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APOBEC mutagenesis is a common process  
in normal human small intestine

Yichen Wang    1, Philip S. Robinson    1,2, Tim H. H. Coorens    1,3, Luiza Moore    1,4, 
Henry Lee-Six    1, Ayesha Noorani1, Mathijs A. Sanders1, Hyunchul Jung1, 
Riku Katainen5, Robert Heuschkel6, Roxanne Brunton-Sim7, Robyn Weston8, 
Debbie Read8, Beverley Nobbs8, Rebecca C. Fitzgerald    9, 
Kourosh Saeb-Parsy    10, Iñigo Martincorena    1, Peter J. Campbell    1, 
Simon Rushbrook7,11, Matthias Zilbauer    2,6, Simon James Alexander Buczacki12 
& Michael R. Stratton    1 

APOBEC mutational signatures SBS2 and SBS13 are common in many 
human cancer types. However, there is an incomplete understanding of 
its stimulus, when it occurs in the progression from normal to cancer cell 
and the APOBEC enzymes responsible. Here we whole-genome sequenced 
342 microdissected normal epithelial crypts from the small intestines 
of 39 individuals and found that SBS2/SBS13 mutations were present in 
17% of crypts, more frequent than most other normal tissues. Crypts with 
SBS2/SBS13 often had immediate crypt neighbors without SBS2/SBS13, 
suggesting that the underlying cause of SBS2/SBS13 is cell-intrinsic. APOBEC 
mutagenesis occurred in an episodic manner throughout the human 
lifespan, including in young children. APOBEC1 mRNA levels were very high 
in the small intestine epithelium, but low in the large intestine epithelium 
and other tissues. The results suggest that the high levels of SBS2/SBS13 
in the small intestine are collateral damage from APOBEC1 fulfilling its 
physiological function of editing APOB mRNA.

Somatic mutations are thought to accumulate in all cells. Although 
many cancer genomes have been comprehensively characterized1–3, 
information on somatic mutations in normal cells has been limited. 
Recently, however, multiple technological advances4,5 have enabled the 
detection of somatic mutations in many normal cell types, including 
blood6, placenta7, neurons, smooth muscle5, cardiac muscle8, epithelia 
of the liver9, bronchus10, endometrium11, colorectum12, skin13, esopha-
gus14, bladder15, pancreas, prostate, ureter, thyroid, visceral fat, adrenal 

gland and testis8. These studies have informed on the clonal structure 
of tissues, somatic mutation rates, mutational processes and the pres-
ence of driver mutations conferring selection in normal cells of healthy 
individuals, and those with a range of diseases.

The small intestine is the longest segment of the gastrointestinal 
tract and a major organ involved in the digestion and absorption of 
nutrients. Its epithelium is thought to be one of the most vigorously 
self-renewing tissues of adult mammals16. However, small intestine 
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clock-like fashion throughout life8,12,22. Congruent with these general 
patterns, SBS1 and SBS5 were present in almost all small intestine crypts, 
and their mutation burdens correlated linearly with age (r = 0.77 for 
SBS1, r = 0.90 for SBS5; Extended Data Fig. 4). SBS18 is predominantly 
characterized by C>A substitutions, is proposed to be caused by DNA 
damage due to reactive oxygen species14 and has been previously found 
in some normal human tissues, including the colorectal epithelium 
that has the highest SBS18 mutation rate other than the placenta7,12. 
On average, SBS18 contributed 12% of the total SBS burden of the small 
intestine, similar to that of the colorectum (13%)6.

Seven signatures (SBS2, SBS13, SBS17b, SBS35, SBS40, SBS41 and 
SBS88) were present only in a subset of crypts and were thus considered 
to be ‘sporadic’. SBS17b and SBS35 can be due to prior chemotherapy 
treatment with fluorouracil (5-FU) and platinum drugs, respectively. 
SBS17b was found in one individual (PD43853) previously treated 
with 5-FU, and SBS35 in two individuals (PD28690 and PD43853) pre-
viously treated with platinum drugs. In PD43853, SBS17b and SBS35 
were extracted from clonal mutations (VAF > 0.4) in crypts sampled 
5 months after commencement of chemotherapy, indicating that the 
time required for progeny of a single stem cell to colonize the whole 
crypt was less than 5 months. However, chemotherapy itself may influ-
ence stem cell dynamics and, therefore, this short period may not 
be representative of crypts in untreated individuals. SBS40 is a flat 
signature correlated with age, detected in ten individuals (PD37449, 
PD42835, PD43400, PD43403, PD43850, PD43851, PD45766, PD45770, 
PD46562 and PD46565). SBS41 is of unknown etiology and was present 
in three individuals (PD37449, PD46565 and PD46566). SBS88 was 
previously identified in subsets of colorectal crypts in a subset of 
individuals, is caused by the mutagenic agent colibactin produced by 
certain strains of Escherichia coli present in the colorectal microbiome23 
and usually appears to be generated during childhood12. Consistent 
with this pattern, SBS88 in the small intestine was present only in the 
earliest branches of phylogenetic trees constructed from somatic 
mutations. In PD37449, SBS88 constituted 52% of mutations in an 
ancestral branch and was not present in descendant branches, further 
refining the timing of colibactin exposure to a very early period of 
postgestational life, around or before 2 years based on SBS1 burden 
(Extended Data Fig. 3). Although the small intestine does not harbor 
the rich microbiome of the colon, all crypts with SBS88 were from the 
ileum, and it is conceivable that they had been exposed to colibactin 
through backwash from the colon.

Frequency and burden of APOBEC mutagenesis
SBS2 and SBS13 are thought to be caused by activity of APOBEC cyti-
dine deaminases (in this context, we subsequently use SBS2/SBS13 
and APOBEC mutagenesis interchangeably). These signatures are 
characterized predominantly by C>T (SBS2) and C>G/C>A (SBS13) 
mutations at TCN trinucleotides (mutated base underlined), usu-
ally occur together and are commonly found in many cancer types 
including bladder, breast, cervix, head and neck, esophageal squa-
mous, lung squamous, lung adenocarcinoma, pancreas, stomach, 
thyroid and uterus1,2,24. SBS2/SBS13 have also been found in normal 
bronchus10 and bladder epithelial cells15 but have not been commonly 
detected in most normal tissues including the liver9, endometrium11, 
placenta7, colon12,25, stomach8, skin13, esophagus14,26, neurons5, car-
diac muscle8, smooth muscle5, hematopoietic stem cells6, pancreas, 
prostate, ureter, thyroid, visceral fat, adrenal gland and testis8. SBS2/
SBS13 were observed in 22 out of 39 individuals, in 58/342 (17%) small 
intestine crypts, and on average contributed to 11% of the SBS burden 
in these crypts. This frequency of APOBEC mutagenesis in normal 
small intestinal epithelium is considerably higher than that observed 
in normal colorectal epithelium. To directly compare large intestine 
and small intestine epithelia, we combined our data with a previous 
dataset25 of whole-genome sequences of normal colorectal crypts 
with mutations assigned to phylogenetic trees and ran a mutational 

tumors constitute only ~4% of all gastrointestinal tumors17. Although a 
few normal small intestine crypts have been analyzed as parts of other 
studies8,12,18, extensive sequencing of the normal small intestine epi-
thelium has not thus far been conducted. To provide a comprehensive 
analysis of somatic mutations in the normal small intestine epithelium, 
we used the laser capture microdissection microscopy (LCM) and 
whole-genome sequenced 342 individual small intestine crypts from 
39 individuals (173 duodenal from 22 individuals, 47 jejunal from 5 
and 122 ileal from 16) aged between 4 and 82 years. Six had a history 
of celiac disease (gluten enteropathy). From each biopsy, we aimed to 
collect both spatially adjacent and separated crypts whenever possible.  
The mean sequencing coverage was 25 fold.

Results
The landscape of somatic mutation in normal human small 
intestinal crypts
The base of each small intestinal crypt is occupied by stem cells, and the 
descendants of a single recent ancestor stem cell comprise most cells in 
each crypt19,20. Therefore, isolation of single crypts provides relatively 
homogeneous clones of cells from which somatic mutations can be 
called. The distribution of variant allele frequencies (VAFs) around 0.5 
in most crypts confirmed their monoclonality (Extended Data Fig. 1).  
From the distribution of VAFs, we estimated that the mean time  
to the most recent common ancestor (MRCA) of crypts ranges from 
0.8–4.6 years (95% confidence interval, 0–10 years) across individuals, 
with a median of 2.6.

In total, we identified 787,109 unique single-base substitutions 
(SBS) and 51,256 small insertions and deletions (IDs). We fitted linear 
mixed-effects models to estimate the effect of age, biopsy location and 
disease condition on SBS and ID mutation burdens while controlling 
for within-patient correlation. On average per year, small intestine 
accumulated 51 SBS (95% confidence interval, 45–56) and 3.7 IDs (95% 
confidence interval, 3.1–4.4) per crypt in duodenum, 50 SBS (95% confi-
dence interval, 42–59) and 2.6 IDs (95% confidence interval, 1.8–3.5) per 
crypt in jejunum, and 42 SBS (95% confidence interval, 35–48) and 2.3 
IDs (95% confidence interval, 1.6–3.0) per crypt in ileum (Fig. 1a,b). Both 
SBS and ID rates are similar to normal colorectum12, indicating that the 
low incidence rate of small bowel cancer is not due to lower mutation 
rates. For IDs, 1 bp IDs of A:T base pairs were the most common muta-
tion categories and are thought to reflect polymerase slippage during 
DNA replication (Extended Data Fig. 2). Six crypts showed one copy 
number change (gain or loss). One crypt (PD45771b_lo0004) showed a 
chromosome 2 trisomy, while the remaining five were deletions ranging 
from 1 Mb to 7 Mb. Translocation and inversion events were detected 
in five crypts (Supplementary Table 1), and 96 retrotransposition 
events were identified in 65 small intestinal crypts (Supplementary 
Table 2). Hotspot putative cancer driver mutations in FBXW7 (S582L), 
ERBB2 (V842I) and PIK3CA (Q546E) were detected in one individual 
each. Seven heterozygous protein-truncating mutations were found in 
tumor suppressor genes including RB1, FBXO11, FAT1, KMT2D, KMD6A, 
ACVR2A and ZFHX3 (Supplementary Table 3).

Mutational signatures in normal human small intestinal crypts
Previous studies of somatic mutations have provided a set of reference 
mutational signatures1,2,21. By de novo extraction and decomposition of 
extracted signatures, we identified the following ten reference SBS sig-
natures in normal small intestine epithelium: SBS1, SBS2, SBS5, SBS13, 
SBS17b, SBS18, SBS35, SBS40, SBS41 and SBS88 (Fig. 1c and Supplemen-
tary Table 4). Phylogenetic trees of small intestine crypt mutations 
were constructed for each individual and mutation burdens of each 
signature were estimated for each branch (Extended Data Fig. 3). SBS1 
is characterized by NCG>NTG (mutated base underlined) substitutions 
and is due to spontaneous deamination of 5-methylcytosine. SBS5 is 
of unknown etiology but is likely of intrinsic origin. SBS1 and SBS5 
are ubiquitous in human tissues and generally accumulate in a linear, 
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signature extraction on all branches of the combined dataset. SBS2/
SBS13 were found in 68 of 417 (16.3%) phylogenetic branches in small 
intestine, ~28-fold more frequently than the 6 of 1075 (0.6%) branches 
in colorectum (P = 1.6 × 10−35, chi-squared test). The proportion of all 
mutations that were SBS2/SBS13 was, however, only 8.5-fold higher 
in small intestine (2.1%) than in large intestine (0.24%) because  
of a very high mutation burden (>3,000) in a single large intestine 
crypt (Fig. 1c).

To investigate whether SBS2/SBS13 is also frequently present in 
small intestine cancers, we re-analyzed a whole-exome sequencing 
(WES) dataset of 71 small bowel adenocarcinomas27 and the results 
showed a similar frequency (18%, 13 of 71) to normal small intestinal 
crypts. However, the median burden of SBS2/SBS13 from signature 
attribution in small bowel adenocarcinoma was ~7-fold higher than that 
observed in normal small intestine, suggesting that rates of APOBEC 
mutagenesis are accelerated during the process of neoplastic change 
and progression (Extended Data Fig. 4).

The high prevalence of SBS2/SBS13 and the ordered epithelial 
crypt structure of the small intestine offer a particular opportunity 
to investigate mechanisms of APOBEC mutagenesis. The proportions 
of APOBEC-positive crypts varied between individuals (P = 5 × 10−4, 
Fisher’s exact test). These differences were not well-explained by age 
(r = 0.19 for SBS2 and age, r = 0.18 for SBS13 and age), by sector of the 
small intestine sampled or by a history of celiac disease (Extended Data 
Fig. 5). For example, in PD41851 (aged 80 years from the ileum), SBS2/
SBS13 was found in 8/11 crypts, while in PD41853 (aged 79 years from 
the ileum) only 1/11 crypts showed these signatures (Fig. 2a,b). Thus, 
there appear to be differences between individuals in the extent of 
APOBEC mutagenesis.

Spatial distribution of APOBEC-positive crypts
The stimulus triggering SBS2/SBS13 mutagenesis is unknown. To inves-
tigate the possibility that APOBEC activity is triggered by extrinsic local 

microenvironmental factors that, in principle, might affect multiple 
crypts adjacent to each other, we examined the spatial relationships 
of crypts with SBS2/SBS13. Crypts with APOBEC mutagenesis often 
immediately neighbored crypts without APOBEC mutagenesis (Fig. 3). 
The results echo previous observations from normal bladder15 and sug-
gest that APOBEC mutagenesis is initiated or permitted by cell-intrinsic 
factors or, if not, by very highly localized extrinsic factors. APOBEC 
cytidine deaminases are thought to be involved in intrinsic immunity 
against retrotransposons28–30. However, no significant correlation 
between the number of retrotransposition events and SBS2/SBS13 
mutation burden was found.

APOBEC mutagenesis occurs episodically throughout life
In vitro studies of human cancer cell lines have indicated that SBS2/
SBS13 mutagenesis is episodic, occurring in bursts with extended 
periods of intervening silence31. To investigate whether APOBEC 
mutagenesis in normal small intestine cells in vivo is episodic, we 
examined crypt phylogenetic trees and found that APOBEC-positive 
branches usually had ancestral or descendant branches in which 
APOBEC mutagenesis was absent (Fig. 2d–f and Extended Data Fig. 3).  
The results, therefore, indicate that APOBEC mutagenesis is also epi-
sodic in vivo in normal cells and suggest that most adult small intes-
tine cells have only experienced a single episode, or a small number 
of episodes, in the cell lineage from the fertilized egg spanning the 
lifetime of each individual.

One crypt from a 4-year-old exhibited SBS2/SBS13 demon-
strating that APOBEC mutagenesis can occur early in life (Fig. 2c). 
Phylogenetic trees provided further information on the timing 
of APOBEC mutagenesis episodes. In PD43401 and PD43403, the 
absence of APOBEC signatures on branches ancestral to those in 
which APOBEC mutagenesis was found indicates that these episodes 
occurred after age 30 years (Fig. 2e,f). By contrast, in PD41852, 
APOBEC exposure on an early branch indicates the occurrence of an 
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Fig. 1 | Burdens and mutational signatures in normal human small intestinal 
crypts. a, SBS burden versus age, showing regression lines for the three different 
sectors of the small intestine. Regression lines were estimated using linear mixed-
effects models. Error bands represent 95% confidence interval for the fixed effect 
of age. Colors indicate biopsy regions, with orange, green and blue representing 
duodenum, ileum and jejunum, respectively. Shapes indicate whether the 

donor has a celiac history or not. Crosses indicate donors with a celiac history, 
and dots indicate donors without a celiac history. b, ID burden versus age, 
showing regression lines for the three different sectors of the small intestine. 
c, The proportion of mutations in each crypt attributed to each SBS mutational 
signature (arranged by ascending age). Signatures are color coded as indicated 
on the right.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | February 2023 | 246–254 249

Article https://doi.org/10.1038/s41588-022-01296-5

episode before age 25 years (Fig. 2d). Together, the results suggest 
that APOBEC mutagenesis occurs in the small intestine throughout 
much of the lifespan.

Kataegis clusters of APOBEC mutations
In addition to a more-or-less random genome-wide distribution, 
SBS2/SBS13 mutations in cancer are found in localized, high-density 
clusters referred to as ‘kataegis’32–34. To investigate whether kataegis 
exists in normal small intestine, we applied a negative binominal 
test on all SBS mutations to identify mutation clusters spanning 
10 to 10,000 base pairs and constructed ‘rainfall’ plots to visualize 
between-mutation distances. Eighty-seven kataegic clusters were 
identified, which, overall, showed fewer mutations than those in can-
cer genomes (Supplementary Table 5 and Fig. 4). Kataegis in cancers is 
often found around rearrangement breakpoints1 but this was not the 
case in normal small intestine crypts. Among the clustered mutations 
identified, 88% (363 of 412, P < 2.2 × 10−22, chi-squared test) exhibited 
the characteristics of SBS2/SBS13, and 78% (321 of 412, P < 2.2 × 10−22, 
chi-squared test) co-occurred within crypts with >5% SBS2/SBS13 
burden. Forty-eight percent of APOBEC-positive crypts (28 of 58, 

P = 9.7 × 10−16, chi-squared test) had at least one kataegis focus, of 
which the earliest, by phylogenetic analysis, occurred before the 
age of ~30 years.

Tissue-specific expression of APOBEC1
Multiple lines of evidence, including the sequence context of SBS2/
SBS13 mutations in human cancers35, engineered expression of APOBEC 
enzymes in model systems35,36 and APOBEC gene knockouts37 in human 
cancer cell lines, indicate that among the family of 11 APOBEC enzymes, 
APOBEC3A and, to a lesser extent, APOBEC3B are responsible for gen-
erating SBS2/SBS13. To investigate the underlying mechanism for the 
unusually high level of SBS2/SBS13 in small intestine epithelium and 
its sharp reduction on transition to the large intestine, we analyzed 
five independent datasets of publicly accessible bulk tissue38 and 
single-cell transcriptome sequences39–44. This revealed that (1) APOBEC1 
is expressed at much higher levels in small intestine epithelium than 
large intestine epithelium (10- to 20-fold higher normalized TPM in 
bulk RNA sequencing (RNA-seq) data and ~10-fold higher relative read 
counts in single-cell RNA-seq (scRNA-seq) data of epithelium) and all 
other normal tissues (Fig. 5 and Supplementary Fig. 1), and (2) this 
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Fig. 3 | Spatial distribution of APOBEC-positive crypts. APOBEC-positive 
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of SBS2/SBS13. a, PD43401, this individual has one APOBEC-positive crypt but 
all the remaining crypts in the neighborhood are negative. b, PD52487, with an 
APOBEC-negative crypt (PD52487b_lo0005) between APOBEC-positive crypts. 
c, PD45778, an APOBEC-negative crypt (PD45778b_lo0002) between APOBEC-
positive crypts.
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difference in APOBEC1 expression is even more pronounced between 
small and large intestine epithelial stem cells/transit amplifying cells 
in which the SBS2/SBS13 mutations found here must have been gener-
ated (20–40-fold higher relative read counts). Moreover, four of the 
five datasets indicate that (3) APOBEC1 is expressed at higher levels 
than APOBEC3A and APOBEC3B in small intestine epithelium and, (4) in 
contrast to APOBEC1, APOBEC3A and APOBEC3B show lower expression 
in small intestine than in large intestine epithelium (Table 1).

APOBEC1 has a known physiological function, mediating C>U 
editing at position 6,666 in apolipoprotein B (APOB) mRNA to gener-
ate a truncated APOB protein with specific lipid trafficking capabili-
ties critical to normal lipid absorption and distribution by the small 
intestine45,46. In addition to its RNA editing capability, in experimental 
systems, APOBEC1 generates C>T mutations in DNA with a sequence 
context similar to that of APOBEC3A47–50, and consistent with that 
observed here in small intestine SBS2/SBS13 mutations (Extended 
Data Fig. 6 and Supplementary Fig. 2). Thus, it is plausible that the 
10–40-fold higher level of APOBEC1 mRNA expression in small com-
pared to the large intestine epithelium is responsible for the ~28-fold 
higher SBS2/SBS13 frequency in small compared to the large intestine 
epithelium, and the even greater differences compared to most other 
normal tissues.

The impact of celiac disease on somatic mutations
In celiac disease (gluten enteropathy), the immune system response 
to gluten is directed at the small intestine epithelium, resulting in 
villous atrophy and elevated risks of lymphoma and small intestine 
carcinoma. Although the number of affected individuals is small 
and estimates correspondingly uncertain, celiac disease increased 
the SBS1 burden by 4.8 mutations per year (95% confidence inter-
val, 0.4–9.2; P = 0.034 by t-test) and indel burden by 1.6 IDs per year 
(95% confidence interval, 0.3–2.9; P = 0.017 by t-test), indicative of 
1.43-fold increased small indel and 1.24-fold increased SBS1 mutation 
rates (in these analyses, we used age to estimate mutation rates and 
therefore the mutation rates during active disease periods could be 

considerably higher) (Extended Data Fig. 7). However, the total muta-
tion rate, driver mutation rate, complement of mutational signatures 
and rates of mutational signatures other than SBS1 were not detect-
ably affected. The SBS1 mutation rate has previously been correlated 
with cell division rates22, suggesting that there is accelerated crypt 
stem cell proliferation in celiac disease.

Discussion
This study shows that the total somatic mutation rates of small intestine 
stem cells are similar to those of the colorectum, confirming previ-
ous results12,25. Thus, the markedly lower cancer incidence in the small 
bowel compared to the large bowel is not explained by lower mutation 
burdens in adult cells.

APOBEC mutagenesis is found frequently in small intestine epi-
thelium compared to the large intestine epithelium and most other 
cell types thus far investigated, and the frequency of crypts showing 
APOBEC mutagenesis differs between individuals. The nature of the 
stimulus triggering APOBEC mutagenesis remains elusive but the 
results suggest that it is controlled by cell-intrinsic factors, is episodic 
and can initiate APOBEC mutagenesis during the whole human lifespan, 
albeit on few occasions in each cell lineage from fertilized egg to normal 
adult small intestine cell.

APOBEC1 has rarely been considered51,52 as a contributor to SBS2/
SBS13 mutation burden in cancer or normal tissues because of its small 
intestine-specific expression profile. However, the association between 
the 10- and 40-fold differences in APOBEC1 mRNA expression levels and 
the ~28-fold difference in SBS2/SBS13 frequency comparing small and 
large intestine epithelia provides strong circumstantial evidence that 
APOBEC1 is responsible for the high SBS2/SBS13 mutation levels in nor-
mal small intestine. A definitive examination of this hypothesis would 
be provided by APOBEC1 knockout in organoids derived from normal 
small intestine epithelium, although if SBS2/SBS13 mutation episodes 
are as infrequent in vitro as in vivo, these might be daunting experi-
ments to conduct. If correct, however, this indicates that APOBEC1, in 
addition to APOBEC3A and APOBEC3B, can contribute to SBS2/SBS13 
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mutations in human cells, and, therefore, that APOBEC1 performs 
both RNA editing and DNA editing in normal small intestine. Given 
the established physiological function of APOBEC1 in editing APOB 
mRNA, it also leads to the conjecture that either APOBEC1 has multiple 

physiological functions, some mediated by RNA editing and others by 
DNA editing, or that the DNA editing leading to SBS2/SBS13 is simply 
collateral damage arising as a result of the high levels of APOBEC1 
required to serve its role in APOB mRNA editing. The observation that 
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there are few episodes of APOBEC mutagenesis during the lifetime of 
an individual suggests that while APOBEC enzyme expression is neces-
sary, it is not sufficient to generate SBS2 and SBS13 and that further, 
likely stochastic events are required.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-022-01296-5.
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Methods
Ethics and overview
This study complies with all relevant ethical regulations and was 
approved by National Research Ethics Service Committee East of Eng-
land (PD28690, PD37449, PD34200 and PD37266), London-Surrey 
Research Ethics Committee (PD43850, PD43851, PD52486 and 
PD52487), Wales Research Ethics Committee 7 (PD41851, PD41852, 
PD41853, PD42833, PD42834, PD42835 and PD43853), National 
Research Ethics Service Committee East of England—Cambridge 
East (PD43400, PD43401, PD43402 and PD43403), National Research 
Ethics Service Committee East of England—Cambridge South 
(PD43949, PD43950, PD43951, PD43952, PD43953 and PD43954), 
National Research Ethics Service Committee North West—Haydock 
(PD45766, PD45767, PD45769, PD45770, PD45771, PD45773, PD45776 
and PD45778) and East of Scotland Research Ethics Service (PD46562, 
PD46563, PD46565, PD46566, PD46568 and PD46573). We obtained 
healthy and celiac small intestinal biopsies from 39 individuals  
(22 females and 17 males aged between 4 and 82 years from the 
United Kingdom). Among them, six individuals (two females and 
four males) had a history of celiac disease (gluten enteropathy). 
Participants were recruited from eight cohorts, including organ 
donors (providing duodenum, jejunum and ileum samples), patients 
who have undergone endoscopy (providing duodenum samples) and 
patients with colorectal cancer who have had surgical removal for 
part of their colon (including part of the ileum). Written, informed 
consents for all participants were obtained and participants were  
not compensated. A summary of age, sex and cohort is provided in 
Supplementary Table 6.

The first cohort consists of samples collected in a previous study8 
from a 78-year-old man (PD28690), a 54-year-old woman (PD43850) 
and a 47-year-old man (PD43851) in warm autopsies within 6 h of 
death. PD28690 was a nonsmoker who died of a metastatic esopha-
geal adenocarcinoma for which he had received a short course of 
palliative chemotherapy (5–6 weeks of oxaliplatin, 7 weeks before his 
death). The samples were collected in line with the protocols approved 
by the National Research Ethics Service Committee East of England 
with United Kingdom Research Ethics Committee (REC) reference 13/
EE/0043. The other two individuals died of causes not related to cancer. 
The use of these tissues was approved by the London-Surrey Research 
Ethics Committee (REC reference 17/LO/1801). Samples in the second 
cohort were collected in a previous study12 from organ donors (two 
females and one male) at age 36–67 years from whom small-intestinal 
biopsies were taken at the time of organ donation (approved by the 
National Research Ethics Service Committee East of England, REC 
reference 15/EE/0152). The third cohort represents four female and 
three male patients aged 38–80 who underwent surgical resection 
(approved by Wales REC 7 with REC reference 15/WA/0131). The fourth 
represents four female patients aged 53–77 years who had endoscopy 
(approved by NRES Committee East of England—Cambridge East with 
REC reference 08/h0304/85+5). The fifth cohort comprised children 
aged between 4 and 13 years (four females and two males) who had 
endoscopy (approved by NRES Committee East of England—Cambridge 
South with REC reference 17/EE/0265). The sixth cohort comprised six 
male and two female patients aged 50–82 years with surgical resection 
(approved by NRES Committee North West—Haydock with REC refer-
ence 20/NW/0001). The seventh cohort comprised two female and four 
male patients aged between 41 and 78 years with celiac conditions, and 
samples were collected through endoscopy (approved by East of Scot-
land Research Ethics Service with REC reference 18/ES/0133). Celiac his-
tory information is provided in Supplementary Table 7. The last cohort 
is from AMSBio (commercial supplier), samples for donors PD52486 
(19, female) and PD52487 (23, female) were obtained at autopsy from 
individuals who had died of causes not related to cancer (approved 
by the London-Surrey Research Ethics Committee with REC reference 
17/LO/1801).

Statistics and reproducibility
No statistical method was used to predetermine the sample size. 
The sample size was determined by the availability of tissue and the 
cost of the experiment. The experiments were not randomized. The 
Investigators were not blinded to allocation during experiments and 
outcome assessment.

All small intestinal crypts were included in the analysis, except 
when modeling mutation rates, samples were excluded with <15-fold 
coverage and from one individual (PD43853) with a substantial num-
ber of chemotherapy-induced mutations. In addition, two biopsies 
(PD43851j_P52_DDM_E2, PD46565c_lo0009) have a mutational land-
scape dominant by SBS5/40 and with lower mutation burden, which 
is distinct from the mutational landscape of normal small intestinal 
crypts, and similar to that of Brunner’s glands, despite their crypt-like 
appearance under microscopy inspection. These two samples were 
kept and reported for the comprehensiveness and transparency of this 
dataset but were not included in the statistical modeling of mutation 
rates (leaving 306 crypts). When modeling clonal dynamics, crypts 
from celiac patients (PD46562, PD46563, PD46565, PD46566, PD46568 
and PD46573), children (PD43949, PD43950, PD43951, PD43952, 
PD43953 and PD43954) and the patient with chemotherapy muta-
tions (PD28690 and PD43853) were excluded, because these crypts 
might have a different number of cells and nonconstant mutation rate.

Laser-microdissection and low-input whole-genome 
sequencing
We followed the standard protocol established at Wellcome Sanger 
Institute for tissue processing, laser-microdissection, low-input 
library generation and variant calling4. Fresh frozen biopsies were 
fixed, embedded, sectioned and stained before library preparation. 
PAXgene FIX Kit (PreAnalytiX, 765312) was used for fixation. Subse-
quent paraffin embedding was applied for higher quality morphology 
of the tissue. Biopsies were sectioned (10–20 mm), fixed to 4 mm PEN 
membrane slides (11600288, Leica) and stained with hematoxylin and 
eosin. Crypts were isolated using LCM (LMD7000, Leica) and collected 
in separate wells of a 96-well plate. Collected samples were lysed using 
ARCTURUS PicoPure DNA extraction kit (Applied Biosystems) accord-
ing to the manufacturer’s instructions.

DNA library concentration was measured following library prepa-
ration and used to guide the choice of samples subject to DNA sequenc-
ing. The minimum library concentration was 5 ng μl−1, and libraries 
with >15 ng μl−1 were preferably picked. Paired-end sequencing reads 
(150 bp) were generated on Illumina NovaSeq platform and were aimed 
to reach a coverage of ~30x. Sequences were aligned to the human refer-
ence genome (NCBI build37) using BWA-MEM53 (versions 0.7.12-r1039 
and 0.7.17).

Single-base-substitution calling and filtering
We used the Cancer Variants through Expectation Maximization (CaVE-
Man) algorithm54 (versions 1.11.2, 1.14.1 and 1.15.1) to call single-base 
somatic substitutions by performing variant calling against an in silico 
human reference genome or a matched polyclonal sample from the 
same individual. Then a series of postprocessing filters were applied 
as previously described4,7,10,12,18,25—the first filter removed mapping 
artifacts associated with BWA-MEM as follows: the median alignment 
score of reads supporting a mutation should be greater than or equal 
to 140, and fewer than half of these reads should be clipped. The second 
filter was applied to remove artifacts that are associated with the LCM 
library preparation, the code of the first and second filters can be found 
at https://github.com/MathijsSanders/SangerLCMFiltering.

The third filter was applied to remove germline variants, for 
which we fitted a binomial distribution to test the global variant allele 
frequency at each variant site across all samples from one patient. 
Germline mutations will be present at global variant allele frequency 
~0.5 (heterozygous) or 1 (homozygous), therefore we used a one-sided 
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exact binomial test, with the null hypothesis that these variants were 
drawn from a binomial distribution with a success probability P = 0.5 
(P = 0.95 for sex chromosomes in males). The alternative hypothesis 
was that these variants were drawn from distributions with P < 0.5 (or 
P < 0.95). The resulting P values were corrected for multiple testing 
with the Benjamini–Hochberg method and a cut-off was set at q < 10−5. 
Variants with q > 10−5 were classified as germline, and for the remaining 
variants, the null hypothesis could be rejected and therefore they were 
classified as somatic.

Finally, a beta-binomial filter was applied to filter out the remain-
ing artifacts. These artifacts are often present at similarly low fre-
quencies across samples, while true somatic variants will be present 
at a high VAF in some samples but absent in others. Therefore, we 
calculate the maximum likelihood of the overdispersion parameter 
(rho) for beta-binomial distribution of each variant. Any variant with 
an estimated rho smaller than 0.1 was filtered out. This filter is adapted 
from the Shearwater variant caller55. The code for the last two filters can 
be found at https://github.com/TimCoorens/Unmatched_NormSeq.

Indel calling
Indels were called using Pindel56 (cgpPindel versions 2.2.2 and 3.3.0) 
and similar filtering strategies as single-base-substitution filtering 
were applied. After passing the first two filters for mapping and LCM 
artifacts, variants that passed possessed a minimum quality score of 
≥300 at positions covered by at least 15 reads and were subject to the 
same binomial and beta-binomial filters.

Stem cell dynamics
We used approximate Bayesian computation to estimate the time to 
the MRCA stem cell of the crypt. We ran 50,000 simulations for each 
crypt using a uniform prior for the number of stem cells and stem cell 
replacement rate, under a constant mutation rate and estimated full 
crypts of 1,000 cells. Variant allele frequency distributions of the simu-
lated crypts were compared to observed data, and the likelihood was 
estimated based on distance. Time to the MRCA was estimated using 
the best 1% simulation.

Mutation rates
For comparison of mutation rates, we calculated a sensitivity score to 
represent the possibility of detecting a variant with a given sequence 
coverage, variant allele frequency and algorithm settings7. We ran 
100,000 simulations and estimated the sensitivity score as the fre-
quency of observing a mutant read at least four mutant reads for 
SNVs or five for indels (the minimum depth requirement for CaVEMan 
and Pindel calls, respectively) in each simulated run. Each simula-
tion was a set of Bernoulli tests with a success probability equal to the 
median VAF of the sample, and the number of tests was drawn from a 
Poisson-distributed depth given the mean coverage. After dividing the 
mutation count by the sensitivity score, the adjusted counts reflect the 
rate of mutation in the sample.

We then fitted linear mixed-effects models using nlme R package 
(version 3.1–148) to estimate the contribution of age, biopsy location 
and disease condition to mutation burden. Because biopsies from the 
same individual are not independent, we controlled this within-patient 
correlation by estimating a random effect for each patient. ANOVA tests 
between models were used to test whether biopsy regions and disease 
conditions affect fixed and random effects. For SBS2/SBS13, we also 
tested whether retrotransposition affects the mutation burden. The 
code for this analysis can be found at https://github.com/YichenWang1/ 
small_bowel/tree/main/Mutational_burden.

Copy number variation, structural variants and 
retrotransposon events
Copy number variations were called using two independent soft-
ware ASCAT (v4.0.1, v4.1.2 and v4.5.0)57 and Battenberg (v3.5.3)32 and 

detected via the breakpoints predicted by BRASS (v6.1.2 and v6.3.4)11. 
Structural variants were detected by BRASS and GRIDSS (v2.13.1)58,59. 
Intrachromosomal variants smaller than 1 MB, as well as anything in 
the matched normal, were filtered out. All copy number changes and 
structural variants were then validated by visual inspection in the 
genome browser JBrowse (1.15.2)60. Retrotransposition events were 
called by GRIDSS.

Detection of driver mutations
To identify possible driver mutations, we overlapped filtered somatic 
mutations with a known list of genes under positive selection in human 
cancers61. Then the mutations were annotated using the cBioPortal 
MutationMapper cancer hotspot mutation database v5.1.7 (http://www.
cbioportal.org/mutation_mapper)62,63. Mutations in known hotspots, 
as well as protein-truncating variants in putative tumor suppressor 
genes, were reported.

Phylogeny reconstruction
Phylogenetic trees of small intestinal crypts were generated from the 
filtered substitutions using a maximum parsimony algorithm (MPBoot 
v1.1.0)64. Substitutions were mapped onto tree branches using a maxi-
mum likelihood approach and visualized using ggtree (v3.3.1)65–67 and 
ape (v5.6.1)68.

To estimate the age interval during which specific mutations hap-
pened, we used the time of the next crypt fission event as upper limits, 
and the time of the previous crypt fission event as lower limits. To esti-
mate the time of crypt fission, we built a linear mixed-effects model for 
the clock-like signature SBS1 and estimated the age using the total SBS1 
burden accumulated so far and SBS1 mutation rate for that individual.

Identifying kataegis
Kataegis was determined based on a negative binomial test described in 
previous studies24,34,35 and visualized using MutationalPatterns package 
(v3.0.1)69. Mutations within ten bases were treated as a single mutagenic 
event and mutation clusters were identified as consecutive mutations 
with any pair of adjacent mutations less than 10 kb. The P value is cal-
culated as follows:

P =
k
∑
0
( k + r − 1

r − 1 ) (1 − p)k pr

where r is the number of mutations −1 in the cluster (number of suc-
cesses), k is the number of unmutated bases spanned by a group 
(number of failures) and p is the mutation rate of the individual (prob-
ability of success). Mutation clusters with adjusted P < 10−4 after 
Bonferroni correction were classified as kataegis foci. Output results 
were manually inspected to avoid counting shared mutation clusters 
multiple times.

Mutational signature extraction and fitting
To explore possible undiscovered mutational signatures in small intes-
tine, we first used a hierarchical Dirichlet process (HDP v0.1.5)70 without 
priors to extract mutational signatures (Supplementary Fig. 3). Before 
running HDP, we assigned mutations to branches on the phylogenetic 
tree. This avoided counting the same mutation within one patient 
multiple times. To avoid overfitting, we only kept branches with >50 
mutations as input. The HDP was run in 10 independent chains for 
12,000 iterations and with a burn-in of 20,000.

For identified SBS signatures, signatures with ≥0.9 cosine simi-
larity with the reference were considered the same signatures. For 
the remaining signatures, we first ran HDP with all known PCAWG 
reference signatures2,21 as priors and kept the extracted signatures as 
a shortlist of candidate reference signatures (Supplementary Fig. 4).  
Then expectation maximization7,8,18 was used to deconvolute the 
remaining signatures into the shortlisted reference signatures. We ran 
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a second round of expectation maximization that only kept reference 
signatures with >10% contributions for each HDP signature to reduce 
overfitting. HDP signature 1 was also deconvoluted in the same way 
despite its >0.9 cosine similarity with SBS1 because its spectrum clearly 
showed residues that are not from SBS1. At last, we found every HDP 
signature could be reconstructed to a spectrum >0.8 cosine similarity 
with the original using these shortlisted reference signatures, therefore 
we assumed no new signature was detected in this dataset. The final 
SBS mutational signatures permitted in each individual were the cor-
responding deconvoluted reference signatures for HDP components 
that contributed to at least 5% of mutations in at least one branch (with 
branch length >200) of the individual phylogenetic tree. The final SBS 
mutational signatures for each crypt/branch were the reference signa-
tures that had >5% contribution to the total burden of the crypt/branch, 
and the final proportion of reference signatures was estimated using 
sigfit (v2.0)71. The code for this analysis can be found at https://github. 
com/YichenWang1/small_bowel/tree/main/Signatures.

Comparison with the small bowel adenocarcinoma WES 
dataset
Mutational signatures in small bowel cancer samples were extracted 
in the same way as the normal crypts. Samples where the two APOBEC 
signatures SBS2/SBS13 have at least a 5% contribution to the mutation 
burden were classified as APOBEC-positive. Because exomes constitute 
~2% of the whole genome, the number of APOBEC mutations in the can-
cer WES dataset was multiplied by 50, to enable a direct comparison of 
APOBEC mutagenesis burdens between cancer and normal.

APOBEC mutation context analysis
We generated a mutation matrix with extended context and ran HDP 
de novo signature extraction to get an APOBEC signature with extended 
context. Sequence frequency plot was generated using WebLogo v2.8.2 
(ref. 72; https://weblogo.berkeley.edu/logo.cgi) from the spectrum of 
the extracted APOBEC signature. Sequence context frequencies were 
extracted using P-MACD24 to calculate enrichment scores. APOBEC3A 
and APOBEC3B signatures are distinguishable by looking at the −2 posi-
tion of the TCA motifs (position 0 is the mutated cytosine)35. APOBEC3A 
hypermutations are enriched in pyrimidines (Y) rather than purines (R) 
at position −2, while APOBEC3B hypermutations are enriched in purines 
instead of pyrimidines. Results of YTCA enrichment (P = 3.0 × 10−96, 
Fisher’s exact test) instead of RTCA (P = 1, Fisher’s exact test) exclude 
APOBEC3B as the major contributing enzyme in small intestine, while 
APOBEC1/3A could not be excluded.

Transcriptomic analysis
We used bulk RNA-seq data across tissue from the genotype tissue 
expression (GTEx) project and the HPA project (v21.proteinatlas.org)38 
as below:

APOBEC1: https://v21.proteinatlas.org/ENSG00000111701- 
APOBEC1/tissue

APOBEC3A: https://v21.proteinatlas.org/ENSG00000128383- 
APOBEC3A/tissue

APOBEC3B: https://v21.proteinatlas.org/ENSG00000179750- 
APOBEC3B/tissue

The data are based on The Human Protein Atlas version 21.1 and 
Ensembl version 103.38. For bulk RNA-seq data, normalized expression 
(nTPM, normalized protein-coding transcripts per million), corre-
sponding to mean values of the different individual samples from each 
tissue, was generated from the HPA normalization pipeline. Single-cell 
RNA-seq datasets were obtained from Gut Cell Survey39–41 (https://www. 
gutcellatlas.org/), Tabula Sapiens42 (https://tabula-sapiens-portal. 
ds.czbiohub.org/) and Gene Expression Omnibus (GSE125970 (ref. 43) 
and GSE116222 (ref. 44), read counts and cluster results downloaded 
from the HPA: https://www.proteinatlas.org/about/download). For 
single-cell RNA-seq datasets, relative read counts were normalized 

using Seurat package (v4.1.1)73 in R, using ‘Relative count’ methods 
with a scale factor of 104, and averaged across all cells. To compare the 
APOBEC1 expression level in small and large intestine epithelial and 
stem cells, negative binomial regression models were constructed to 
see if difference exists after controlling confounding factors including 
number of mRNA counts in each cell, number of features in each cell 
and other APOBEC family gene expression. The code for this analysis 
can be found at: https://github.com/YichenWang1/small_bowel/tree/ 
main/Expression.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
DNA sequencing data generated for this study are deposited in the 
European Genome-Phenome Archive (EGA) with accession code 
EGAD00001008764. Existing DNA sequencing datasets used in the 
study are deposited in EGA with accession code EGAD00001004192 
(PD37449, PD34200 and PD37266) and EGAD00001006641 (PD28690, 
PD43850 and PD43851). Existing RNA sequencing datasets were down-
loaded from Gut Cell Survey (https://www.gutcellatlas.org/), Tabula 
Sapiens (https://tabula-sapiens-portal.ds.czbiohub.org/) and Gene 
Expression Omnibus (GSE125970 and GSE116222, read counts and 
cluster results downloaded from the Human Protein Atlas: https://www. 
proteinatlas.org/about/download). The cBioPortal MutationMapper 
database used to annotate cancer hotspot mutations was accessed at 
https://www.cbioportal.org/mutation_mapper?standaloneMutation 
MapperGeneTab=ATM.

Code availability
Code required to reproduce the analyses in this paper is available 
online. Mutation-calling algorithms are available through GitHub 
(https://github.com/cancerit). Variant calling filters can be found at 
https://github.com/MathijsSanders/SangerLCMFiltering and https:// 
github.com/TimCoorens/Unmatched_NormSeq. All other custom 
code used in this study is available online at https://github.com/ 
YichenWang1/small_bowel.
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Extended Data Fig. 1 | Variant allele frequency distributions reflecting clonality of LCM samples. Variant allele frequency distribution for all individuals in this 
study. Most crypts have peaks around 0.5, indicating their monoclonity.
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Extended Data Fig. 2 | Indel spectrum for small intestinal crypts. Number indicates total number of indels detected. 1 bp deletion and insertion at 6+ T 
homopolymers are the most common types of Indels.
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Extended Data Fig. 3 | Phylogenies of all individuals in this study with mutational signature annotation. Branch lengths correspond to SBS burdens, and color 
codes for mutational signatures are at the top. Numbers on the tips/branch indicate the number of hypermutation clusters placed on the tips/branch.
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Extended Data Fig. 4 | Comparison of APOBEC mutagenesis in small bowel 
cancer and normal crypts. Boxplot of SBS2/13 exposures in small bowel 
adenocarcinomas and normal crypts with APOBEC mutagenesis (n = 14 for 
adenocarcinomas and n = 58 for normal crypts). The central line, box and 
whiskers represent the median, interquartile range (IQR) from first to third 

quartiles, and 1.5 × IQR, respectively. Burdens in cancer WES data have been 
adjusted by the proportion of exomes in genome to compare with whole-genome 
sequencing data. Median = 1691 (adenocarcinoma) and 242 (normal), two-tailed 
t-test P = 2 × 10−4.
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Extended Data Fig. 5 | Signature burden versus age for SBS1, SBS5, SBS18, 
SBS2 and SBS13. Regression lines were estimated using linear mixed models. 
Error bands represent 95% confidence interval for the fixed effect of age. Colors 
indicate biopsy regions, with orange, green and blue representing duodenum, 
ileum and jejunum, respectively. Shapes indicate whether the donor has a celiac 
history or not. Crosses indicates donors with a celiac history, and dots indicate 
donors without a celiac history. (a) SBS1 burden versus age, showing regression 

lines for the three different sectors of the small intestine. (b) SBS5 burden versus 
age, showing a regression line for all samples because the rate is not statistically 
different for the three sectors according to linear mixed models. (c) SBS18 
burden versus age, showing a regression line for all samples because the rate is 
not statistically different for the three sectors according to linear mixed models. 
(d) SBS2 burden versus age, the relationship is not linear. (e) SBS13 burden versus 
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Extended Data Fig. 6 | Extended contexts of APOBEC mutations. Enrichment 
of pyrimidines (Y) instead of purines (R) at −2 position indicate APOBEC3B is 
unlikely to be the major contributing enzyme, while APOBEC1/3A could not 
be excluded. (a) Sequence logo showing the base frequency from −3 to +1 of 

APOBEC signature from HDP de novo extraction. (b) Fold enrichment of different 
TC contexts in all phylogenetic branches with SBS2/13, showing a preference 
for YTCA/TCA/TCW. RTCA: P = 1, YTCA: P = 3.0 × 10−96, TCA: P = 2.3 × 10−31, TCW: 
P = 6.4 × 10−4, one-tailed Fisher’s exact test.
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from linear mixed-effects models, and error bars represent the 95% confidence intervals. N = 306 crypts. (a) Age and celiac disease effect on different single-base 
substitution mutational signatures. (b) Age and celiac disease effect on Indels.
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