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Non-metabolic functions of phosphofructokinase-1 
orchestrate tumor cellular invasion and genome 
maintenance under bevacizumab therapy

  

Yi Chieh Lim† , Kamilla E. Jensen†, Diana Aguilar-Morante, Lina Vardouli,  
Kristoffer Vitting-Seerup, Ryan C. Gimple, Qiulian Wu, Henriette Pedersen, Kirstine J. Elbaek, 
Irina Gromova, Robert Ihnatko, Bjarne W. Kristensen, Jeanette K. Petersen,  
Jane Skjoth-Rasmussen, William Flavahan, Jeremy N. Rich, and Petra Hamerlik

Danish Cancer Society, Denmark (Y.C.L., K.E.J., D.A.M., L.V., K.V.S., H.P., K.J.E., I.G., P.H.); Department of Health 
Technology, Danish Technical University, Denmark (K.V.S.); Department of Medicine, Division of Regenerative 
Medicine, University of California San Diego, La Jolla, CA, USA (R.C.G., Q.W., J.N.R.); Institute of Pathology, 
University Medical Center, Goettingen University, Germany (R.I.); Department of Pathology, Odense University 
Hospital, Denmark (B.W.K., J.K.P.); Department of Clinical Research, University of Southern Denmark, Denmark 
(B.W.K., J.K.P.); Department of Neurosurgery, Copenhagen University Hospital, Denmark (J.S.R.); Department of 
Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, 
MA, USA (W.F.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA (J.N.R.)

†These authors contributed equally to this work.

Corresponding Authors: Petra Hamerlik, MSc, PhD, Brain Tumor Biology, Danish Cancer Society Research Center, Strandboulevarden 
49, 2100 Copenhagen, Denmark; Tel: 35257413 (knizetko@gmail.com); Jeremy Rich, MD, MHS, MBA, UPMC Cancer Pavilion, 5150 
Centre Avenue, 5th Floor Pittsburgh, PA 15232; Tel: 4126233364 (drjeremyrich@gmail.com).

Abstract
Background. Glioblastoma (GBM) is a highly lethal malignancy for which neoangiogenesis serves as a defining 
hallmark. The anti-VEGF antibody, bevacizumab, has been approved for the treatment of recurrent GBM, but resist-
ance is universal.
Methods. We analyzed expression data of GBM patients treated with bevacizumab to discover potential resistance 
mechanisms. Patient-derived xenografts (PDXs) and cultures were interrogated for effects of phosphofructokinase-1, 
muscle isoform (PFKM) loss on tumor cell motility, migration, and invasion through genetic and pharmacologic 
targeting.
Results. We identified PFKM as a driver of bevacizumab resistance. PFKM functions dichotomize based on 
subcellular location: cytosolic PFKM interacted with KIF11, a tubular motor protein, to promote tumor invasion, 
whereas nuclear PFKM safeguarded genomic stability of tumor cells through interaction with NBS1. Leveraging 
differential transcriptional profiling, bupivacaine phenocopied genetic targeting of PFKM, and enhanced efficacy 
of bevacizumab in preclinical GBM models in vivo.
Conclusion. PFKM drives novel molecular pathways in GBM, offering a translational path to a novel therapeutic 
paradigm.

Key Points

• Cytosolic PFKM binds to KIF11 to maintain GBM cytoskeleton assembly and invasion.

• Nuclear PFKM regulates DNA damage responses in GBM cells.

• The anesthetic, bupivacaine, phenocopies the effects of targeting PFKM in reducing 
tumor growth and augments the efficacy of bevacizumab.
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Glioblastoma (GBM) ranks among the most lethal of all 
human malignancies, with conventional therapy offering 
only palliation. While GBM has undergone extensive mo-
lecular characterization, genomic-informed precision 

medicine has provided little benefit for patients.1 Vascular 
proliferation represents a canonical histologic feature of 
GBM, and vascular endothelial growth factor A (VEGF-A) 
overexpression in endothelial cells are detected in early 
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Highly invasive and DNA repair-proficient GBM cells with high PFKM expression in the tumor periphery 
evade bevacizumab therapy by invading normal brain parenchyma. Loss of PFKM impairs survival and in-
vasion and exacerbates genomic instability of GBM cells, thereby potentiating the effect of bevacizumab 
therapy.

Importance of the Study

PFK family members regulate glycolysis to promote 
tumor growth. Here, we report novel, non-metabolic 
functions of PFKM that promote tumor resistance to 
bevacizumab. PFKM functions dichotomize based 
on molecular location to augment cellular invasion 
and DNA repair, supporting PFKM as a therapeutic 
target. We identified bupivacaine as a repurposed 

pharmacologic agent that counteracts bevacizumab 
resistance in preclinical GBM models. Our observation 
supports a prospective future where therapies involving 
angiogenesis inhibition are pivotal to integrate drugs 
targeting the resistance mechanism to offer long-term 
therapeutic efficacy.
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studies of GBM.2 Thus, anti-angiogenic therapies have 
been tested in numerous clinical trials with mixed suc-
cess. Bevacizumab, which blocks circulating VEGF-A 
ligand function, is FDA approved for recurrent or pro-
gressive GBM,3 demonstrating frequent radiographic 
response but failing to increase overall survival in 
clinical trials.

Resistance to bevacizumab and anti-angiogenics has 
been linked to a diverse spectrum of molecular and cel-
lular mechanisms that may inform novel therapeutic 
strategies. Our previous work implied the limited im-
pact of bevacizumab-mediated VEGF-A blockage may 
reflect ongoing autocrine VEGF-VEGFR2 signaling on 
the surface of GBM cells to promote tumor growth.4,5 
In a subset of patients failing bevacizumab, recurrent 
tumor growth patterns reflect increased invasion.6 GBM 
evades the growth inhibitory effects of bevacizumab 
through induction of MET signaling and progresses to 
a mesenchymal phenotype reminiscent of an epithelial-
to-mesenchymal transition.7 Additional mechanisms 
include metabolic reprogramming and changes to the 
immune landscapes of treated tumors. Novel thera-
peutic paradigms have been developed based on these 
observations, but have yet to improve patient outcome, 
suggesting additional efforts may augment tumor 
control.

Based on this background, we hypothesized that tran-
scriptional profiles of GBM surgical biopsy specimens 
derived from patients treated with bevacizumab would 
uncover additional evasion mechanisms whereby GBM 
biology may be revealed. In contrast to prior studies that 
have sought resistance mechanisms as an entry into com-
bined therapies, we were interested in using bevacizumab 
resistance as a discovery platform to reveal novel tumor 
biology and therapeutic discovery.

Materials and Methods

Antibodies, expression constructs, buffers, and bioinfor-
matic analysis are found in the Supplementary Information.

Cell Culture

T4121 and T10 GBM cells were obtained in accordance 
with approval from the Duke University Institutional 
Review Board and the Danish National Ethical Committee 
(H-3-2009-136_63114), respectively. IN1123 cells were 
a gift from Dr. Nakano (University of Alabama). GBM 
models were cultured as neurospheres in serum-free me-
dium supplemented with EGF (epidermal growth factor)/
FGF (fibroblast growth factor). Cells were authenticated 
by STR profiling and tested negative for mycoplasma. 
Normal human astrocytes (NHA; purchased from 3H 
Biomedical).

Inhibitors, Supplements, and Therapeutics

Sigma-Aldrich: CDK1 inhibitor (CDKi) RO-3306 and lepto-
mycin. Roche: bevacizumab. AstraZeneca: bupivacaine. 

Ionizing radiation (IR) was administered via an x-ray source 
that delivers a rate of 0.04 Gy/s (YXLON).

RNA Interference

shRNA control, shPFKM #1 and #2 (Sigma-Aldrich) 
targeting phosphofructokinase-1 muscle isoform (PFKM) 
were produced using PAX2/VSV-G packaging system and 
calcium phosphate transfection kit (Clontech). Lentiviral 
particles were concentrated using PEG-it Virus Precipitation 
Solution (SBI Biotech). Stealth siRNA negative control and 
siRNA PFKM were also used (Invitrogen) (Supplementary 
Table 2).

Public Datasets

RNA-seq data were obtained for the BELOB8 and AVAglio 
trial.9,10

Immunohistochemistry

Paraffin-embedded animal brains and human tumor tis-
sues were sectioned at 3 µm. Following antigen retrieval, 
sections were treated with 1.5% H2O2 and probed with 
respective antibodies (Supplementary Table 1). Sections 
were incubated with HRP-conjugated secondary anti-
body (EnVision+) and visualized using DAB/chromogen. 
Nuclei were counterstained with Mayer’s hematoxylin. For 
Supplementary Figure 1D, WHO grade II (n = 24), III (n = 18), 
and IV (n = 72) archival tumor specimens were analyzed. 
An independent cohort of 23 WHO grade IV (GBM) spe-
cimens was used to compare PFKM expression between 
tumor core and periphery (Figure 1D).

Wound Closure Assay

4-7  ×  104 cells were seeded on Geltrex (Gibco) coated 
plate. Cells were nutrient-deprived 24 hours prior to 
treatment. Samples were scratched with a Woundmaker 
tool (Sartorius). Migration was analyzed at 24 hours by 
normalizing to 0 hours and calculated as a percentage of 
wound closure.

PFKM Activity Assay

PFKM kinase activity was measured according to the 
manufacturer’s protocol (Abcam) using 1  ×  106 cells. 
Reaction-mix lacking substrate component determined 
background fluorescence. Plates were incubated at 37°C 
and measured at OD = 450 nm. PFKM kinase activity was 
calculated as the amount of NADH (nmol) generated per 
1 × 106 cells.

Invasion Assay

Cells (1 × 103) were seeded in Geltrex-coated 96-well plate 
(Sigma-Aldrich) and spun down to form spheres.11 The 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
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following day, additional Geltrex was added, and plates 
were incubated at 37°C before adding serum-free medium 
(time, 0 hours). Cell invasion was analyzed by ImageJ at 24 
hours.

Immunofluorescence

GBM cells grown on coverslips were fixed with 4% 
paraformaldehyde (PFA) (PFKM-GFP cells were fixed 
with methanol) and following permeabilization stained 
using indicated primary antibody (Supplementary 
Table 1). Nuclei were counterstained with 1  µg/mL 
DAPI (4′,6-diamidino-2-phenylindole)/PBS (phosphate-
buffered saline) (Sigma-Aldrich). Images were acquired 

by LSM800 confocal (Zeiss) or ScanR (Olympus) high-
content screening station. Proximity ligation assay (PLA) 
was performed by using the Duolink fluorescence protocol 
(Sigma-Aldrich).

RNA Sequencing

GBM (T4121 and T10) cells with silenced PFKM (shPFKM-
pool, shPFKM #1 and #2 in 1:1 ratio) or treated with (24 
hours) bupivacaine (GI50) were subjected to total RNA iso-
lation (RNeasy plus kit, QIAGEN), library preparation and 
paired-end sequencing (BGI) to identify overlapping tran-
scriptional changes associated with PFKM knockdown and 
bupivacaine treatment.
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Fig. 1 PFKM expression informs poor survival in bevacizumab-treated glioblastoma. (A) High glycolytic rate profile informs poor outcome of patients 
receiving bevacizumab in the AVAglio dataset. (B) PFKM and ALDOC expression levels informed survival of GBM patients under bevacizumab 
therapy. Data presented as median survival difference. (C) High PFKM but not PFKL and PFKP expression levels inform the survival of GBM patients 
in BELOB trial. (D) Immunohistochemistry shows elevated PFKM expression in WHO grade IV glioma (GBM) tumor periphery (n = 23). (E) Darmanis’s 
single-cell RNA-seq dataset shows PFKM but not PFKP or PFKL expression is elevated in invading neoplastic cells. Significance is determined by 
log-rank test (A, C) or t test (D, E) and where applicable, data are shown as mean ± SEM (*P < .05, **P < .01, ***P < .001).
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
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Cell-Cycle Assay

Cells were fixed in 70% ethanol, blocked in 5% BSA (bo-
vine serum albumin)/PBS followed by staining with a con-
jugated H3Ser10-Alexa 488 antibody in 0.1% BSA of 0.1% 
Triton X-100/PBS and counterstained with DAPI prior to ac-
quisition on FACSVerse (BD).

DNA Repair Assay

To determine homologous recombination (HR) repair, 
1  ×  106 cells were co-transfected with 1.5  µg of non-
functioning HR plasmid (pDRGFP) and 3  µg of I-Sce1 
meganuclease expression plasmid (pCMV-I-SceI).12 DNA 
repair was determined by detecting fluorescent positive 
cells with FACSVerse.

Cell Fractionation, Immunoprecipitation, 
Immunoblotting

Cells (1  ×  107) received hypotonic treatment followed by 
centrifugation.13 Supernatant was collected as cytosol ly-
sate. Pellet was then resuspended, layered onto sucrose 
gradient solution, and centrifuged. Supernatant was dis-
carded and nuclear pellet lysed. For immunoprecipitation 
(IP), 1-5  mg of pre-cleared lysate was incubated with 
1  µg of antibody or IgG control overnight together with 
10 µL of protein G (Dynabeads). Next, lysates and protein 
antibody-bounded beads were separated with DynaMag 
(Invitrogen). IP-pulldowns or protein extracts (25-50  µg) 
were loaded onto SDS-polyacrylamide gels, electrophor-
esed, transferred onto nitrocellulose membrane, and in-
cubated with primary and species-specific secondary 
antibodies. Chemiluminescence reagent (Cytica) was 
used for protein detection via ChemiDoc imaging system 
(BioRad).

Cell Viability

Cells were seeded in 96-well plate, treated as indicated, 
and assessed for viability using CellTiter-Glo (Promega) 
or Incucyte 72 hours later. Viability was calculated by 
normalizing to untreated control. GI50 was calculated using 
non-linear regression.

Alkaline Comet Assay

Cells were resuspended in 0.5% low melting agarose 
(Sigma-Aldrich) and spread onto 1% ultra-pure agarose-
coated glass slides. Slides were lysed, neutralized, electro-
phoresed, and dehydrated in 96% ethanol prior to mounting 
in TE (Tris-EDTA) buffer with SYBR Gold (Invitrogen). DNA 
tails were imaged by an Axiovert fluorescence microscope 
(Zeiss) and scored using Comet Assay IV software.

In vivo Studies

Orthotopic and subcutaneous animal survival studies 
were performed as previously described.14 Detailed 

methodology is provided in the Supplementary 
Information.

Statistical Analysis

Unless stated otherwise, GraphPad determined statistical 
significance from three independent experiments. Where 
appropriate, comparisons were conducted using Mantel-
Cox test, two-tailed Student’s t test, or two-way ANOVA 
followed by post hoc analysis. For correlation analysis, 
Spearman’s rank correlation test was performed. Statistical 
significance is represented with P-values (*P < .05; **P < 
.01; ***P < .001).

Results

PFKM Expression Informs Poor Survival in 
Bevacizumab-treated GBM Patients

Based on the hypothesis that bevacizumab-resistant tu-
mors may reveal novel molecular mechanisms underlying 
tumor biology, we interrogated gene expression profiles 
from GBM patients enrolled in the AVAglio phase III trial 
(bevacizumab plus temozolomide and radiotherapy in 
newly diagnosed GBM patients).10 We reasoned that using 
data from newly diagnosed patients would minimize the 
complicating effects of prior therapies (eg, radiation and 
chemotherapy) that would be present in recurrent pa-
tients.9 Poor response to bevacizumab correlated with 
high glycolytic rate and poor survival outcome (Figure 
1A). Next, we interrogated the BELOB trial dataset8 and 
analyzed gene expression profiles from patients treated 
with bevacizumab monotherapy arm to identify causa-
tive genes in the glycolysis pathway. Based on survival 
differences between low and high glycolytic patient co-
horts, the muscle isoform of PFKM and aldolase C (ALDOC) 
were identified as key regulators of the glycolysis pathway 
(Figure 1B; Supplementary Figure 1A and B). Confirming 
this discovery, ALDOC has been previously shown to me-
diate glioma invasion.15 PFKM is a muscle-specific isoen-
zyme of PFK-1 that regulates the first step of metabolic 
process.16 Among patients treated with bevacizumab on 
the BELOB trial, high PFKM tumor expression portended a 
worsened survival compared to tumors with PFKM low or 
medium expression. In contrast, high tumor expression of 
the two other PFK-1 isoenzymes, PFKP (platelet) and PFKL 
(liver), did not inform prognosis (Figure 1C). Furthermore, 
independent analysis using the TCGA GBM dataset showed 
that high PFKM correlated with worse survival of GBM pa-
tients treated with bevacizumab (Supplementary Figure 
1C). Immunohistochemistry (IHC) analysis of PFKM protein 
expression found elevated levels in GBM (WHO grade IV) 
compared to WHO grade II and III gliomas (Supplementary 
Figure 1D). Further examination showed that PFKM ex-
pression was markedly increased in the tumor periphery, 
suggesting a possible role in tumor invasion (Figure 1D; 
Supplementary Figure 1E). Comparative single-cell RNA 
sequencing profiling using the Darmanis dataset17 con-
firmed that PFKM, but not PFKL or PFKP, was preferentially 
expressed in the invasive region (Figure 1E).

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac135#supplementary-data
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PFKM Promotes GBM Motility and Invasion

As PFKM expression was enriched in the tumor periphery, 
we hypothesized that GBMs co-opt PFKM activity to invade 
into normal tissues and acquire nutrients. As angiogen-
esis is crucial for tumors to accelerate metabolic activity 
during tumor expansion, we mimicked the response of 
patient-derived GBM cells to different levels of glucose, 
revealing induction of PFKM protein and activity with 
high glucose levels (Figure 2A and B). VEGF canonically 
induces endothelial cell proliferation to promote tumor 
growth,18 but we and others have demonstrated that GBM 

cells express VEGF receptors and respond directly to VEGF 
ligands.4,19 Bevacizumab-mediated VEGF sequestration 
decreased cellular proliferation of GBM cells with dimin-
ished efficacy in the presence of high glucose concentra-
tion (Supplementary Figure 2A). Invasion into the normal 
brain is a universal feature of gliomas. Bevacizumab re-
duced the motility of GBM cells, as measured by a wound 
assay, with the effects attenuated by high glucose (Figure 
2C). Loss of function for PFKM was achieved through short-
hairpin RNAs (shPFKM #1 and #2) and associated with di-
minished PFKM kinase activity (Supplementary Figure 2B 
and C). PFKM-silencing induced stress fiber formation, 
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Fig. 2 Glioblastoma invasion depends on PFKM. (A, B) Exposure (24 hours) of high glucose (HG: 5 µg/mL) but not low glucose (LG: 1 µg/mL) in-
duces PFKM protein and activity in GBM cells. Loading control: GAPDH. (C) HG treatment (HG: 5 µg/mL) increases migratory capacity of GBM 
cells exposed to bevacizumab (BEV: 50 µg/mL) in a wound healing assay. LG (1 µg/mL). Data shown are normalized to 0 hours. Scale bar = 150 µm. 
(D) PFKM-silencing inhibits GBM cell migration in wound healing assay. (E) PFKM-silencing impairs GBM cell invasion in a 3D spheroid assay. 
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5 mg/kg) treatment drives superior survival benefits in mice intracranially implanted with PFKMlow T10 cells. Significance is determined by log-
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destabilization of tubulin structures (Supplementary Figure 
2D), and lowered migratory as well as invasive capacity of 
GBM cells (Figure 2D and E). Mice intracranially implanted 
with GBM cells with silenced PFKM displayed longer sur-
vival (Figure 2F). To validate the clinical relevance of PFKM 
expression in response to bevacizumab, we intracranially 
implanted mice with subclones of T10 GBM model exhib-
iting either high (PFKMhigh, n = 5) or low PFKM (PFKMlow, 
n = 5) expression (Figure 2G). While bevacizumab extended 
the survival of both PFKMhigh and PFKMlow mice, a greater 
survival benefit (fold increase in median survival) and re-
duced tumor burden (H&E) was observed in the cohort of 
PFKMlow-injected mice (Figure 2H–J).

Cytoplasmic PFKM-KIF11 Interaction Promotes 
Invasion and Mitosis in GBM Cells

Next, we employed differential RNA sequencing (RNA-
seq) in which downregulated genes were subjected to an 
unsupervised pathway analysis, which revealed the top 
10 scoring pathways were associated with aberrant mi-
tosis (Figure 3A). We GFP-tagged PFKM in T4121 GBM cells 
(PFKM-GFP) to determine cellular localization. Confocal 
microscopy identified strong association of PFKM with 
the mitotic spindle (Figure 3B). Synchronization of T4121 
GBM cells confirmed higher expression of PFKM during 
G2/M phase (Figure 3C). Co-immunoprecipitation fol-
lowed by mass spectrometry analysis identified KIF11 as 
an interacting partner (Supplementary Figure 3A and B). 
Protein-protein interaction between PFKM and KIF11 oc-
curred exclusively in the cytosol as demonstrated by 
PLA and co-immunoprecipitation experiments in cyto-
solic and nuclear protein fractions of GBM cells (Figure 
3D; Supplementary Figure 3C). PFKM knockdown in GBM 
cells induced proteasome-mediated degradation of KIF11 
protein (Figure 3E and F), resulting in impaired cytoskel-
eton assembly and mitotic catastrophe (Figure 3G). Ectopic 
expression of exogenous PFKM rescued KIF11 stability 
(Figure 3H; Supplementary Figure 3D), as well as inva-
sion and mitotic progression (Figure 3I and J). Collectively, 
these results demonstrate that PFKM binds and stabilizes 
the KIF11 molecular motor protein to drive GBM prolifera-
tion and invasion.

Nuclear PFKM Engages DNA Damage Response 
to Ensure Genome Stability

Subcellular protein fractionation experiments confirmed 
the presence of endogenous as well as ectopically ex-
pressed PFKM in the nucleus of GBM cells (nucPFKM; 
Figure 4A; Supplementary Figure 4A). This observation 
was also supported by an in silico analysis of the PFKM se-
quence, which confirmed the presence of nuclear localiza-
tion signals (NLS, Supplementary Figure 4B). We validated 
the functionality of NLS in PFKM through the exposure of 
GBM cells to a nuclear export signal inhibitor, leptomycin 
(NESi) or the NLS inhibitor, ivermectin (NLSi) which are 
both commonly used to study nucleo-cytoplasmic pro-
tein translocation. Leptomycin caused nuclear PFKM ac-
cumulation (Figure 4B) while ivermectin led to PFKM 

sequestration in the cytosol of GBM cells (Supplementary 
Figure 4C). Collectively, these data support the nuclear lo-
calization of PFKM.

Given the disruption of the mitotic spindle and cell-
cycle arrest that was driven by PFKM loss, we interro-
gated the activation of the DNA damage response (DDR) 
pathway. Supporting the role of nuclear PFKM (nucPFKM) 
in the DDR, PFKM knockdown impaired activation of 
the DDR and enhanced sensitivity of GBM cells to IR 
(Figure 4C and D). NBS1 is a primary sensor for radiation-
induced DNA double-strand breaks (DSBs) and two inde-
pendent assays (IP and PLA) confirmed an interaction of 
nucPFKM with NBS1 in the nucleus of GBM cells (Figure 
4E; Supplementary Figure 4D). Next, we assessed the im-
pact of PFKM loss on DSBs accumulation and found that 
PFKM loss induced DNA damage (DSB count, comet tail 
moment) and impaired DSB repair via HR repair (Figure 4F 
and G). This enhanced genomic instability translated into 
apoptosis measured by increased micronuclei (MN) count 
and frequency of Annexin V-positive cells (Figure 4H and I). 
Collectively, PFKM displays a distinct nuclear localization 
and regulation of the DDRs to protect GBM from genomic 
instability and cell death by apoptosis.

Bupivacaine Phenocopies PFKM Loss

To determine whether the above-described phenotypes as-
sociated with PFKM loss are due to its role in glycolysis, we 
attempted to rescue the loss of PFKM by treating with fruc-
tose 1,6-bisphosphate (F1,6P), a downstream metabolite 
(Supplementary Figure 5A),20 which failed to fully rescue 
the proliferation defects of PFKM-depleted GBM cells 
(Supplementary Figure 5B). The exposure of GBM cells 
to 2-deoxy-d-glucose (2-DG; a glucose analog that cannot 
undergo further glycolysis)21 effectively inhibited PFKM 
kinase activity but did not impact KIF11 or NBS1 protein 
levels (Supplementary Figure 5C and D) altogether sug-
gesting that this role of PFKM is independent from its met-
abolic activity. In a search for agents that would mimic the 
PFKM loss phenotype, such as invasion and DDR activation, 
we interrogated RNA-seq data of GBM cells with silenced 
PFKM and sought drug treatments that overlapped in dif-
ferential gene expression, revealing the local anesthetic, 
bupivacaine (Figure 5A). The top 10 downregulated path-
ways upon PFKM depletion or bupivacaine treatment were 
identical and strongly correlated (Supplementary Figure 
5E). We examined the inhibitory effects of bupivacaine 
on GBM cells and NHAs, as measured by concentrations 
that induced 50% growth inhibition (GI50), revealing pref-
erential sensitivity of GBM cells (T4121 GI50 = 140 µM; T10 
GI50  =  180  µM) relative to NHAs (GI50  =  975  µM) (Figure 
5B). Furthermore, bupivacaine treatment reduced both 
PFKM and KIF11 protein expression, induced stress fiber 
formation, and impaired the migratory potential of GBM 
cells (Figure 5C and D; Supplementary Figure 5F and G). 
Bupivacaine monotherapy decreased the mitotic index 
(Figure 5E) and sensitized GBM cells to radiation as dem-
onstrated by impaired DDR activation (Figure 5F), DNA 
damage accumulation, increased MN formation, and cell 
death (Figure 5G–I; Supplementary Figure 5H–J).
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Fig. 3 PFKM-KIF11 interaction is critical for invasion and mitosis in glioblastoma. (A) Pathway enrichment analysis using genes downregulated (log2fc 
≥ 2 and adjusted P ≤ .05) after PFKM-silencing in T10 and T4121 GBM cells. (B) Confocal microscopy confirms ectopically expressed PFKM-GFP to 
localize to mitotic spindle. Nuclei counterstained by DAPI. Scale bar = 3 µm. (C) Immunoblot analysis of T4121 cells shows increased PFKM level in mi-
tosis. Asynchronous cells (AS); cells synchronized at G2 phase, released and collected at indicated time points. PH3 as mitotic marker. Loading control: 
GAPDH. (D) Immunoprecipitation of PFKM followed by immunoblot analysis confirms its interaction with KIF11 in the cytosolic fraction (Cyto) and not 
in the nuclear fraction (Nuc). (E) GBM cells with silenced PFKM show decreased KIF11 protein expression. Loading control: GAPDH. (F) MG132 (10 µM; 
proteasomal inhibitor) treatment (6 hours) restores KIF11 protein levels in GBM cells with silenced PFKM. Loading control: GAPDH. (G) PFKM loss in 
GBM cells leads to a mitotic catastrophe. Tubulin, H3Ser10 (red). Nuclei were counterstained with DAPI. Scale bar = 5 µm. (H) Ectopic PFKM expression 
rescues KIF11 degradation in PFKM-silenced GBM cells. Loading control: GAPDH. (I) Ectopic PFKM expression restores invasion capacity of PFKM-
silenced GBM cells. Scale bar = 100 µm. (J) Ectopic PFKM expression rescues mitotic phenotype in PFKM-silenced GBM cells as shown by FACS anal-
ysis. Significance is determined by t test (I, J), and data are shown as mean ± SEM (*P < .05, **P < .01).
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Fig. 4 Nuclear PFKM regulates DNA damage response to ensure genome stability. (A) Subcellular fractionation followed by immunoprecipitation 
confirms nuclear localization of ectopically expressed PFKM. Cytosolic marker: GAPDH; nuclear marker: Lamin B1 and H3. (B) PFKM accumulates 
in the nucleus after leptomycin (NESi; 2 nM) treatment of GBM cells. (C) GBM cells with silenced PFKM show higher sensitivity to IR (2 Gy) as 
assessed by cell proliferation measurement at 72-hour post-IR. (D) PFKM-silencing impairs IR-induced DDR activation (PATM and PNBS1) in GBM 
cells. Loading control: tubulin (TUB). (E) PLA assay shows PFKM::NBS1 interaction in the nucleus of GBM cells. Fluorescence intensity peaks 
(right graph) marked the co-localization (proximity) of PFKM and NBS1 along the dotted line across the selected cell. Scale bar = 10 µm. (F) 
Representative images of comet tails in GBM cells transfected with siCONT or siPFKM. DSBs quantification was determined 48-hour post-IR by 
measuring comet tail length (~200 tails per condition was measured). Scale bar = 100 µm. (G) Homologous recombination (HR) repair (GFP-positive 
cells above diagonal line) rates are lower in GBM cells with silenced PFKM. (H) FACS-based quantification of Annexin V-positive cells (%) shows 
increased apoptosis in GBM cells with silenced PFKM. (I) Microscopy analysis of GBM cells with silenced PFKM shows higher micronuclei (MN) 
formation using DAPI staining. Quantification was based on ~1000 cells and presented the number of micronuclei per 100 cells. Images of GBM 
cells with MN (arrows). Scale bar = 5 µm. Significance is determined by t test (B, C, and F–I), and data are shown as mean ± SEM (*P < .05, **P < 
.01, ***P < .001).
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Fig. 4 Nuclear PFKM regulates DNA damage response to ensure genome stability. (A) Subcellular fractionation followed by immunoprecipitation 
confirms nuclear localization of ectopically expressed PFKM. Cytosolic marker: GAPDH; nuclear marker: Lamin B1 and H3. (B) PFKM accumulates 
in the nucleus after leptomycin (NESi; 2 nM) treatment of GBM cells. (C) GBM cells with silenced PFKM show higher sensitivity to IR (2 Gy) as 
assessed by cell proliferation measurement at 72-hour post-IR. (D) PFKM-silencing impairs IR-induced DDR activation (PATM and PNBS1) in GBM 
cells. Loading control: tubulin (TUB). (E) PLA assay shows PFKM::NBS1 interaction in the nucleus of GBM cells. Fluorescence intensity peaks 
(right graph) marked the co-localization (proximity) of PFKM and NBS1 along the dotted line across the selected cell. Scale bar = 10 µm. (F) 
Representative images of comet tails in GBM cells transfected with siCONT or siPFKM. DSBs quantification was determined 48-hour post-IR by 
measuring comet tail length (~200 tails per condition was measured). Scale bar = 100 µm. (G) Homologous recombination (HR) repair (GFP-positive 
cells above diagonal line) rates are lower in GBM cells with silenced PFKM. (H) FACS-based quantification of Annexin V-positive cells (%) shows 
increased apoptosis in GBM cells with silenced PFKM. (I) Microscopy analysis of GBM cells with silenced PFKM shows higher micronuclei (MN) 
formation using DAPI staining. Quantification was based on ~1000 cells and presented the number of micronuclei per 100 cells. Images of GBM 
cells with MN (arrows). Scale bar = 5 µm. Significance is determined by t test (B, C, and F–I), and data are shown as mean ± SEM (*P < .05, **P < 
.01, ***P < .001).
  

Bupivacaine Impairs Glioblastoma Growth and 
Augments Bevacizumab Efficacy In Vivo

Based on the in vitro anti-tumor properties of 
bupivacaine, we interrogated the efficacy of bupivacaine 
against tumor growth in vivo. Pre-treatment of GBM 
cells with bupivacaine prior to their implantation dis-
played extended survival compared to those implanted 
with GBM cells exposed to vehicle control (Figure 6A). As 
we initially identified PFKM as a driver of bevacizumab 
resistance and found bupivacaine to phenocopy PFKM 
loss, we hypothesized that bupivacaine augments anti-
tumor efficacy of bevacizumab. First, we confirmed that 
bupivacaine reduces PFKM expression in vivo (Figure 
6B) and then assessed its effect on tumor growth alone 

or in combination with bevacizumab using a subcuta-
neous T4121 xenograft model. As shown in Figure 6C, 
intratumoral (i.t.) injection of bupivacaine in combi-
nation with bevacizumab (i.p.) led to a superior tumor 
growth inhibition compared to either of the monother-
apies alone. To validate this observation in a clinically 
relevant orthotopic PDX model (T4121), we mounted a 
cranial screw guide on the head of immunocompromised 
animals to allow for the intratumoral administration of 
bupivacaine. Here, the co-administration of bupivacaine 
(i.t.) with bevacizumab (i.p.) showed a marked sur-
vival benefit compared to either monotherapies or ve-
hicle control (Figure 6D; Supplementary Figure 6A). 
In addition to a significant survival benefit and de-
creased tumor burden, IHC analysis confirmed reduced 
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invasion and vascularization (CD34) in remnant tumors 
of mice receiving the combination therapy (Figure 6E; 
Supplementary Figure 6B). Collectively, these results 
suggest bupivacaine as a potential combination partner 
to improve the efficacy of bevacizumab in GBM therapy.

Discussion

Microenvironmental cues, such as limited access to nutri-
ents, hypoxia, and necrosis, dictate the metabolic pathway 
choice in GBM.22,23 Bevacizumab treatment induces a 
metabolic switch to anaerobic glycolysis in GBM and en-
hances the invasion of GBM cells.24 PFK-1 is the pacemaker 
of glycolysis and executes its functions through multiple 
tetrameric isozymic forms consisting of three isoforms: 
muscle (PFKM), liver (PFKL), and platelet (PFKP), with 
variable composition dictated by tissue and cell type.25,26 
Here, we identify PFKM as a driver of bevacizumab re-
sistance in GBM and mechanistically interrogate its non-
canonical roles dictated by subcellular localization. While 
our data implicate the cytosolic PFKM to play a role in in-
vasion and cytoskeleton assembly, nuclear PFKM is found 
to safeguard the genomic stability of GBM cells. PFKM is 

not the first PFK-1 isoform found to play a non-glycolytic 
role as Lee et al showed previously that PFKP binds and 
phosphorylates AKT on Ser386 thereby promoting tumor-
igenesis.27 Pyruvate kinase M2 (PKM2) was among the 
first glycolytic enzymes shown to regulate cell-cycle pro-
gression and tumorigenesis and its loss has been asso-
ciated with similar phenotypes as those observed herein 
for PFKM. While cytosolic PKM2 regulates tumorigenesis 
by stabilizing mutant EGFR protein via direct interaction, 
nuclear PKM2 was shown to regulate the expression of nu-
merous proglycolytic enzymes and G1-S phase transition 
of the cell cycle.28–31

Aberrant DNA repair is associated with metabolic re-
programming, in general, and enrichment of glycolytic-
gluconeogenesis proteins, in particular.32,33 Consistent 
with this concept, glycolytic enzymes, such as PKM2 and 
PFKFB3, are implicated in DNA repair.34,35 Here, we found 
nuclear PFKM is critical for DDR activation and the error-
free repair of DSBs via HR. In the absence of PFKM, GBM 
cells fail to respond to radiation-induced DNA damage and 
in consequence die by apoptosis.

Preferential expression of PFKM in the tumor periphery 
is concordant with previous reports on glycolytic enzymes, 
such as ALDOC,15 which was among the candidates iden-
tified through our in silico screen. Previously, ALDOC 
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expression was found elevated in invading GBM cells 
under hypoxia. While ALDOC knockdown impaired the in-
vasion of GBM cells in vitro, in vivo experiments showed 
accelerated tumorigenesis and shorter survival of tumor-
bearing mice.36 In contrast to ALDOC, we show that PFKM-
silencing negatively impacts the viability of GBM cells 
both in vitro and in vivo. To further dissect the mechanistic 
underpinnings of PFKM-regulated invasion, cell-cycle reg-
ulation, and mitotic spindle assembly, we find PFKM to sta-
bilize the molecular motor protein KIF11 by interacting with 
it in the cytosol of GBM cells. These findings build on our 
previous reports on KIF11 regulating GBM cell motility and 
invasion.5

Retrospective analysis and data from experimental 
studies point toward a potential beneficial effect of the 
local anesthetics regarding clinical outcome—that is, 
overall and/or recurrence-free survival in patients under-
going cancer surgery.37 Lidocaine sensitizes breast cancer 
and GBM to cisplatin.38,39 Here, we show that bupivacaine, 
another local anesthetic, phenocopies PFKM loss and in-
hibits the survival, motility, and invasion of GBM cells and 
extends the survival of tumor-bearing mice. In vitro effects 
of bupivacaine on GBM cells are consistent with previous 
reports in breast, ovarian, and prostate cancers, where clin-
ically relevant concentrations inhibited their survival.40,41 
The in vivo data presented in this study underline the clin-
ical relevance of our findings and show that bupivacaine 
monotherapy reduces the tumorigenicity of GBM cells 
in vivo. As high PFKM levels predicted poor prognosis of 
GBM patients undergoing bevacizumab therapy, the su-
perior efficacy of bupivacaine and bevacizumab combi-
nation compared to either of the drugs alone, provides 
the proof of concept and validates our initial hypothesis. 
Optimization of drug efficacy in the brain requires under-
standing of the local exposure to unbound drug at the site 
of action, which is impacted by the blood-brain barrier 
(BBB). The work by Mateus et al suggests that bupivacaine 
penetrates the BBB.42 To avoid systemic toxicity, localized 
drug delivery could be considered. A pharmaceutical grade 
liposomal bupivacaine formulation has been clinically ap-
proved for pain management (Exparel)43 and could be po-
tentially explored for local delivery at the surgical resected 
site of GBM.

Encouraged by our findings, we believe that PFKM may 
serve as an attractive therapeutic target for GBM. The 
early evidence provided here suggests that PFKM inhibi-
tion therapy can potentiate the efficacy of bevacizumab 
and warrants further investigation to fulfill the therapeutic 
promise of this early preclinical study.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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bevacizumab | DNA damage and repair | invasion | PFKM
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expression was found elevated in invading GBM cells 
under hypoxia. While ALDOC knockdown impaired the in-
vasion of GBM cells in vitro, in vivo experiments showed 
accelerated tumorigenesis and shorter survival of tumor-
bearing mice.36 In contrast to ALDOC, we show that PFKM-
silencing negatively impacts the viability of GBM cells 
both in vitro and in vivo. To further dissect the mechanistic 
underpinnings of PFKM-regulated invasion, cell-cycle reg-
ulation, and mitotic spindle assembly, we find PFKM to sta-
bilize the molecular motor protein KIF11 by interacting with 
it in the cytosol of GBM cells. These findings build on our 
previous reports on KIF11 regulating GBM cell motility and 
invasion.5

Retrospective analysis and data from experimental 
studies point toward a potential beneficial effect of the 
local anesthetics regarding clinical outcome—that is, 
overall and/or recurrence-free survival in patients under-
going cancer surgery.37 Lidocaine sensitizes breast cancer 
and GBM to cisplatin.38,39 Here, we show that bupivacaine, 
another local anesthetic, phenocopies PFKM loss and in-
hibits the survival, motility, and invasion of GBM cells and 
extends the survival of tumor-bearing mice. In vitro effects 
of bupivacaine on GBM cells are consistent with previous 
reports in breast, ovarian, and prostate cancers, where clin-
ically relevant concentrations inhibited their survival.40,41 
The in vivo data presented in this study underline the clin-
ical relevance of our findings and show that bupivacaine 
monotherapy reduces the tumorigenicity of GBM cells 
in vivo. As high PFKM levels predicted poor prognosis of 
GBM patients undergoing bevacizumab therapy, the su-
perior efficacy of bupivacaine and bevacizumab combi-
nation compared to either of the drugs alone, provides 
the proof of concept and validates our initial hypothesis. 
Optimization of drug efficacy in the brain requires under-
standing of the local exposure to unbound drug at the site 
of action, which is impacted by the blood-brain barrier 
(BBB). The work by Mateus et al suggests that bupivacaine 
penetrates the BBB.42 To avoid systemic toxicity, localized 
drug delivery could be considered. A pharmaceutical grade 
liposomal bupivacaine formulation has been clinically ap-
proved for pain management (Exparel)43 and could be po-
tentially explored for local delivery at the surgical resected 
site of GBM.

Encouraged by our findings, we believe that PFKM may 
serve as an attractive therapeutic target for GBM. The 
early evidence provided here suggests that PFKM inhibi-
tion therapy can potentiate the efficacy of bevacizumab 
and warrants further investigation to fulfill the therapeutic 
promise of this early preclinical study.
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