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Abstract
Purpose of Review Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic
fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are
automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom
for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and
provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the
performance of opportunistic screening.
Recent Findings A wide range of technologies for the automatic detection of vertebral fractures have been developed and
successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic
from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the
detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical
radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared
to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The
impact of contrast agents, frequently administered in clinical CTon the determination of BMD and on fracture risk determination
is still controversial.
Summary Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine
CTscans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with
respect to the prediction of fracture risk.

Keywords Computed tomography . Opportunistic screening . Fracture risk . Vertebral fracture assessment . Internal BMD
calibration

Introduction

Opportunistic screening (OS) denotes a technique to extract
information from an existing image or stack of images such as
a computed tomography (CT) or magnetic resonance (MR)
scan originally obtained for a clinical purpose unrelated to this
information. In a narrower sense used in the context of this

review, opportunistic screening denotes the use of existing CT
scans to identify subjects at high risk for osteoporotic fracture.
Opportunistic screening has been associated with the follow-
ing eight important promises: (a) the elderly population can be
screened for two important fracture risk factors: prevalent
fractures that are associated with a high risk of subsequent,
in particular, osteoporotic vertebral fractures and the measure-
ment of bone mineral density (BMD), typically of the spine or
the hip, which is a risk factor for all future osteoporotic frac-
tures. (b) These two risk factors can be determined using al-
most all chest / abdomen / pelvis CT scans obtained in the
clinic, (c) virtually for free, and (d) without added radiation
exposure. (e) Techniques of artificial intelligence (AI) can be
used for automatic recognition of spinal fractures and perhaps
even for the determination of BMD. (f) CT valuesmeasured in
Hounsfield units can be used instead of calibrated BMD
values. (g) Standardization of the CT protocol is not required
and (h) application of contrast agents has little impact.
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Vertebral Fracture Assessment

The most widely used technique for vertebral fracture assess-
ment in osteoporosis is the semi-quantitative Genant scoring

technique, which historically has been applied to lateral and
posterior-anterior spine X-ray films [3] (Fig. 1). Outcome is
the grade of osteoporotic fracture. The reading process implic-
itly includes the differentiation of osteoporotic from traumatic
fractures and from vertebral deformities unrelated to osteopo-
rosis, which do not increase fracture risk [4]. A broad range of
techniques mostly based on automated image processing have
been applied for vertebral fracture assessment ranging from
identification of vertebrae with a high likelihood of fracture to
3D shape analysis and Genant equivalent scores including
segmentation for subsequent automated BMD measurements
[5] (Table 1). Obviously, these techniques have not been de-
veloped specifically for OS. Table 1 references a selected set
of studies using CT. Several algorithms for automatic verte-
bral fracture assessment have also been developed for other
imaging modalities such a DXA [37, 38] and X-rays [39, 40].

Assessment of Genant scores from CT scans is challeng-
ing even for an experienced radiologist because CT scans
provide 3D geometry and spatial resolution is lower than for
spinal X-rays. Topics to consider are: (1) should coronal or
sagittal CT reformations (or both) be used for spinal fracture
assessment? (2) The use of single slices may easily result in
overlooking fractures (Fig. 2) but how many slices should
be averaged? In the case of scoliosis (coronal reformations)
or kyphosis (sagittal reformations), the central slice of the
set to be averaged may depend on vertebral level (Fig. 2).
Also in contrast to X-rays, there is no atlas or extended
description for CT to differentiate osteoporotic from trau-
matic fractures and from vertebral deformities unrelated to
osteoporosis [41].

Fig. 1 Genant scheme for semi-
quantitative fracture assessment
[3]
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In reality, existing or new CT scans obtained for a diagno-
sis other than osteoporosis show a number of shortcomings
that require a careful review of the eight promises above: often
only a part of the spine is imaged whereas the standard X-ray-
based vertebral fracture assessment covers the range from T4
to L5. BMD is usually determined by quantitative CT (QCT)
[1, 2], a procedure that uses an in-scan calibration phantom to
convert CT to BMD values, and acquisition and reconstruc-
tion parameters are highly standardized. Application of con-
trast agents is not allowed in QCT. In OS most or all of these
QCT conditions are violated. Thus, in order to use routine CT
scans for risk assessments in osteoporosis, a number of new
techniques were developed.

In this contribution we will review the published literature
with respect to vertebral fracture assessment and determina-
tion of BMD from CT scans in the context of opportunistic
screening. Chest, abdominal and pelvic CT scans are among
the most frequent clinical CT scans that can be exploited. The
value of OS in osteoporosis has been recognized already a
couple of years ago as the identification of subjects with a
high fracture risk promises a considerable reduction of the
burden of osteoporotic fracture. Osteoporosis is mostly a dis-
ease of subjects above 50 years of age, for which also the
frequency of CT scans increases rapidly.



Assessment of BMD

In QCT the BMD is calculated from the measured CT values
using a calibration phantom with inserts of known concentra-
tions of hydroxyapatite or K2HPO4-water mixtures, which
during the CT scan is positioned below the subject (simulta-
neous calibration) [1]. This procedure minimizes differences
in BMD values across different CT scanner models. In the
case of clinical CT, where such a calibration phantom is not
used, three main options are available to assess BMD
(Table 2). The first is the use of asynchronous calibration, a
technique that separates subject and phantom scans [42, 65].
Depending on the stability of the CT scanner, the calibration
phantom can be scanned once weekly or once monthly, for
example. The second is called internal calibration as the

phantom inserts are replaced by air and body tissues such as
subcutaneous adipose tissue or blood (Fig. 3). As shown in
Table 2, several internal calibration techniques have been
proposed.

The third option is the direct use of CT values in Hounsfield
units (HU). A BMD calibration is not performed. The direct use
of HU values requires scanner stability. HU values of bone
depend on the energy distribution of the X-ray spectrum and
are not normalized by the regular water calibration of CT scan-
ners [66]; thus, HU values are scanner dependent as recently
confirmed in a study of 67392 CT scans obtained from four
different CT scanners [67]. Thus, further research on the use of
CT values instead of BMD is warranted [68].

The accuracy of internal calibration is shown in Fig. 4. The
comparison of techniques was performed using routine

Table 1 Techniques for automatic vertebral fracture assessment and for vertebral segmentation

Refs Description

AI based techniques

Heat Map [6] Heat maps are color-coded probability maps overlaid on the input image
to visualize the outcome such as vertebral fracture identification and
localization of a neural network. Such an image may assist the
radiologist in fracture assessment because the heat map typically
does not contain information on the degree of fracture.

Localization and labeling of vertebra [7–15] In addition to the fracture identification and localization the algorithm also
assigns the vertebral label such as T8 or L4 to each fractured or all
vertebrae visible in the images. Labeling is typically an initial step of
fully automated fracture detection and classification algorithms.
Techniques like a support vector machine (SVM), random forest
classification or CNNs are used for this task.

Segmentation [7, 12–19] AI-based automated vertebral fracture detection algorithms often require
an automatic segmentation of the vertebrae or the vertebral bodies.
Resulting segmentation masks facilitate the quantification of fracture.
The masks can further be used to define the volume of interest for the
measurement of BMD.

Vertebral morphometry and shape analysis [20–22] Morphological properties and shape models facilitate the determination
of fracture grade and potentially the differentiation of osteoporotic
from traumatic fractures and from degenerative deformities. Compared
to 6-point X-ray-based morphometry a 3D shape analysis provides
additional information, but it is not clear whether this information can
be used to improve fracture risk prediction.

Grading of fracture severity [19, 20, 23] Severe vertebral fractures are associated with a higher risk of subsequent
fractures than mild vertebral fractures. Thus, the determination of
fracture grade is an important aim of vertebral fracture assessment.

Combinations [15, 19, 24, 25] Fully automated pipelines are increasingly being developed. They efficiently
combine different algorithms for performing the tasks like vertebrae
localization, labeling, segmentation, and classification to enable
automatic fracture detection.

Classical techniques

Segmentation [26–31] Classical algorithms developed to automatically segment the vertebral
body or the complete vertebra. The resulting masks can be used for the
same purposes as those generated with AI-based algorithms

Vertebral morphometry and shape analysis [32, 33] Classical algorithms to automatically determine vertebral morphometry
and shape.

Grading of fracture severity [34–36] Morphological measures to classify vertebra fractures.
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clinical CT scans that for research purposes also included a
calibration phantom. For comparison, the fourth option shows
the accuracy of using identical calibration parameters for all
scans, equivalent to applying asynchronous calibration from a
single phantom measurement. This procedure requires scan-
ner stability, which was the case in this particular dataset but
cannot be universally presumed for other datasets. In another
dataset from clinical trials using highly standardized CT pro-
tocols, errors were about 50% lower compared to those shown
in Fig. 4 [69].

It is interesting that several studies of opportunistic screen-
ing only used results from a single vertebra, most often L1 [58,
70–72], although it is recommended to use average results
from at least two unfractured vertebrae, typically L1 and L2,
to improve precision [1]. Phantomless BMD calibration
methods for the spine can also be applied to abdominal or
pelvic CT scans to determine hip BMD [43, 73].

Iodine-containing contrast agents are frequently adminis-
tered prior to a CT scan in order to increase the contrast of
blood-containing vessels and tissues. These contrast agents
increase CT values [34, 43, 44, 74, 75]. The impact on
BMD depends on the amount of contrast agent, i.e., the con-
centration within the bone of interest at the time of the CT
scan. Cortical and trabecular bones compartments are affected
differently. Also, the effect on spinal and hip BMD varies. In
some studies using datasets with and without contrast of the
same subject, linear regression correction techniques were de-
veloped [34, 45, 76, 77]; however, it is not entirely clear
whether these techniques apply to the different scenarios in
clinical routine and whether the linear correction factors ob-
tained for one scanner can directly be used for different scan-
ners and scan protocols [46]. Nevertheless, high correlations
and good agreement between CT scans with and without

contrast using linear corrections have been reported [74, 76,
77]. In the case of internal calibration, the change in the HU
values of the internal reference materials after contrast admin-
istration remains to be studied [76]. Obviously, air that is often
part of the internal calibration is unaffected by contrast agents.

Performance of Opportunistic Screening

As mentioned in the introduction, the main purpose of OS is
the identification of individual subjects with a high risk of
osteoporotic fracture. It is less likely that OS will be applied
in clinical trials unless historic CT scans should be used. In
new studies, CT imaging will preferably be more standardized
than routine clinical CT scans. If BMD is an endpoint, the use
of a calibration phantom is advised. Thus the most important
outcome of OS is fracture risk, which is also the most difficult
to be used as a performance measure as it requires cross-
sectional studies of fractured and unfractured subjects or ide-
ally a prospective study such as AGES [78] or MrOs [79].

Instead, many studies evaluated the performance of OS by
comparing the ability of CT and dual X-ray absorptiometry
(DXA) to categorize subjects as normal, osteopenic, or osteo-
porotic using T-scores [59, 72, 80–84]. Conclusions are diffi-
cult to interpret as many subjects with DXA T-scores in the
osteopenic or even normal range do fracture. Furthermore, the
WHO schema is valid for DXA only but not for CT. DXA and
CT BMD T-scores are not equivalent. Due to different risk
gradients of the two modalities, a BMD-independent linear
relation between DXA and CT BMD T-scores does not exist.
The comparison of DXA and CT BMD values [85] is also
misleading because due to the technical differences it is lim-
ited in particular for vertebral BMD (Fig. 5). The projectional

Fig. 2 Left: coronal and sagittal
reformations of CT dataset of the
spine; top: simulated X-rays;
center: original CT reformations;
bottom: 10 slices averaged. Right:
subject with sclerosis
demonstrating that different
coronal planes must be
reconstructed from a CT dataset
in order to assess mid-sagittal
planes
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DXA technique measures an areal density (aBMD) in g/cm2

and CT a true density in g/cm3 termed BMD in this
contribution

Direct performance evaluation of BMD determined from
CT scans not including a calibration phantom by asynchro-
nous or internal calibration or of the direct use of HU values
should be performed in a dataset of CT scans obtained with
simultaneous calibration. It is also important to use a real-
world CT dataset from clinical routine with variations of ac-
quisition parameters, in particular kVand table height, instead

of a dataset acquired with a highly standardized protocol. The
same is true for evaluating the impact of contrast agents that
are used in 50–70% of clinical CT scans. Performance evalu-
ation should include scans with and without contrast of the
same subject.

In a recent comprehensive multi-scanner study in which
CT scans with and without phantom of the same subject were
obtained within three days, BMD was used to discriminate
vertebral fractures [87]. Performance of fracture discrimina-
tion was best for asynchronous, followed by simultaneous and
non-calibrated BMD values, with AUC values of 0.86, 0.82,
and 0.82, respectively. BMD as determined by QCT using
simultaneous calibration correlated highly (r2 = 0.83) with
BMD results from asynchronous BMD calibrations (slope
0.95). Nevertheless, 95% limits of agreement ranged from
−23.2 to 25.0 mg/cm3. Given an approximate difference of
40 mg/cm3 between healthy and osteoporotic subjects [1], in
individual subjects, the reported BMD differences may result
in considerable over- or underestimation of their fracture risk.

In a 10-year longitudinal study of 199 subjects, CT values
of L1–L4 were directly used to predict incident vertebral frac-
tures (n = 30) as assessed from vertebral heights obtained from
a mid-sagittal reformation of the CT dataset. Using a CT
threshold of 180 HU for L4, incident vertebral fractures were
predicted with a sensitivity of 90% and a specificity of 43%. A
difference threshold of 155 HU for L5 resulted in a more
balanced sensitivity (70%) and specificity (77%) [34] but also
highlights ambiguities when using fixed thresholds for risk
prediction.

Performance of vertebral fracture assessment is even more
involved as ideally X-rays and CT scans of the same subject
should be available, which is rarely the case. As an alternative,
a validated radiological expert assessment of the CT scans
could be used as the gold standard, where validation would

70 Current Osteoporosis Reports (2023) 21:65–76

Fig. 3 Volumes of interest used to determine CT values of tissues used
for internal calibration: muscle of the erector spinae (ES) and the psoas
muscle, blood in the aorta and the inferior vena cava (IVC), and
subcutaneous adipose tissue (SAT)

Fig. 4 BMD calibration
techniques applied in
opportunistic screening compared
to simultaneous calibration. 59
scans used for the analysis shown
were obtained on a Siemens
SOMATOM Definition AS
scanner at 100 kV. Table heights
varied by more than 10 cm across
scans. Contrast agents were not
administered



require data on inter- and intra-reader comparison of expert
results [88] including differentiation of osteoporotic from trau-
matic fracture and from other vertebral degenerations.

In 500 CT scans (50% with moderate or severe vertebral
fractures) sensitivity and specificity of automated detection

Fig. 5 Correlation of DXA and QCT BMD of the lumbar spine (L1+L2)
(top) and of the total femur. The graphs show baseline data from a clinical
trial of postmenopausal women [86]. Correlations are moderate because
the two techniques are different by nature

Fig. 6 Dose reduction of photon
counting CT using an excised
vertebral body. Single energy CT:
120 kV, 355 mAs, 23.8 mGy,
Photon counting 120 kV, 130
mAs, 10.5 mGy. The image noise
(σ) is identical in both scans with
a reduction of radiation exposure
by more than 2 in the case of
photon counting. For both scans,
comparable high-resolution
kernels were used [97]
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compared to expert radiological assessments were 94% and
65% respectively, but fracture severity grades were not deter-
mined. AUC results of HU values of L1 for the prediction of
vertebral fractures were about 0.6 [89]. In another study of 150
subjects (50% with vertebral compression fractures) results of
automated fracture detection compared to expert radiological
assessments were 98.7% and 77.3% for sensitivity and spec-
ificity, respectively [20]. Similar values of 95% and 82% for
sensitivity and specificity, respectively, were reported for the
detection of any osteoporotic fracture [24]. This is one of the
rare studies separating vertebral deformities from osteoporotic
fractures. An AUC value of 0.74 was reported for vertebrae
with mild fractures (Genant grade 1). It has also been shown
that AI assistance improved the sensitivity of fracture detec-
tion by radiologists and non-radiologists [90].

Using CT scans of 48,227 CT scans from a health insur-
ance registry it was shown that the combination of prevalent
vertebral compression fractures with trabecular BMD of L1-
L4 slightly improved the prediction of risk of major osteopo-
rotic fractures (MOF) (AUC +1.9%, sensitivity +2.4%) and
was equal for the prediction of hip fractures comparedwith the
Fracture Risk Assessment Tool (FRAX). Both vertebral com-
pression fractures and BMD were evaluated automatically
using the Zebra Medical Vision toolkit [91].

Of course, a definite performance evaluation should in-
clude the determination of differences between OS and
QCT/X-ray assessments on fracture risk. Given the aim to
identify subjects with high fracture risk, a first goal could be
the risk categorization as high, medium, or low, where medi-
um would trigger additional diagnoses to more accurately de-
termine the fracture risk. A high risk would indicate the need
for intervention to be selected by an expert physician. A low
risk would result in no further actions. For a more accurate risk
assessment, relative fracture risk can be calculated from the



assessment of prevalent vertebral fractures and form BMD
results alone or in combination.

Future Directions

A number of technological developments will further improve
the performance of OS. With respect to fracture diagnosis, the
refinement of AI models to obtain fracture grade and to clearly
identify osteoporotic fractures is of key importance. Testing
and validation of such models should be performed in differ-
ent datasets, instead of just splitting a given dataset. At the
same time, the criteria to assess these fractures from CT im-
ages need to be refined. Finally, newmorphological or density
features may be identified that further improve risk prediction
of osteoporotic fractures.

With respect to BMD, further improvements partly rely on
CT scanner technology. Obviously, the most simplistic ap-
proach would be the permanent addition of a calibration phan-
tom, for example, embedded in the table of the CT scanner.
However, the CT manufacturers have not yet recognized the
potential of OS, so their focus on quantitative BMD determi-
nation is still limited.

Another perspective is the use of dual-energy CT that orig-
inally has been introduced for the reduction of the so-called fat
error of single-energy CT [92–94]. Whether DECT could also
benefit the accuracy of internal calibration still has to be in-
vestigated, first studies showed promising results [71, 77, 95,
96]. Also, the reduction of BMD inaccuracies caused by the
administration of contrast agents should be a topic of future
research. A further step will be the use of photon-counting CT
scanners that will boost the use of CT in many areas because
of several new features. One of the most important ones is the
further reduction of radiation exposure. Figure 6 shows some
very early results obtained on a prototype photon-counting
device using excised vertebral bodies [97]. In this study radi-
ation exposure was reduced by a factor of two without any
degradation of image quality. Another important feature of
photon counting CT is the further decomposition of the spec-
tral response beyond the capabilities of DECT.

Finally, risk parameters other than prevalent fractures and
BMD can be obtained from opportunistic CT scans to further
improve fracture risk prediction. Examples are Finite Element
Analysis to estimate bone strength [98, 99] and assessments of
muscle size and density and fat infiltration that have been
shown to contribute to fracture risk prediction beyond BMD
[100–102].Whether the assessment of spinal muscles or of the
muscle of the hip is more important is not clear yet.

In summary, opportunistic screening can be successfully
performed today. Now it is time for the implementation of
the existing techniques into the clinical workflow of CT scan-
ners to routinely identify subjects at high risk for osteoporotic
fracture. Not all facets of opportunistic screening are fully

automated yet and supervision of results is still required but
fracture risk prediction can be further improved using ad-
vanced CT imaging and image processing techniques.
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