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Abstract

The plant-associated microbiome is a key component of plant systems, contributing to their health, 

growth, and productivity. The application of machine learning (ML) in this field promises to help 

untangle the relationships involved. However, measurements of microbial communities by high-

throughput sequencing pose challenges for ML. Noise from low sample sizes, soil heterogeneity, 

or technical factors can impact the performance of ML. Additionally, the compositional and sparse 

nature of these datasets can impact the predictive accuracy of ML. We review recent literature 

from plant studies to illustrate that these properties often go unmentioned. We expand our analysis 

to other fields to quantify the degree to which mitigation approaches improve the performance of 

ML and describe the mathematical basis for this. With the advent of accessible analytical packages 

for microbiome data including learning models, researchers must be familiar with the nature of 

their datasets.
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Organisms as a system: the plant holobiont

The last two decades have marked a paradigm shift in our understanding of biological 

systems, from thinking of organisms as entities with clearly delimited boundaries to the 

concept of the holobiont, which defines individual phenotypes as a product of interactions 

between host and associated microbial species [1]. In this context, the role of the 

microbiome is as crucial as the biological processes underway within the host. A recent 

interdisciplinary effort from experts in the field expanded the definition of microbiome to 

include all microbial communities occupying a defined habitat, their properties, and their 

interactions [2,3].

The interpretation of biological communities as holobionts naturally extends to plants as 

well [4], and the combined insight within all plant microbial domains has outlined their 

paramount role: unique communities are associated with increased plant growth through 

nutrient fixation, protection against biotic and abiotic stressors, changes in composition of 

secondary metabolites, and well-defined growth stages [5]. The recently-introduced concept 

of synthetic microbial communities (SynComs), formulated to mimic a simplified version 

of a known beneficial microbial cohort and which was shown to display desirable impacts 

when inoculated on a plant, further substantiates the importance of the plant microbiome [6]. 

Several influential reviews have been published on plant-microbiome interactions [7–9]. We 

encourage the interested reader to consult these sources to fully grasp the depth of the topic.

A friend and a foe: microbiome data is complex and high-dimensional

Large-scale microbiome studies require the collection of several types of high-

dimensional data, often high throughput sequencing of DNA (metagenomics) or RNA 

(metatranscriptomics), or analysis of secreted bioactive compounds (metabolomics) [10]. 

As is common with all -omics disciplines, this produces large datasets which, if interrogated 

correctly, can yield meaningful insight. However, their analysis requires the utilization of 

sophisticated statistical methodologies and computational techniques. It is also necessary to 

select analytical models that are suited to the underlying structure and peculiarities of the 

dataset while retaining sufficient biological interpretability.

The advent of machine learning (ML) and deep learning (DL) approaches has proven 

vital to microbiome research [10–12]. ML approaches can aid in dimensionality reduction 

[13], clustering of amplicon sequences or microbial community types, and classification 

of multi-omics data [14]. Further, DL approaches typically aim to harness the complexity 

of multidimensional datasets to gather insight on host-microbiome interactions [14]. DL 

algorithms, such as convolutional neural networks (CNN) use either microbial phylogeny 

(as is the case PopPhy-CNN [15] or Ph-CNN [16]), or OTU tables (as in MetaNN [17]) as 

a starting point to predict host phenotype. ML algorithms can be used to associate specific 

microbial communities with unique phenotypes, or for predictive purposes (e.g. to infer a 

particular phenotype from an associated microbiome), focusing either on a single trait or 

multiple outcomes (as is the case with multi-task prediction [18], which is gaining relevance 

in microbiome studies [19]). In the field of plant science, most endeavors can be considered 

association studies, and recent efforts have employed ML or DL approaches to investigate 
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pathogen-microbiome association [20,21], explore nitrogen fixation ability [22,23], and 

assess the impact of the microbiome on crop productivity [24,25]. The use of microbial 

profiles to predict phenotypical characteristics, rather popular in human microbiome studies 

[26,27], is gaining momentum in plant science: recent studies have focused on soil health, 

using microbiome profiling to predict physicochemical properties of the soil such as pH, 

concentration of individual nutrients, organic matter and surface hardness [28,29]. Other 

studies have focused on the plant host, using the concentration and type of microbial 

communities to predict yield in foxtail millet [30], soybean [31] and potato [32]. In Table 

1, we provide the reader with an outline of some relevant publications on ML in plant 

microbiome studies from the last two years.

In agreement with this expansion, a recent article by members of the “Machine Learning 

for Microbiome” action of the European Cooperation in Science and Technology program 

highlights that a crucial priority of the field is the development of tools accessible to clinical 

and research personnel, who may not possess the skillset required to develop analytical 

models [14]. Indeed, currently available software suites like QIIME2 [33], Calypso [34], 

MicrobiomeAnalyst [35], Mothur [36], and Mixomics [37] provide deployment-ready and 

user-friendly ML implementation. Within this shift in user base, it is important that 

researchers in the field be aware of the structure of their data. Like other -omics disciplines, 

microbiome sequencing datasets are noisy, compositional, and sparse and, if not treated 

accordingly, the accuracy of the resulting analyses can be impacted.

Despite the necessity of accounting for these properties, explicit discussion of how best to 

deal with noise, compositionality, and sparsity in plant microbiome studies is missing. Many 

recent endeavors fail to adopt measures that account for these properties, and those that do 

rarely explain their choices in terms of the impacts of noise, sparsity, and compositionality. 

Even a recent review on the application of deep learning to microbiome data [38] fails 

to mention these properties of microbiome datasets. In Table 1, we highlight whether 

compositionality was addressed within the studies, and if that was done so explicitly (i.e., if 

compositionality was mentioned). Most of the reported studies did not explicitly mention 

compositionality, and only 4 out of 8 employed some form of compositionally-aware 

normalization strategy. Consequently, the purpose of this review is to explicitly highlight 

structural characteristics of microbiome datasets so their influence can be more easily 

identified, and to recognize which fundamental assumptions of ML methods are likely to be 

violated by them. In doing this, we hope to facilitate bias mitigation through ML method 

selection and the application of adequate normalization approaches.

The nature of the problem: microbiome data are noisy, compositional, and 

sparse

A major challenge for microbiome studies is noise, which can arise from low sample 

sizes and soil heterogeneity. Both endophytic and rhizospheric root microbiomes are 

highly influenced by their surrounding soil, due to intrinsically heterogeneous physical and 

chemical micro-environments present within the latter [39–43]. Spurious heterogeneity in 

microbiome data can also arise from technical factors such as sample collection, storage, 
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processing, DNA extraction, PCR amplification and sequencing or simply from stochastic 

events during plant colonization [44–48]. Heterogeneity related to the aforementioned 

reasons can severely impact the performance of machine learning algorithms.

A starting point to deal with the unwanted variation is exploratory data analysis via 

ordination plots. Unconstrained ordination (MDS, NMDS etc.) will detect anomalies in the 

data set, such as outlier samples, confounding factors and noise that arises from the technical 

issues. Variation that is visualized with the ordination plot can be estimated and accounted 

for using methods developed for dealing with batch effects, such as SVA, ComBat, and 

removeBatchEffect [49–51], although there are some reservations regarding the applicability 

of these methods to microbiome data [44]. Further, because the variation of interest can be 

masked by high variability and high correlation structure among variables unrelated to group 

differences, unconstrained ordination should be followed by a constrained ordination (CAP, 

CCA etc.). Though this may not provide information about the within-group variability, it 

can reveal location differences among the groups, which enables the researcher to cluster 

different groups by their microbiome profiles.

A second source of potential bias is associated with the sequencing technique employed. 

Most microbiome studies are carried out using high-throughput sequencing (HTS) 

platforms, , using either bulk transcripts from a group of cells or DNA/RNA from a 

single cell [52,53] as an experimental sample. As such, the information gathered for each 

biological sample is limited by the capacity of the sequencing instrument to deliver reads 

(known as sequencing depth) [54]. As the total number of reads per sample is a finite 

quantity, changes in abundance of one sequence will affect abundance of others within 

that sequencing run. Consequently, HTS-based assays are only representative of relative 

microbial abundance within each sample, and uninformative of their absolute abundance 

(Figure 1). When individual components of a set can be represented as ratios of a total, 

they are termed compositional [55]. Microbiome datasets are inherently compositional [56], 

whether obtained via bulk sequencing or through novel single-cell prokaryotic sequencing 

methods such as microSPLIT [52] and PETRIseq [53]. The compositional nature of 

microbiome data brings about several features that must be acknowledged throughout their 

analysis. Compositional datasets display a bias towards negative correlation [55]. This is 

because the sum of the feature values is an arbitrary constant and as a result, the correlation 

coefficients between one element and the rest of the set must add up to −1 [55]. Further, 

it was observed that correlation between elements of a partial subset of the composition is 

fundamentally different than the correlation between those same elements when computed 

with the complete composition. This is a property known as subcompositional incoherence 

[57]. Analytical methods based on correlation are inevitably affected by these properties.

The field of compositional data analysis focuses on developing normalization strategies 

that are appropriate to this data type [55,58–61]. Individual data points can be scaled 

to the total sum of all elements (a procedure called closure or Total Sum Scaling) and 

presented as proportion of the total [55,62]. More commonly, compositional data are linearly 

transformed by taking the log of either a ratio between each element and the geometric mean 

of the composition (called centered log-ratio, clr, [55,58,60]), the log of the ratio between 

each element and a set element in the composition (additive log-ratio, alr, [55,58,60]), or 
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through the more complex isometric log-ratio (ilr) [61]. Log-ratio transformations are widely 

used in microbiome studies [56], though the choice of which transformation to employ 

has been subject of discussion [63,64]. Most importantly however, many readily available 

analytical platforms for microbiome data (such as the aforementioned QIIME2, Mothur, and 

MicrobiomeAnalyst) provide users with several options for log-ratio transformations.

In addition to being noisy and compositional, taxonomic abundance tables (OTU/ASV 

tables) have a high proportion of “zero-count” values, a property known as sparsity [10]. 

The roots of this phenomenon are twofold: first, microbial communities are heterogeneous, 

with many organisms detected in only few samples across the datasets, and few organisms 

responsible for most of the sequencing reads. Second, sequencing depth is uneven between 

samples, which causes low-count microbes to not be detected in samples with low 

sequencing depth [65]. This is exacerbated by the compositional nature of the data, as a 

highly-abundant taxon may artificially reduce the counts of other taxa below the detection 

threshold of the sequencer, by virtue of sequencing depth being a finite quantity.

Sparsity causes taxonomic tables to adopt distributions that are right-skewed, with 

considerable point mass at zero. This results in data that must be analyzed using methods 

that are robust to non-normality [10]. The analysis is further complicated when considering 

log-ratio transformations, because log(0) is undefined. Zeros can be removed by adding a 

small arbitrary pseudo-count to all values. The result of the transformation, however, can 

be impacted by the value of the pseudo-count [62]. Replacement of zero values through 

imputation has also been proposed, though the appropriate strategy and validity of this 

procedure are not entirely clear [66,67]. Finally, a series of models which are robust against 

excess zeros have been employed for microbiome datasets, such as zero-inflated negative 

binomial [68], zero-inflated beta-binomial [69], zero-inflated Poisson [70], hurdle models 

[71] and zero-aware mixture models [72], although these models do not inherently account 

for compositionality.

Noise, compositionality and sparsity can affect the accuracy of ML/DL 

models

Spurious sources of noise, sparsity and compositionality in microbiome datasets have 

tangible impacts on the use of ML and DL models. Reducing unwanted variability prior 

to the implementation of ML algorithms, e.g. by using SVA and ComBat, may improve 

inference accuracy in datasets with confounders [73]. Further, when multi-omics data 

is available, this can be integrated with tools such as MOFA [74] and DIABLO from 

MixOmics [37]. Using this framework for unsupervised integration, microbiome signatures 

of continuous gradients and/or discrete clusters in relationship with other biological 

layers can be revealed, which can mitigate the noise of microbiome data sets. This can 

consequently improve the performance of downstream applications. While comparative 

studies on the use of said integration tools in microbiomics have not been published, a recent 

effort focusing on multi-omics data (gene expression, whole-exome sequencing mutations, 

copy number variation and protein abundance) for several cancer lines indicated favorable 

results from both DIABLO and MOFA [75].
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The constrained correlation structure typical of compositional data, combined with a right-

skewed distribution caused by sparsity, may violate assumptions of regression analysis such 

as absence of multicollinearity and normality [76]. Further, the use of rarefaction (a form of 

subsampling without replacement [77]) to normalize sequencing depth may lead to unequal 

variances between elements across samples, violating the assumption of homoscedasticity 

[10]. Consequently, the accuracy of regression-based ML models such as linear and logistic 

regression may suffer because they rely on assumptions of data distribution that do not 

hold true for compositional sequencing datasets. Some authors have mitigated these issues 

by employing a regularization method. Dong and collaborators [78] used L1-regularized 

multinomial logistic regression on transformed counts in a study on the human microbiome 

and its relation to Parkinson’s disease. Another study by Lin and collaborators [79] used 

L1 regularization for the linear log-contrast model (originally proposed by Aitchison and 

Bacon-Shone [80]), which was chosen to deal with compositionality. Application of the 

regularized model to a dataset linking gut microbiome composition and dietary patterns in 

humans indicated an improvement in performance. Other recent efforts seem to suggest that 

L2-regularized logistic regression can considerably improve prediction accuracy compared 

to non-regularized regression as shown in a recent study on human microbiome data to 

predict colonic neoplasias [81].

Certain nonlinear predictors, such as Decision Trees and Random Forests (RF), are broadly 

regarded as being unaffected by multicollinearity and distribution shape [82] and are 

shown to perform well in microbiome studies [81,83]. Within plant studies, RF classifiers 

have garnered interest and are being adopted in endeavors focused on plant-microbiome 

interaction. RF classifiers were recently applied to microbiome sequencing data to predict 

soil health [29]. This resulted in a prediction accuracy around 83% after hyperparameter 

optimization, indicating agreement between classification output and true soil health. The 

model was also able to predict the importance of individual microbes to soil health based 

on their impact on classification performance, showing that groups of microbes with known 

importance to soil health were important predictors for the model. However, the discarding 

of microbe abundances containing zero values to mitigate sparsity posed challenges for 

prediction accuracy, which the authors indicate could be solved with greater sequencing 

depth. A further study by Chang et al. [31] applied RF classifiers to predict crop yield 

in combination with metagenome-wide association studies (MWAS). The RF classifier 

was able to predict crop productivity categories of high yield and low yield from soil 

composition with 79% accuracy, and key microbes (as identified by the classifier) matched 

those identified by MWAS, including known nitrogen-fixing bacteria.

As indicated earlier in this review, discussion of the impact of compositionality and sparsity 

in microbiome studies is relatively limited, especially outside of specialized reviews on 

the topic. Consequently, our understanding of the impact of compositionality (and of the 

approaches chosen to mitigate it) on ML and DL performance is rather limited. However, 

a series of authors have recently performed and published comparative analyses on the 

topic using datasets which, though not identical to microbiome data, possess many of the 

same qualities (large, compositional, and sparse) and can provide insight on our question of 

interest. We provide a summary of these findings and indicate the degree of similarity to 

microbiome datasets.
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When compositionality is accounted for by log-ratio transformation, the choice of 

transformation can impact the performance of the model. A recent effort by Tolosana-

Delgado and collaborators to characterize the effects of log-ratio transformation on 

simulated data illustrated that the performance of a RF model was impacted by the type 

of log-ratio transformation chosen, with pairwise log-ratios (pwlr) performing significantly 

better than clr or ilr, and non-transformed data having the largest out-ofbag error estimate 

overall [84]. This may be due, in part, to the fact that pwlr transformations generate more 

features than clr and ilr. The same article indicates that the accuracy of regression-based 

models would not be affected by the choice of log-ratio transformation, which follows 

from the fact that any log-ratio transformation is a linear transformation of log-transformed 

feature values.

Limited information is available on the sensitivity of ML/DL models of experimental data 

to compositional normalization strategies and sparsity, but initial reports seem to indicate an 

impact. A study on chemical profiling of honey and saffron (both resulting in compositional 

datasets) found lower misclassification rates whenever log-ratio transformations (clr, ilr, 

and a modified ilr) were applied to the data compared to raw counts, leading to 

improved classification using multiple ML models (artificial neural networks, ANN), linear 

discriminant analysis (LDA), or K-nearest neighbors (KNN) [85]. However, the honey 

dataset, aside from being compositional, had a minor degree of sparsity. To account for 

this, the authors used several zero replacement strategies operating under the assumption 

that all zeros within the datasets were due to components being present below the detection 

limit of the instrument, rather than truly absent, which is a valid assumption in the context 

of chemical analysis. However, the subject of zero-replacement is debated in microbiome 

research [66,67,86], and the likely scenario is that some taxa are actually absent from the 

sample (structural zero), while others are not detected due to low concentration and shallow 

sequencing (rounded zero - Figure 1). It is important to note that current state-of-the-art 

imputation methods in microbiome studies exist, and hinge on numerically determining 

the likelihood of a zero-count being biologically relevant (structural, rather than rounded). 

This has been attempted using a combination of taxon information and between-sample 

variability, modeled either through a penalized linear regression (mbImpute [87]) or zero-

inflated probabilistic PCA (mbDenoise [88]). Crucially, this is a fundamentally different 

approach from zero replacement in single-cell RNA sequencing, where methods like SAVER 

treat all zeros equally, with the creators of SAVER recommending removing extremely 

low-abundance genes at the beginning [89]. Recent comparisons of these methods seem to 

indicate better performance of mbDenoise over mbImpute and SAVER [88], though this 

seems to vary depending on the dataset. Further, no studies have explored the impact of 

either of these methods on ML algorithms.

Taxonomic abundance tables often contain rare OTUs, which contribute to sparsity and 

are likely not informative. Further, the combination of a pseudo-count and log-ratio 

transformation could potentially introduce spurious signals in OTUs with a large proportion 

of zeros. Removing such OTUs (prevalence-based filtering) is a common practice (see e.g. 

[90]). Note that the alr- and pwlr-transformed abundances of the remaining features are 

preserved after filtering, while this is not the case for clr. The impact of such filtering on ML 

procedures is not well-studied. In one review [91], the use of PERFect [92], which carries 
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out statistical tests to identify noninformative OTUs, and the contaminant-removal procedure 

decontam [93] on the predictive accuracy of RF was examined. Applying both procedures 

before fitting a random forest was found to have little effect on the area under the receiver 

operating characteristic curve (AUC), but fewer features were used. The models were most 

likely fitted on the raw counts since no transformation was mentioned. Notably, filtering 

and contaminant removal reduced lab-to-lab variability in the data. This could improve the 

ability of ML models fitted on data from one lab to predict outcomes on data from another.

Deep learning models are a class of artificial neural network approaches that use the network 

architecture to perform representation learning, and are known as “deep” models due to 

the large number of network layers involved [94]. As the choice of compositionally aware 

transformation can have significant impacts on the performance of DL models, recent efforts 

in related disciplines have focused on integrating log-ratio normalization within the DL 

workflow. DeepCoDA, an analytical framework for high-dimensional compositional health 

data, uses a log-bottleneck module to allow the model to automatically select the best 

log-ratio transformation [95]. Other strategies use learning-based approaches to determine 

the most meaningful pairwise log-ratio relationships in a computationally-efficient manner 

[96,97]. Although these approaches are not specific to plant studies, they indicate that the 

quality and rigor of ML/DL approaches in plants would benefit from integrating processes to 

select and compare compositionally aware normalization strategies.

Conclusion

Spurious noise, compositionality and sparsity of sequencing-based microbiome datasets can 

represent pitfalls for the implementation of machine learning algorithms. Our analysis of the 

most recent endeavors in the field indicates that most plant microbiome studies employing 

machine learning approaches do not explicitly mention compositionality and sparsity, even 

when methods are used to account for their impact. In this review, we have provided an 

overview of strategies to account for how noise, compositionality and sparsity and the 

consequences that those strategies can have on ML algorithms, whether the associated 

microbiome is used as a predictor or as an outcome. Additionally, we have outlined a 

series of steps throughout the pipeline at which investigators can explore approaches to 

these characteristics and assess the resulting impact on the predictions of their learning 

algorithms. Ultimately, appropriate strategies will depend on the biological relationships 

being modeled and will likely be unique to each study. Similarly, model selection will 

have to consider the tradeoff between the increased performance and adaptability offered by 

nonlinear predictors and the simplicity and interpretability of linear predictors. We situate 

our work within a larger context in the conversation about the structure of microbiome 

data, one in which we are confident that studies focusing on plant-microbe interactions will 

benefit from participating.
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Figure 1. The emergence of compositionality and sparsity in high-throughput sequencing-based 
microbiome studies.
We present a hypothetical comparison of two microbial populations with distinct absolute 

abundances (all values are arbitrary units). Investigators collect and sequence one sample 

per population, which results in some species with low abundance (Yellow Pentagon in 

Population 2) to be excluded from the collected sample, leading to a value of zero for said 

community. Unequal sequencing depths lead to non-quantification of other species (Green 

Hexagon in Population 2) uniquely due to the lack of corresponding sequencing counts. 

Finally, the compositional nature of the experimental setup and the resulting dataset leads 

to observed changes caused by a difference in relative abundance only, leading to bias in 

differential abundance compared to absolute changes.
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Figure 2. Typical Steps in Preparing Microbiome Sequencing Data for ML.
We show a common sequence of processes done to prepare microbiome sequencing data 

for use in machine learning models, with the stages of this preparatory process where the 

impacts of compositionally need to be accounted for and may be mitigated through selection 

of appropriate techniques.
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