 427–439 (1997).

36.	 Dollé, M. E. T. et al. Broad segmental progeroid changes in 
short-lived Ercc1(-/Delta7) mice. Pathobiol. Aging Age Relat. Dis. 
https://doi.org/10.3402/pba.v1i0.7219 (2011).

37.	 Van Houten, B., Cheng, S. & Chen, Y. Measuring gene-specific 
nucleotide excision repair in human cells using quantitative 
amplification of long targets from nanogram quantities of DNA. 
Mutat. Res. 460, 81–94 (2000).

38.	 Nakazawa, Y. et al. Ubiquitination of DNA damage-stalled RNAPII 
promotes transcription-coupled repair. Cell 180, 1228–1244 
(2020).

39.	 Hu, J., Adar, S., Selby, C. P., Lieb, J. D. & Sancar, A. Genome-wide 
analysis of human global and transcription-coupled excision 
repair of UV damage at single-nucleotide resolution. Genes Dev. 
29, 948–960 (2015).

40.	 Swindell, W. R. Genes and gene expression modules associated 
with caloric restriction and aging in the laboratory mouse. BMC 
Genomics 10, 585 (2009).

41.	 Garinis, G. A. et al. Persistent transcription-blocking DNA lesions 
trigger somatic growth attenuation associated with longevity. 
Nat. Cell Biol. 11, 604–615 (2009).

42.	 Tresini, M. et al. The core spliceosome as target and effector of 
non-canonical ATM signalling. Nature 523, 53–58 (2015).

43.	 Svensson, J. et al. Liver-derived IGF-I regulates mean life span in 
mice. PLoS ONE 6, e22640 (2011).

44.	 Junnila, R. K., List, E. O., Berryman, D. E., Murrey, J. W. & Kopchick, 
J. J. The GH/IGF-1 axis in ageing and longevity. Nat. Rev. 
Endocrinol. 9, 366–376 (2013).

45.	 Yuan, R. et al. Aging in inbred strains of mice: study design and 
interim report on median lifespans and circulating IGF1 levels. 
Aging Cell 8, 277–287 (2009).

46.	 Zhu, H. et al. Reference ranges for serum insulin-like growth 
factor I (IGF-I) in healthy Chinese adults. PLoS ONE 12, e0185561 
(2017).

47.	 Johnson, A. A. & Stolzing, A. The role of lipid metabolism in 
aging, lifespan regulation, and age-related disease. Aging Cell 18, 
e13048 (2019).

48.	 Fulop, T. et al. Immunosenescence and inflamm-aging as two 
sides of the same coin: friends or foes? Front. Immunol. 8, 1960 
(2018).

49.	 Pomatto, L. C. D. et al. Deletion of Nrf2 shortens lifespan in 
C57BL6/J male mice but does not alter the health and survival 
benefits of caloric restriction. Free Radic. Biol. Med. 152, 650–658 
(2020).

50.	 Strong, R. et al. Longer lifespan in male mice treated with a 
weakly estrogenic agonist, an antioxidant, an alpha-glucosidase 
inhibitor or a Nrf2-inducer. Aging Cell 15, 872–884 (2016).

51.	 Peffers, M. J. et al. Transcriptome analysis of ageing in uninjured 
human Achilles tendon. Arthritis Res. Ther. 17, 33 (2015).

52.	 Cortés-López, M. et al. Global accumulation of circRNAs during 
aging in Caenorhabditis elegans. BMC Genomics 19, 8 (2018).

53.	 Lindahl, T. Instability and decay of the primary structure of DNA. 
Nature 362, 709–715 (1993).

54.	 Vermeij, W. P., Hoeijmakers, J. H. J. & Pothof, J. Genome integrity 
in aging: human syndromes, mouse models, and therapeutic 
options. Annu. Rev. Pharmacol. Toxicol. 56, 427–445 (2016).

55.	 Sacramento, E. K. et al. Reduced proteasome activity in the aging 
brain results in ribosome stoichiometry loss and aggregation. 
Mol. Syst. Biol. 16, e9596 (2020).

56.	 Rangaraju, S. et al. Suppression of transcriptional drift extends 
C. elegans lifespan by postponing the onset of mortality. eLife 4, 
e08833 (2015).

57.	 Tufegdžić Vidaković, A. et al. Regulation of the RNAPII pool is 
integral to the DNA damage response. Cell 180, 1245–1261  
(2020).

58.	 Childs, B. G., Baker, D. J., Kirkland, J. L., Campisi, J. & van Deursen, 
J. M. Senescence and apoptosis: dueling or complementary cell 
fates?. EMBO Rep. 15, 1139–1153 (2014).

59.	 Jauregui-Lozano, J. et al. Proper control of R-loop homeostasis 
is required for maintenance of gene expression and neuronal 
function during aging. Aging Cell 21, e13554 (2022).

60.	 Soheili-Nezhad, S., van der Linden, R. J., Olde Rikkert, M., 
Sprooten, E. & Poelmans, G. Long genes are more frequently 
affected by somatic mutations and show reduced expression in 
Alzheimer’s disease: implications for disease etiology. Alzheimers 
Dement. 17, 489–499 (2021).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 

http://www.nature.com/naturegenetics
https://doi.org/10.3402/pba.v1i0.7219


Nature Genetics | Volume 55 | February 2023 | 268–279 279

Article https://doi.org/10.1038/s41588-022-01279-6

as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturegenetics
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Genetics

Article https://doi.org/10.1038/s41588-022-01279-6

Methods
Mice
Mouse housing and experiments were performed according to the 
Animal Welfare Act of the Dutch government, following the Guide 
for the Care and Use of Laboratory Animals and with the guidelines 
approved by the Dutch Ethical Committee in full accordance with 
European legislation. The institutional ethical committee for animal 
care and usage approved all animal protocols. WT male mice (Mus 
musculus) in F1 C57BL6J/FVB (1:1) hybrid background, were euthanized 
at 15 weeks and 104 weeks of age. WT C57BL6J and FVB strains are fre-
quently obtained from the Jackson Laboratories to maintain a standard 
genetic background. DNA repair-deficient premature aging mouse 
models that were generated in house and WT littermates in F1 C57BL6J/
FVB (1:1) hybrid background were euthanized at 4 and 10 weeks for 
Ercc1Δ/− mutants35; and 7 and 14 weeks for Xpg−/− mutants34. All animals 
were bred and maintained on AIN93G synthetic pellets (Research Diet 
Services; gross energy content 4.9 kcal g−1 dry mass, digestible energy 
3.97 kcal g−1). Animals were maintained in a controlled environment 
(20–22 °C, 12 h light:12 h dark cycle) and were individually housed in 
individual ventilated cages under specific pathogen-free conditions 
at the Animal Resource Center (Erasmus University Medical Center). 
No statistical methods were used to predetermine sample sizes but 
our sample sizes are similar to those reported in previous publica-
tions8,18,26,29,38,41. Data collection and analysis were not performed blind 
to the conditions of the experiments and randomization of animals to 
experimental groups was not applicable. No animals were excluded 
from the experimental groups in any analysis.

Cell culture
To assess endogenous DNA damage-induced de novo RNA synthesis, 
Ercc1∆/−, Xpg−/− and WT (all in C57BL6J/FVB F1 hybrid genetic back-
ground) MDFs were isolated from the tails of the corresponding mouse 
models and cultured in DMEM supplemented with 10% FCS and 1% PS 
at 5% CO2 and 3% O2.

Nascent RNA labeling in vivo
Mice were injected intraperitoneally with 5-EU (AXXORA) 0.088 mg per 
gram of body weight. Five hours after intraperitoneal injection, mice 
were euthanized. Tissue samples were formalin-fixed for fluorescence 
staining or snap-frozen for the RNA isolation and ChIP experiments.

Immunofluorescence staining
Slices measuring 3–5 µm were cut from paraffin-embedded, 
formalin-fixed liver pieces. Slices were mounted on microscope slides 
(Superfrost Ultra Plus Adhesion Slides, Thermo Fisher Scientific). For 
RNAPII staining, samples were deparaffinized with xylene, rehydrated 
with an alcohol gradient and washed with Milli-Q water before antigen 
retrieval (30 min in citrate buffer, pH 6). The antibodies used were: 
Alexa Fluor 594-RPB1 antibody (in 1:250 dilution), recognizing all forms 
of RNAPII independently of the phosphorylation status of their CTD 
(cat. no. 664908, BioLegend); RNAPII-ser2p (cat. no. ab5095, Abcam); 
RNAPII-ser5p (cat. no. ab5131, Abcam); phospho-ATM (Ser1981, cat. no. 
4526, Cell Signaling Technology); and phospho-histone H2A.X (Ser139, 
cat. no. 9718; Cell Signaling Technology) all in 1:500 dilution. To reduce 
the background fluorescence level, a mouse-on-mouse detection kit 
was used (cat. no. BMK-2202, Vector Laboratories). Sections were 
counterstained using DAPI or Hoechst 33342.

EU-labeled nascent RNA staining
After the xylene-based paraffin removal and rehydration steps (the 
antigen retrieval step was omitted for EU staining) we used the Click-iT 
RNA Alexa Fluor 488 Imaging Kit (cat. no. c10329; Thermo Fisher 
Scientific) according to the standard immunofluorescence protocol. 
Images were taken by a ZEISS LSM 700 system. Nascent RNA stain-
ing intensity was quantified by calculating the integrated density 

values for each nuclear staining using the Fiji software61. Statistical 
significance was calculated from normalized fluorescence intensity 
values using an unpaired Student’s t-test in Prism version 7.04 (Graph-
Pad Software). For EU-labeled nascent RNA staining in vitro, cells 
were grown on coverslips. In confluent growth dishes, medium was 
replaced with fresh medium supplemented with 1% FCS and (when 
indicated) moved to 20% O2 for the indicated time. Medium was 
renewed twice a week. To measure de novo RNA synthesis after UVC 
treatment, Ercc1∆/− and WT MDFs (both C57BL6J/FVB F1 hybrid back-
ground) were cultured to confluency and maintained as described 
above followed by UVC irradiation (0, 2, 4 and 6 J m−2 UVC) using a 
254-nm germicidal lamp (Philips). The assays were performed 24 h 
later to allow the MDFs to recover from the immediate transcrip-
tional effects in trans. To assess their transcriptional level, 1 mM EU 
was added to the medium for 1 h before cell collection for total RNA 
extraction or fixed for fluorescence staining. Cells were washed with 
ice-cold tris-buffered saline (TBS) and fixed for 20 min on ice in 4% 
formalin. Subsequently, cells were washed in 3% bovine serum albu-
min (BSA) in TBS and permeabilized using 0.5% Triton X-100 in TBS 
for 20 min at room temperature. The coverslips were then washed 
twice with 3% BSA in TBS and incubated with Click-iT reaction mix 
(Invitrogen) for 30 min. After the Click-iT reaction, cells were washed 
once with 3% BSA in TBS and once with TBS before being incubated 
in TBS containing 1:1,000 Hoechst 33342 for 30 min. Samples were 
mounted using Prolong Diamond (Invitrogen). Images were obtained 
with a LSM700 ZEISS Microscope and EU staining intensity in nuclei 
was quantified with Fiji (Image J 1.53q).

Total RNA-seq and EU-seq library generation and sequencing
Total RNA was isolated from snap-frozen liver and kidney slices 
or scraped cells using the miRNeasy kit (QIAGEN) includ-
ing the on-column DNase step (RNase-Free DNase Set, QIA-
GEN). RNA quality and quantity were estimated with the 
Bioanalyzer (Agilent Technologies) and only high-quality RNA 
(RNA integrity number >8) was used for further analyses. Total 
RNA sequencing was performed as described elsewhere62.  
To selectively isolate EU-labeled nascent RNA, we used the Click-iT 
nascent RNA Capture Kit (cat. no. c10365, Thermo Fisher Scientific): 
biotin azide was attached to the ethylene groups of the EU-labeled 
RNA using Click-iT chemistry. The EU-labeled nascent RNA was 
purified using MyOne Streptavidin T1 magnetic beads. Captured 
EU-RNA attached on streptavidin beads was immediately subjected 
to on-bead sequencing library generation using the TruSeq mRNA 
Sample Preparation Kit v2 (Illumina) according to the manufacturer’s 
protocols with modifications. The first steps of the protocol were 
skipped; directly on-bead complementary DNA (cDNA) was synthe-
sized by reverse transcriptase (Super-Script II) using random hex-
amer primers. The cDNA fragments were then blunt-ended through 
an end-repair reaction, followed by dA-tailing. Subsequently, specific 
double-stranded barcoded adapters were ligated and library ampli-
fication for 15 cycles was performed. PCR libraries were cleaned 
up, measured on an Agilent Bioanalyzer using the DNA1000 assay, 
pooled at equal concentrations and sequenced per three in one lane 
on a HiSeq 2500.

ChIP–seq library generation and sequencing
Snap-frozen liver was minced in ice-cold PBS, homogenized in a 
Dounce homogenizer and filtered through a cell strainer (Falcon). 
After adding formaldehyde (total 1%), the homogenate was shaken 
on ice for 10 min and quenched with glycine. Pelleted homogenate 
was washed with ice-cold PBS, resuspended in cell lysis buffer (0.25% 
Triton X-100, 10 mM EDTA, 0.5 mM EGTA, 20 mM HEPES, pH 8.0, 
cOmplete EDTA-free and PhosSTOP, Sigma-Aldrich) and incubated for 
10 min on ice. Samples were centrifuged and resuspended in nuclei 
lysis buffer (0.15 M NaCl, 1 mM EDTA, 20 mM HEPES, pH8.0, cOmplete 
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EDTA-free and PhosSTOP). Samples were further homogenized by 
Dounce homogenizer and incubated on ice for 10 min. The nuclear 
fraction was resuspended in sonication buffer (50 mM HEPES, pH 7.8, 
140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 
1% sodium dodecyl sulfate, cOmplete EDTA-free and PhosSTOP). The 
chromatin was sonicated with a Bioruptor (Diagenode) sonicator 
into 100–500 bp fragments and centrifuged to remove any remain-
ing cell debris. From the supernatant, 15 µg chromatin was used for 
one round of immunoprecipitation. For ChIP–seq, five samples were 
pooled. Dynabeads M-280 Sheep Anti-Rabbit IgG beads were used for 
the immunoprecipitation step. Chromatin samples were precleared 
with beads at 4 °C, for 2 h. The precleared chromatin samples were 
rotated overnight at 4 °C with the RNAPII antibodies: RNAPII-ser2p, 
RNAPII-ser5p or RNAPII RPB1-NTD-specific antibody (clone D8L4Y, 
Cell Signaling Technology). Dynabeads were added for 2 h to the 
samples to pull down protein–DNA complexes. After immunopre-
cipitation, samples were washed twice with the following buffers: 
sonication buffer, twice with buffer A (50 mM HEPES, pH 7.8, 500 mM 
NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% 
SDS, cOmplete EDTA-free and PhosSTOP), twice with buffer B (20 mM 
Tris, pH 8, 1 mM EDTA, 250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxy-
cholate, cOmplete EDTA-free and PhosSTOP) and finally twice with 
Tris-EDTA buffer (10 mM Tris, pH 8, 1 mM EDTA). The bound fraction of 
the chromatin was isolated using the IPURE DNA recovery for ChIP Kit 
(Diagenode). Sequencing libraries were generated using the Illumina 
TruSeq ChIP Library Preparation Kit. Samples were sequenced on the 
HiSeq 4000 platform.

Sequence read mapping
EU-seq reads were preprocessed with the quality control software 
FastQC v.0.11.9, FastQScreen v.0.14.0 and Trimmomatic v.0.35 (ref. 63) 
using the parameters: SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 
ILLUMINACLIP:adapter.fa:2:30:10 LEADING:3 TRAILING:3 MINLEN:36. 
The remaining reads were successively aligned to the mouse ribosomal 
DNA (BK000964.3), mitochondrial sequences (UCSC, mm10) and 
mouse reference genome (GRCm38/mm10) using Tophat2 v.2.0.9  
(ref. 64) with default settings except for the -g 1 option. ChIP–seq reads 
were aligned to the mm10 mouse reference genome using Bowtie65 
v.2.1.0. The public total RNA-seq dataset applied the same mapping 
algorithm with EU-seq using the corresponding reference genome 
(hg19 and ce10) to study the nascent RNA dynamics in aging among spe-
cies. The same mapping algorithm as used with ChIP–seq was applied 
to the other public data.

Definition of unique intron, exon, gene regions and gene 
groups
All RefSeq (release: 95) genes, exons and introns were extracted from 
the UCSC Genome Browser66 and the gene lists were collapsed to the 
longest transcript for each gene. Genes with regions overlapping 
another coding or noncoding gene were removed. Thus, genes hav-
ing only regions unique to a specific RefSeq gene were used for fur-
ther analysis. In some experiments as indicated in this study, specific 
genomic regions (from TSS to 1 kb downstream; intronic regions only; 
from TSS to 20 kb downstream; 3′UTR; first and last exon of expressed 
genes; around TSS region (−0.75 kb to +0.75 kb and −0.3 kb to +0.3 kb) 
were generated in the same manner. To investigate the productive 
elongation process per gene, genomic regions around the TSS and TTS 
of genes were divided into k proportional bins (k = 20 by default; due to 
the data quality in different datasets, the number of bins varies (details 
following)). Genes with length smaller than 10 kb were removed from 
the study to avoid too many reads mapping to short genes overlapping 
bins in the gene proportional elongation analysis.

A Python pipeline (K_bining.py) was created that takes aligned 
RNA/EU/ChIP–seq reads in BAM/BW format as input to quantify reads in 
the transcription elongation region of genes and HTSeq was performed 

for read quantification in the aforementioned genomic regions. Reads 
per million (RPM) was applied to normalize different sequencing librar-
ies to exclude technical variation (especially sequencing depth) in 
further studies. The ‘all genes’ gene set comprises all genes with at least 
one read mapping in the first kilobase. A gene set with genes that have 
at least 1 RPM in each of the 20 bins was constructed and termed ‘all 
expressed genes’. To study read distribution across gene bodies and due 
to sequence depth and data quality, different number of bins (k) and the 
number of all expressed genes (n) were selected for each EU-seq and 
public total RNA dataset collection. Therefore, the ‘all expressed genes’ 
set in WT aging contain: n = 3,970 genes and were divided into k = 20 
bins (>90% of all EU-seq reads are mapped to these genes). Ercc1Δ/− mice 
(k = 20, n = 2,430); Xpg−/− mice (k = 20, n = 3,842); UV-treated Ercc1Δ/− 
MDFs (k = 10, n = 1974); WT aging kidney (k = 20, n = 2,135); human 
tendon (k = 5, n = 773); C. elegans (k = 5, n = 2,872). To match WT aging 
EU-seq data with the corresponding RNAPII ChIP–seq data (generated 
from the same liver), the corresponding genes from the ‘all expressed 
genes’ gene set were also selected in the RNAPII ChIP–seq datasets. 
The intra-sample-specific background was determined by calculat-
ing the reads in the intergenic regions and proportionally removed. 
The overall background signal was subtracted using the DNA input 
samples. To biologically define the ‘all expressed genes’ (n = 3,970) 
in WT aging, we performed a k-mean clustering analysis combined 
with EU-seq and total ChIP–seq reads between adult and old samples. 
Under the criterion describes in Extended Data Fig. 3a, we defined the 
four main patterns found in k-mean cluster analysis as four biological 
groups: promoter-upregulated genes, n = 778 (EU-seq and RNAPII 
ChIP–seq level increased across three bins); promoter-downregulated 
genes, n = 394 (EU-seq and RNAPII ChIP–seq level decreased across 
three bins); GLPThigh genes, n = 914 (steep EU-seq level progressive 
decrease, steep RNAPII ChIP–seq level increase across three bins); 
remainder genes, n = 1,884 (mild EU-seq level progressive decrease, 
mild RNAPII ChIP–seq increase across three bins). To study the rela-
tionship between gene length and transcriptional stress phenotype, 
the expressed genes (n = 3,970) in WT mice were divided into six 
groups according to their length, each containing a similar number 
of genes: 10–22 kb (n = 662, average = 16.47 kb, median = 16.75 kb); 
22–30 kb (n = 644, average = 26.87 kb, median = 26.94 kb); 30–50 kb 
(n = 788, average = 40.19 kb, median = 39.68 kb); 50–70 kb (n = 587, 
average = 59.18 kb, median = 59.02 kb); 70–110 kb (n = 643, average = 
87.93 kb, median = 86.75 kb) and >110 kb (n = 646, average = 199.47 kb, 
median = 160 kb). In figures measuring gene class behavior, we first 
calculated the per gene the average signal from n = 3 mice followed by 
averaging the signal for all genes in the gene class.

Gene function enrichment analysis
Gene ontology and functional clustering analyses of TShigh genes were 
performed by using multiple databases and software: Ingenuity Path-
way Analysis, GSEA v.4.2.2 that also includes the Kyoto Encyclopedia 
of Genes and Genomes (KEGG), Reactome Pathway Databases, Aging 
Perturbations from GEO and the down datasets from Enrichr27,28,67,68. 
Datasets in the Aging Perturbations from the GEO and the down data-
sets from Enrichr were only included if young/adult >8 weeks, old is 
>14 months and age difference between young/adult and aged organs 
is >6 months (mouse, rat); human old is >56 years with at least an age 
difference of >12 years. We adopted a threshold FDR < 0.05. Aggregated 
P values for the main identified biological processes were calculated by 
combining the P values of the corresponding detected subpathways 
using Fisher’s exact test.

Genome-wide characterization of the aging transcriptome
The RNAPII travel ratio is the ratio between RNAPII on the TSS and 
RNAPII in the first 1-kb gene body in old and adult. The total RNAPII 
density value around the TSS (±300 bp) was divided by the total 
RNAPII density value on the first 1-kb gene body measured from 300 bp 
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downstream of TSS for each gene. To compare nascent RNA synthe-
sis from the first 1-kb region of the first introns or from the TSS to 
1 kb downstream of all genes between adult and old mouse livers, all 
datasets were only normalized based on sequencing read depth, not 
correcting for the approximately 1.5-fold reduced number of intronic 
sequences in aged liver. To measure productive transcription elonga-
tion, all expressed genes were divided into k proportional bins, where 
mean read counts from the EU-seq and RNAPII ChIP–seq dataset was 
calculated. Counts were subsequently normalized to the first bin and 
plotted. The percentage density changes per bin were calculated by: 
old(readcount) / adult(readcount) × 100%. Since the first and last bin includes 
the signal at the TSS in which RNAPII promoter proximal pausing is 
present, and the TTS in which RNAPII accumulates, we defined the 
middle 18 bins as the transcription elongation phase. The 3-bin heat-
map is derived from the 18-bin data by aggregating 6 subsequent bins 
and calculating log2 fold changes of every gene between old and adult 
samples for both EU-seq and total RNAPII ChIP–seq reads. To deter-
mine the percentage increase RNAPII stalling or unproductive RNAPII 
in aged livers (Extended Data Fig. 3f), we assumed a baseline in adult 
livers in which the total nascent RNA level in the elongation phase  
(18 bins) is the result of the total RNAPII levels in the elongation phase 
(18 bins). The mean relationship across n = 3 mice is set as the baseline. 
Since there is an increase in RNAPII levels and a reduction in nascent 
RNA levels across the gene body in aged liver, the expected number 
of total RNAPII ChIP–seq reads was calculated that should support 
these nascent RNA levels based on the adult liver baseline, that is, the 
ratio of EU-seq read counts and total RNAPII ChIP–seq read counts 
in the elongation phase (18 bins). Subsequently, the observed total 
RNAPII ChIP–seq read count per sample was determined in each aged 
liver sample. Then, we subtracted the expected total RNAPII ChIP–seq 
read count from the observed total RNAPII ChIP–seq read count and 
divided this by the expected read count in aged liver: RNAPII stalling 
in aging (%) = (observed RNAPII read count − expected RNAPII read 
count) / expected RNAPII read count × 100%. To analyze nucleotide 
composition, the top 50 genes from GLPThigh and bottom 50 from the 
remainder genes were selected within the length range of 70–110 kb 
and were divided into 35 bins from TSS to TSS + 70 kb (2 kb per bin). The 
nucleotide composition percentage (cytidine, thymine, adenine and 
guanine) was determined by Qualimap v.2.21 (ref. 69). The transcription 
error ratio in the EU-seq datasets was calculated using BioConductor 
seqTools (R v.1.2.0. and IRanges packages)70. Total error rates were 
calculated as the percentage of total reads with a mismatched base 
at each read position during the alignment step. Analysis of EU-seq 
read abundance at splicing donor and acceptor sites was carried out 
using a custom-written script: Splicingdonor&acceptorfinder.py in 
which the expression values from ±49 bp around the splicing donor 
and acceptor site for all selected genes were captured by the HTSeq 
v.0.6.0. Alternative splicing events were detected by Astalavista v.4.0 
(ref. 71) with default settings. DNA methylation status was detected by 
Qualimap v.2.21 and deepTools v.2.0 (ref. 72). Average RNAPII profiles 
at promoters (±750 bp around the TSS) and average histone modifica-
tion profiles (H3K27ac, H3K4me3 and DNA methylation) at the TSS and 
gene bodies were plotted using HOMER v.4.11 software (annotatePeak.
pl command)73.

To calculate the number of RNAPII stalled on a lesion compared 
to queuing behind the initially stalled RNAPII, we first estimated the 
number of DNA lesions in our expressed genes dataset, which has a total 
length of 280,010,046 bp. With a lesion density of 1.6 per 100,000 bp in 
a diploid genome, we expect approximately 8,960 DNA lesions. Since 
DNA lesions are equally occurring on both the coding and template 
strands and the latter is only important for RNAPII stalling, there are 
4,480 DNA lesions in the template strand of the selected gene set. If 
we assume that all DNA lesions are obstructing an RNAPII complex 
and we have an estimated 18,000 stalled RNAPII complexes per cell, 
we estimate that for every RNAPII stalled on a DNA lesion three RNAPII 

complexes are queuing. The strand bias analysis in the RNAPII ChIP–seq 
data was done as described elsewhere38, which is based on the obser-
vation that PCR amplification of RNAPII ChIP–seq libraries is biased 
toward the coding strand if there is a transcription-blocking DNA lesion 
in the template strand on which RNAPII is stalled, with some modifi-
cations. We first monitored whether our specific ChIP–seq protocol 
could detect strand bias and optimized the analysis by using our previ-
ously published RNAPII ChIP–seq data after UVB treatment74. In short, 
forward and reverse reads from RNAPII ChIP–seq were separated and 
processed by SAMtools v.1.9 (ref. 75) and counted by BEDtools v.2.27.1 
(ref. 76). For each gene in the selected gene set, we first corrected for the 
orientation of the template strand (forward/reverse strand) because 
genes are located on both the forward and reverse strand. Then, we 
calculated for each gene in the dataset the fraction bias toward the 
coding strand and subsequently the strand bias was calculated across 
all expressed genes in the gene set.

Statistical reproducibility and modeling
In vitro experiments are based on triplicates of independent experi-
ments and the plots are presented as the means, unless otherwise 
indicated. Details of the statistical tests and quantifications used in this 
study are described in the corresponding parts of the main text, figure 
legends or Methods. Data distribution was assumed to be normal but 
this was not formally tested. All statistical tests were performed with 
Prism or the packages or functions implemented in R (edgeRpackage 
and fisher.test functions) except for the enrichment analysis with, 
GSEA, Enrichr and Ingenuity Pathway Analysis, which were performed 
by and thoroughly described in their Web applications.

A statistical and probabilistic framework was generated for EU 
incorporation for a range of distances between EU molecules, and in 
case of a 1.5-fold reduction for a range of EU incorporation distance 
differences. The probability that at least one EU is incorporated into 
nascent RNA was modeled in the situation where there is a 1.5-fold 
reduction in EU incorporation in old mouse livers due to lower or 
slower uptake or processing. The assumptions were: (1) as there is at 
least a >400-fold surplus of biotin for every incorporated EU in nascent 
RNA in the Click-iT reaction, the reaction is saturated or follows the 
same asymptote; (2) only one EU incorporation per RNA molecule is 
sufficient to isolate that specific molecule; (3) EU incorporation is a 
stochastic process in which the concentration of available EU in the 
total nucleotide pool linearly correlates with the distance between EU 
molecules in the nascent RNAs. If there is an EU availability difference 
between adult and old mice, it is expected that in short RNA species 
(≤300 nucleotides) the probability of at least one EU incorporation 
is significantly lower and thus we would empirically observe a lower 
percentage sequence read mapping to such small RNA species in aged 
liver. The process of EU incorporation was modeled into nascent RNA 
species by means of a Poisson process. Specifically, one can think of the 
number of EU incorporations into nascent RNA as a Poisson process 
not in time, as it is generally used, but in length as measured in nucleo-
tides. Mathematically, if X(t) is a Poisson process then the probability 
that there is no event in a time interval (0,t) reads exp(-λt) where λ is 
the intensity of the Poisson process. Equally, the probability that there 
is at least one event in the time interval (0,t) is thus 1 − exp(-λt). For 
each RNA species in our specified RNA length classes identified in the 
EU-seq datasets, the probability that at least one EU has been incorpo-
rated was subsequently computed using the formula above. Clearly, 

since 1 − e−
1
x > 1 − e

−
1
y  for all x < y, Poisson processes with higher 

intensity will necessarily exhibit a larger probability that at least one EU 
has been incorporated than Poisson processes of lower intensity. Three 
groups of RNA species were examined: (1) ≤300 nucleotides (number 
of RNA species n = 7,932); (2) between 1,000 and 3,000 nucleotides 
(number of RNA species, n = 1983); and (3) between 2,000 and 4,000 
nucleotides (number of species, n = 1,802). The number of RNA species 
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reflect the total number present in the Mus musculus genome data-
base (Ensembl). The latter two classes, although still representing 
short RNA species, are incorporated as a positive control in which 
a difference, if there is 1.5-fold less EU available, is not expected. In 
all cases, the probability vectors were not Gaussian as calculated 
by Kolmogorov–Smirnov test; thus, for each fixed intensity of the 
underlying Poisson process, the median and interquartile range (IQR) 
for the probability that at least one EU is incorporated are calculated. 
Significance between 1.5-fold-apart intensities was calculated by the 
Mann–Whitney U-test.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
EU-seq and ChIP–seq data have been deposited at the NCBI Sequence 
Read Archive website and are publicly available (accession no. 
PRJNA603447). The microscopy images reported in this paper 
will be shared by the lead contact upon reasonable request. Sev-
eral public datasets were reanalyzed including: total RNA-seq data 
from the human tendon51 (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-2449/) and Caenorhabditis elegans52 (https://
www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA357503) for Fig. 6a, 
DNA methylation (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE95361)77, histones H3K27ac and H3K4me3 (https://www.
ncbi.nlm.nih.gov/bioproject/?term=PRJNA281127) for Extended Data 
Figs. 5 and 6, MNase-seq (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE58005)78 and RNAPII ChIP–seq data from UVB-irradiated 
cells (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA230028) 
for Extended Data Fig. 7a. Source data are provided with this paper.

Code availability
All software used in this study is published and cited either in the main 
text or Methods. All original code has been deposited at: https://github.
com/Pothof-Lab/Transcriptional-Stress. Data analysis approaches 
using published software packages are described in the Methods.
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Extended Data Fig. 1 | Relation between RNAPII fluorescent intensity and 
corresponding nuclear sizes measured in individual hepatocytes, related to 
Fig. 1. a–c, XY-scatterplots of (a) total RNAPII, (b) RNAPII-ser5p and (c) RNAPII-

ser2p; A.U.: arbitrary units. blue: wildtype adult livers; red= old liver. n = 3 mice/
group. Total number of counted nuclei: a, adult: n = 206, old: n = 155. b, adult, 
n = 748; old n = 701. c, adult: n = 984; old, n = 674.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Nascent RNA sequencing (EU-Seq) computational 
analysis and controls, related to Fig. 1. a, EU-labelled nascent RNA sequencing 
(EU-seq) analyses flowchart. b, c, Sequence read distribution in EU-seq and 
total-RNA sequencing in introns and exons (b) and mapped on genes (c), 
showing increased number of intronic reads in EU-seq, indicating nascent RNA 
enrichment. d, Bioanalyzer plots of on-bead synthesized cDNA to generate 
EU-seq libraries. Since reverse transcriptase cannot synthesize cDNA through 
biotin covalently bound to DNA, cDNA is only generated between covalently 
EU-bound biotins or from EU-bound biotin to the RNA end. Adult and old cDNA 
is almost identical, indicating similar EU incorporation rates. e, table depicting 
EU incorporation for a range of distances between EU molecules as modelled 
by Poisson process. Three groups of RNA species were examined: 1) ≤300 
nucleotides (n = 7932), 2) 1000 to 3000 nucleotides (n = 1983), and 3) 2000 to 
4000 nucleotides (n = 1802). Shown is median and Interquartile Range (IQR). 
f, statistical and probabilistic framework table depicting 1.5-fold reduction for 
a range of EU incorporation distance differences. If EU incorporation differs 
between adult and old, it is expected that in RNA species ≤300 nucleotides 
the probability of at least one EU incorporation is significantly lower. For each 

specified pair of 1.5-fold apart intensities, the expected fold change in aged liver 
was calculated and the corresponding 7932-dimensional vectors of probabilities 
were compared by Mann-Whitney U-test. There is a very high, significant 
probability that a difference should be observed between adult and old (p < 2.2 
× 10−16, column 3) if there is a 1.5-fold reduction in EU incorporation in aged liver. 
g, percentage sequence reads in EU-seq datasets mapping to RNA species length 
categories i) ≤300 nucleotides, ii) 1000 to 3000 nucleotides, and iii) 2000 to 
4000 nucleotides. The ≤300 nucleotides length category shows a non-significant 
(p-value = 0.061093, two-sided unpaired t-test) 1.2-fold increase in aged liver, 
indicating that it is unlikely that EU availability is different between adult and 
aged livers. Data are mean ± SEM. h, percentage EU-labelled nascent RNA reads 
synthesized by different RNA polymerases (RNAPI-II-III, and mitochondrial 
RNAP (RNAP-MT)). Adjusted old values (orange) were calculated by proportional 
compensation of nascent transcription reduction as observed in Fig. 1a. n = 3 
mice/group. Data are mean ± SEM. i, Alternative splicing in EU-seq data. n = 3 
mice/group. Data are mean ± SEM. j, Ratios of splice donor and acceptor sites in 
EU-seq. n = 3 mice/group. Data are mean ± SEM.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Gene category classification, transcription 
characteristics of gene classes and RNAPII stalling calculation, related 
to Figs. 2 and 3. a, Schematic representation of k-means clustering-based 
identification of putative regulatory mechanisms behind the aging-related 
gene expression changes. b, c, The mean Log2-fold change of EU-seq and total 
RNAPII ChIP-seq reads in aging liver throughout the gene bodies (3 bins) of 
(b) ‘Promoter-upregulated’ genes (n = 778) and (c) ‘Promoter downregulated’ 
genes (n = 394). Calculated from main Fig. 2 f. Data are mean ± SEM. d, Average 
gene length (left panel) of all expressed genes, promoter-upregulated genes, 

promoter-downregulated genes, and genes with a high gradual loss of productive 
transcription (GLPThigh) as seen in Fig. 2a and classified by gene length (right 
panel) Groups: 10–22 kb (blue; n = 662); 22–32 kb (black; n = 644); 32–50 kb (pink; 
n = 788), 50–70 kb (yellow; n = 587), 70–110 kb (orange; n = 643) and >110 kb (red; 
n = 646). Data are mean ± SEM. P-value = 7.84163*10−22, two-sided unpaired t-test. 
e, The contribution (%) of each gene-length class to the total nascent RNA pool in 
adult samples. f, Calculation of the fraction of unproductive RNAPII complexes in 
aged liver. g, Estimation of the number of stalling RNAPII complexes in aged liver.
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Extended Data Fig. 4 | Correlation of transcriptional parameters to defined 
functional gene clusters, related to Fig. 4. Transcriptional parameters in 
the identified functional gene clusters (as described in Extended Fig. 3a): a–d, 
average nucleotide composition per kb gene length in the template strand for 
the first 70 kb from TSS of top 50 GLPThigh genes 70–80 kb (black line) compared 
to 50 remainder genes 70–80 kb that contain low GLPT levels (red line). Data 

are mean ± SEM. e, Transcriptional error rates in EU-seq data from wildtype 
adult (blue) and old (red) livers in 4 different gene sets: ‘Promoter-upregulated’ 
(n = 778), ‘Promoter-downregulated’ (n = 394), GLPThigh (n = 914), remainder 
(n = 1884). Data are mean ± SEM. f, Bar diagram showing the ratio between EU-seq 
reads mapped to splice donor and acceptor sites of genes in each functional gene 
cluster in e. Average of n = 3 / group shown. Data are mean ± SD.
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Extended Data Fig. 5 | Levels of RNAPII or epigenetic markers around the TSS 
(±750 bp) of each defined functional gene cluster, related to Fig. 4. Functional 
gene clusters: promoter-upregulated genes, promoter-downregulated 
genes, genes with a high gradual loss of productive transcription (GLPThigh) 
and remainder. Data are mean ± s.d. Blue lines represent adult liver, red lines 

represent old liver. Average of n = 3 / group shown for: a, Total RNAPII. b, serine 5 
phosphorylated (ser5p) RNAPII. c, histone 3 lysine 27 acetylation (H3K27Ac; open 
chromatin). d, histone 3 lysine 4 trimethylation (H3K4Me3; open chromatin). 
e, inaccessible chromatin as MNase digests only DNA not bound to proteins 
including nucleosomes.
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Extended Data Fig. 6 | Levels of epigenetic markers throughout gene bodies 
of each defined functional gene cluster, related to Fig. 4. Functional gene 
clusters: promoter-upregulated genes, promoter-downregulated genes, genes 
with a high gradual loss of productive transcription (GLPThigh) and remainder. 
Blue lines represent adult liver, red lines represent old liver. Average of n = 3 / 

group shown of sequencing read density from TSS + 750 bp to TTS + 4 kb for: a, 
histone 3 lysine 27 acetylation (H3K27Ac; open chromatin). b, histone 3 lysine 
4 trimethylation (H3K4Me3; open chromatin). c, inaccessible chromatin as 
MNase digests only DNA not bound to proteins including nucleosomes. d, DNA 
methylation status.
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Extended Data Fig. 7 | DNA damage-induced coding strand bias detection 
control, related to Fig. 4. a, Bar diagram representing the coding strand bias in 
total RNAPII ChIP-seq data 1 hour and 6 hours after irradiating MCF7 cells with 
55 J/m2 UVB (data from76). All genes (n = 18224), short genes (10–22 kb) and long 
genes (>110 kb). Data are mean ± SEM. Note that the strand bias is only present 
in MCF7 cells 1 hour after UVB treatment, when RNAPII is still stalled on DNA 
lesions and DNA repair is ongoing. After 6 hours, most of the stalled RNAPII 
has been removed from the DNA lesions. This shows that i) the protocol used 
is able to detect a bias towards the coding strand and therefore can be used to 
analyze aging samples, ii) the coding strand bias is a transient phenotype after 
UVB. Based on published amounts of coding strand bias after a known UVC-

induced DNA lesion density38, we estimate that livers from wildtype aged mice 
display a coding strand bias fraction in the range of 0.05–0.10. b–f, Mean local 
DNA methylation coverage (b) and (c–f) local nucleotide composition status 
in template strands of 50 genes with that exhibit the highest coding strand bias 
in general. The intragenic intronic region is chosen with the highest coding 
strand bias (high strand bias loci). This loci gene set is compared t i) random 
selected intragenic loci of similar size: 6 times 50 random intronic locations in 
the template strand, and ii) the complete intronic transcriptome; all introns from 
transcriptome (including high strand bias locations). Average of n = 50 / group 
shown. Data are mean ± SD.
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