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Quantitative proteomic landscapes of primary and 
recurrent glioblastoma reveal a protumorigeneic 
role for FBXO2-dependent glioma-microenvironment 
interactions
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Abstract
Background.  Recent efforts have described the evolution of glioblastoma from initial diagnosis to post-treatment recur-
rence on a genomic and transcriptomic level. However, the evolution of the proteomic landscape is largely unknown.
Methods.  Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) was 
used to characterize the quantitative proteomes of two independent cohorts of paired newly diagnosed and recurrent 
glioblastomas. Recurrence-associated proteins were validated using immunohistochemistry and further studied in 
human glioma cell lines, orthotopic xenograft models, and human organotypic brain slice cultures. External spatial 
transcriptomic, single-cell, and bulk RNA sequencing data were analyzed to gain mechanistic insights.
Results.  Although overall proteomic changes were heterogeneous across patients, we identified BCAS1, INF2, and 
FBXO2 as consistently upregulated proteins at recurrence and validated these using immunohistochemistry. Knockout 
of FBXO2 in human glioma cells conferred a strong survival benefit in orthotopic xenograft mouse models and reduced 
invasive growth in organotypic brain slice cultures. In glioblastoma patient samples, FBXO2 expression was enriched in 
the tumor infiltration zone and FBXO2-positive cancer cells were associated with synaptic signaling processes.
Conclusions. These findings demonstrate a potential role of FBXO2-dependent glioma-microenvironment interactions 
to promote tumor growth. Furthermore, the published datasets provide a valuable resource for further studies.
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Key Points

1.	 Proteome profiling of two cohorts of initial-recurrent glioblastoma pairs by 
PCT-SWATH.

2.	FBXO2 knockout improves survival in vivo and reduces invasive growth in brain 
slice cultures.

3.	FBOX2 is enriched in the infiltration zone and associates with neuronal signaling in 
FBXO2+ cells.

Glioblastoma is the most common and most aggressive 
primary brain tumor in adults.1 Despite multimodal first-
line treatment comprising surgery and radiochemotherapy 
with temozolomide, recurrence is inevitable and the treat-
ment options at recurrence are limited.2 Therefore, there is 
a need for a better understanding of the molecular changes 
associated with disease progression. Recent efforts char-
acterized the longitudinal evolution of glioblastoma upon 
disease progression and upon therapy at the genomic and 
transcriptomic levels. These studies revealed an overall 
similar clonal architecture between primary and recurrent 
tumors and both linear and branched evolution patterns of 
gene expression.3–5

However, mRNA levels do not accurately predict 
the abundance of functionally relevant protein levels.6 
Accordingly, the evolution of the proteomic landscape of 
glioblastoma during disease progression remains poorly 
understood. Technical advances in the last years now allow 
label-free, reproducible, and precise whole proteome quan-
tification of archived formalin-fixed, paraffin-embedded 
(FFPE) samples. A  recently described method combines 
pressure cycling technology (PCT) for sample processing 
and sequential window acquisition of all theoretical frag-
ment ion spectra mass spectrometry (SWATH-MS) to 
generate precise and comprehensive digital quantitative 
proteome maps as a resource that can be re-analyzed with 
different peptide spectral libraries depending on the sci-
entific question.7 Importantly, we have previously demon-
strated that this method works comparably well with fresh 
frozen and FFPE tissue samples.8 In this study, we apply this 
technology to characterize the evolution of the quantitative 
proteomic landscapes of glioblastoma in matched pairs 

of untreated initial and post-treatment recurrent tumor 
samples from two independent cohorts. Experimental val-
idation of the proteomic data and integration of external 
bulk, single-cell, and spatial RNA sequencing data reveals 
a potential involvement of the ubiquitin ligase adaptor pro-
tein FBXO2 in regulating invasive growth of glioma cells 
in a tissue-dependent manner. Furthermore, we provide a 
valuable resource for further studies on the glioblastoma 
proteome.

Materials and Methods

A detailed list of key resources and manufacturer informa-
tion can be found in Supplementary Tables S2–S4.

Data Availability

Protein matrices, clinical information, and analysis code 
are available in the Supplementary material. Single-
cell sequencing data and spatial transcriptomic data 
are available online.9,10 Proteomics raw data are depos-
ited on ProteomeXchange (https://www.iprox.org/, ID: 
IPX0003752001).

Cell Lines and Material

Human long-term glioma cell lines and glioma-initiating 
cells (Supplementary Table S2) were cultured as de-
scribed.11 NIH-3T3 fibroblasts were cultured in Dulbecco’s 

Importance of the Study

The formation of incurable recurrent tumors poses a 
major challenge in the management of glioblastoma pa-
tients. Several studies have described the evolution of 
glioblastoma from initial diagnosis to post-treatment re-
currence on the genomic and transcriptomic levels but 
failed to improve treatment regimens so far. In contrast, 
patient proteomes are generally understudied although 
quantitative protein-level information might be more 
relevant for defining functionally relevant phenotypes 
and identifying potential drug targets. In this study, we 

present quantitative proteomic landscapes of paired 
initial and recurrent glioblastoma samples from two 
independent patient cohorts using SWATH-MS, which 
revealed an increased abundance of BCAS1, FBXO2, 
and INF2 in recurrent tumors. Functional experiments 
using human knockout glioma cells in vitro, in vivo, and 
in organotypic brain slice cultures as well as integration 
of spatial, single-cell, and bulk transcriptome data sug-
gest a potential microenvironment-dependent tumor-
promoting role of FBXO2.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
https://www.iprox.org/
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
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modified Eagle medium supplemented with 10% fetal calf 
serum and 2 mM l-glutamine. Cell lines were authenticated 
at the Leibniz Institute DSMZ (Braunschweig, Germany) 
and regularly tested negative for mycoplasma.

Generation of Knockout Cell Lines

Knockout cell lines were generated by Cas9/sgRNA-
ribonucleoprotein complex (RNP) electroporation12 using 
the Neon electroporation system (Invitrogen, Carlsbad, CA, 
USA) using two different sgRNA (Lubio Science/Integrated 
DNA Technologies, Zurich, Switzerland) per target gene in 
order to create small deletions (Supplementary Table S3). 
Control cells were prepared identically but electropor-
ated in the absence of targeted gRNA. Single-cell-derived 
clones were generated for both knockout cells and con-
trols by clonal expansion. Homozygous editing of indi-
vidual clones was tested by PCR, Sanger sequencing, and 
immunoblot.

Cell Proliferation Assay

In total, 1500 cells were seeded in triplicates in 100 µL com-
plete medium in 96-well ViewPlates. At each indicated time 
point, cells were stained with Hoechst 33342, incubated for 
3 hours at 37°C/5% CO2 and nuclei were captured with the 
MuviCyte imaging system (4× objective, 3 fields of view 
per well). Nuclei were counted using CellProfiler13 and 
nuclear counts from each field of view within a well were 
aggregated to derive cell doubling times defined as ln(2)/
slope from a log-linear model using R/RStudio.14,15

Spheroid Growth Assay

In total, 1000 cells per well were seeded in 100 µL full me-
dium containing 1:100 Corning Type I collagen in six rep-
licates into cell-repellent 96-well U-bottom plates. After 
seeding, plates were centrifuged for 5 minutes at 100g, 
and spheroids were allowed to form for 48 hours, followed 
by brightfield image acquisition every 24 hours using the 
MuviCyte imaging system at 4× magnification. Spheroid 
size was estimated using Matlab/SpheroidSizer.16

Spheroid Invasion Assay

Spheroid invasion assay was performed as described17 
using NIH-3T3 conditioned medium as chemoattractant. 
Cells were allowed to invade for 24-48 hours at 37°C/5% 
CO2 followed by nuclear staining with Hoechst 33342. 
Spheroids were imaged with the MuviCyte imaging system 
(4× objective). Images were contrast-enhanced, converted 
to binary with ImageJ/Fiji18 and used as input for the auto-
mated quantification.17

Clonogenicity Assay

In total, 200 LN-229 cells were seeded in culture-treated 
6-well plates, cultivated for 14  days, and stained with 
crystal violet. Whole-well images were acquired with the 

MuviCyte imaging system (4× objective) and colonies were 
quantified in ImageJ/Fiji.

Soft Agar Assay

Six-well suspension plates were pre-coated with 1.5 mL of 
0.6% low-melt agarose in complete medium. In total, 2000 
cells/1.5  mL 0.3% low-melt agarose in complete medium 
were seeded into pre-coated wells in triplicates, incubated 
at 4°C for 30 minutes, and transferred to 37°C/5% CO2. Cells 
were cultured for 30 days and supplied with 200 µL com-
plete medium twice per week. Cell clusters were stained 
with MTT reagent for 30 minutes followed by imaging and 
quantification using ImageJ/Fiji.18

Immunohistochemistry

Tissue microarrays (TMA) were processed as described 
for deparaffination, antigen retrieval, and staining.19 
Antibodies specified in Supplementary Table S2 were 
used at 0.3  µg/mL (anti-BCAS1), 2.7  µg/mL (anti-FBXO2) 
or 0.35 µg/mL (anti-INF2). Rabbit IgG isotype control was 
used at matched concentrations. Microarrays were subse-
quently incubated in mouse anti-rabbit IgG-HRP (0.53 µg/
mL in LowCross-Buffer; anti-FBXO2 staining) or Histofine 
anti-rabbit immuno-peroxidase polymer (anti-BCAS1/INF2 
staining). Automated staining score (H score) estimation 
was performed using the TMARKER software.20

Animal Experiments

All experiments were performed under the guidelines of the 
Swiss federal law on animal protection and were approved 
by the cantonal veterinary office (ZH98/2018). CD1 female 
nu/nu mice (Janvier, Le Genest-Saint-Isle, France) of 6-12 
weeks of age were used in all experiments, and 150  000 
LN-229- or 270 000 ZH-161-derived cells were implanted as 
described.21 For histological confirmation of tumorigenicity, 
brains from three randomly selected glioma-bearing mice 
were collected per group, when the first mouse in the whole 
experiment became symptomatic, respectively.

Patient Samples

Studies were approved by the Institutional Review Board 
and ethics committee at the University Hospital Zurich 
(KEK-StV-Nr.19/08), the University Hospital Düsseldorf 
(study number 2019-641), and the University of Freiburg 
(protocol 100020/09 and 472/15_160880). Tissues were 
examined by board-certified neuropathologists to identify 
the tumor region. For the first cohort, 4-5 tissue punches 
(1 × 2 mm) were collected across the tumor area. For the 
independent validation cohort (cohort 2), whole tissue 
sections were collected and processed.

Organotypic Brain Slice Cultures

A pT4 plasmid backbone containing the zsGreen coding se-
quence controlled by an EF1a promoter was designed and 

used to fluorescently label FBXO2-KO cells and as a control for 
FBXO2 overexpression experiments. The same backbone was 
used to design an FBXO2 overexpression construct by placing 
a T2A splicing sequence followed by the FBXO2 coding se-
quence directly after the zsGreen coding sequence. Both con-
structs were ordered from GeneScript (GenScript Biotech B.V., 
Leiden, the Netherlands). mRNA encoding for the SB100X 
transposase was generated by in vitro transcription. 500 000 
cells were transfected with 3 µg of pT4 donor plasmid and 3 µg 
of SB100X mRNA using the Neon transcription system. After 
48 hours, positively transfected cells were selected with 3 µg/
mL puromycin. Fluorescently labeled cells were then used for 
organotypic brain slice cultures, as described in previous work 
(Supplementary Methods).

PCT‐assisted Sample Preparation and SWATH 
Mass Spectrometry

Tissue samples were processed using an NEP2320‐45k 
barocycler.8 1.5  µg of cleaned peptides was analyzed by 
SWATH‐MS using a SCIEX 6600 TripleTOF mass spec-
trometer connected to an Eksigent NanoLC 400 system. 
Raw data were processed and normalized and protein ma-
trices were generated as described using OpenSWATH.8 
Protein matrices containing 9307 (cohort 1, 57.6% NA) and 
11 233 (cohort 2, 62.8% NA) protein groups (PG), respec-
tively, were imported into RStudio.14 PG detected in less 
than 40% of samples were filtered out, resulting in 4139 
PG/18.7% NA (cohort 1) and 4793 PG/29% NA (cohort 2), 
respectively. For downstream analyses, protein matrices 
were log2-transformed.

Downstream Analyses of Protein Matrices

R code used for the analysis of the proteomic datasets is 
provided in the Supplementary material. Hierarchical clus-
tering was performed on row-wise Z score-transformed 
data using ComplexHeatmap.22 Gene set enrichment anal-
ysis was performed using clusterProfiler.23 For the identifi-
cation of differentially expressed proteins, protein matrices 
were filtered for PG detected in both cohorts (N = 2994). PG 
with at least a 2-fold change in abundance at recurrence 
across both independent datasets were pre-selected and 
individually tested for significance using one-sided paired 
Wilcoxon rank-sum tests (Ha = greater for increased and 
Ha = less for decreased proteins, respectively). Significant 
proteins (P < .05) shared between both cohorts were then 
cross-validated on published RNA sequencing data.5 
Interpatient correlations of expressed proteins within ini-
tial and recurrent tumors were calculated by bootstrapping 
(subsample size: 2 × 7, 1000 iterations), and the resulting 
correlation distributions were compared. Patient survival 
was analyzed on the basis of external RNA sequencing5 
and two independent proteomics datasets24,25 using uni-
variate Cox proportional hazard regression models imple-
mented in survival/survminer.26,27

Analysis of Patient MRI and RNA Microarray Data

Patient MRI imaging and Affy-U133a Array mRNA expres-
sion data from 118 IDH wildtype patients were obtained 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data


293Buehler et al. Proteomic profiles of primary and recurrent glioblastoma
N

eu
ro-

O
n

colog
y

used to fluorescently label FBXO2-KO cells and as a control for 
FBXO2 overexpression experiments. The same backbone was 
used to design an FBXO2 overexpression construct by placing 
a T2A splicing sequence followed by the FBXO2 coding se-
quence directly after the zsGreen coding sequence. Both con-
structs were ordered from GeneScript (GenScript Biotech B.V., 
Leiden, the Netherlands). mRNA encoding for the SB100X 
transposase was generated by in vitro transcription. 500 000 
cells were transfected with 3 µg of pT4 donor plasmid and 3 µg 
of SB100X mRNA using the Neon transcription system. After 
48 hours, positively transfected cells were selected with 3 µg/
mL puromycin. Fluorescently labeled cells were then used for 
organotypic brain slice cultures, as described in previous work 
(Supplementary Methods).

PCT‐assisted Sample Preparation and SWATH 
Mass Spectrometry

Tissue samples were processed using an NEP2320‐45k 
barocycler.8 1.5  µg of cleaned peptides was analyzed by 
SWATH‐MS using a SCIEX 6600 TripleTOF mass spec-
trometer connected to an Eksigent NanoLC 400 system. 
Raw data were processed and normalized and protein ma-
trices were generated as described using OpenSWATH.8 
Protein matrices containing 9307 (cohort 1, 57.6% NA) and 
11 233 (cohort 2, 62.8% NA) protein groups (PG), respec-
tively, were imported into RStudio.14 PG detected in less 
than 40% of samples were filtered out, resulting in 4139 
PG/18.7% NA (cohort 1) and 4793 PG/29% NA (cohort 2), 
respectively. For downstream analyses, protein matrices 
were log2-transformed.

Downstream Analyses of Protein Matrices

R code used for the analysis of the proteomic datasets is 
provided in the Supplementary material. Hierarchical clus-
tering was performed on row-wise Z score-transformed 
data using ComplexHeatmap.22 Gene set enrichment anal-
ysis was performed using clusterProfiler.23 For the identifi-
cation of differentially expressed proteins, protein matrices 
were filtered for PG detected in both cohorts (N = 2994). PG 
with at least a 2-fold change in abundance at recurrence 
across both independent datasets were pre-selected and 
individually tested for significance using one-sided paired 
Wilcoxon rank-sum tests (Ha = greater for increased and 
Ha = less for decreased proteins, respectively). Significant 
proteins (P < .05) shared between both cohorts were then 
cross-validated on published RNA sequencing data.5 
Interpatient correlations of expressed proteins within ini-
tial and recurrent tumors were calculated by bootstrapping 
(subsample size: 2 × 7, 1000 iterations), and the resulting 
correlation distributions were compared. Patient survival 
was analyzed on the basis of external RNA sequencing5 
and two independent proteomics datasets24,25 using uni-
variate Cox proportional hazard regression models imple-
mented in survival/survminer.26,27

Analysis of Patient MRI and RNA Microarray Data

Patient MRI imaging and Affy-U133a Array mRNA expres-
sion data from 118 IDH wildtype patients were obtained 

from the TCGA network (https://www.cancer.gov/tcga). 
Tumors were segmented using the BraTS-toolkit28 and 
tumor shape parameters were extracted from segmented 
tumors using pyRadiomics (v3).29

Spatial and Single-Cell Transcriptomics

Single-cell RNA sequencing (scRNA-seq) data9 were 
batch-corrected and horizontal integration was performed 
through a mutual nearest neighbor approach.30 FBXO2 
gene expression across cell states was quantified using 
the SPATA toolbox.31 Spatial transcriptomic data, including 
non-malignant samples as well as glioblastoma specimens 
from newly diagnosed and recurrent tumors,10 were ac-
quired from the Freiburg Spatial GBM Atlas and analyzed 
with the SPATA toolbox.31 Gene expression at spatial res-
olution was quantified by Moran’s I statistics. Gene set en-
richment analysis was performed using clusterProfiler.23

Statistical Analysis

All data were analyzed with the statistical software R/
RStudio.14,15 A  detailed list of relevant packages and ref-
erences is provided in Supplementary Table S2. Statistical 
tests were performed as indicated in the figure legends. 
Significance levels were indicated as follows: *P < .05, 
**P < .01, and ***P < .001.

Results

Study Design and Data Overview

To characterize the quantitative proteomic landscapes 
of newly diagnosed and recurrent glioblastoma, we ap-
plied PCT-SWATH to two independent patient cohorts of 
matched paired glioblastoma samples obtained at ini-
tial diagnosis and recurrence from two different centers 
(Figure 1A, Supplementary Table S1). Cohort 1 comprised 
pooled tissue punches covering different tumor regions 
from 26 matched pairs, whereas cohort 2 comprised one 
complete tissue section with a tumor content of more 
than 75% from 16 matched pairs. All tumors had an IDH-
wildtype status and all patients received standard of care 
radiochemotherapy with temozolomide. In total, 8607 PG 
were detected in both cohorts, and 3001 PG were quan-
tified in at least 40% of the samples and shared between 
both cohorts (Figure 1B and C).

The Proteomic Landscape of Newly Diagnosed 
and Recurrent Glioblastoma Is Overall Similar

At the global proteome level, initial tumors did not separate 
uniformly from recurrent tumors in principal component 
analyses of either cohort (Figure 2A). Furthermore, average 
protein levels were highly correlated between newly diag-
nosed and recurrent samples, suggesting a high overall 
similarity of the overall quantitative proteomes between 
matched newly diagnosed and recurrent samples (Figure 
2B). Unsupervised hierarchical clustering did not reveal 
clustering of other clinically relevant subgroups as defined 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
https://www.cancer.gov/tcga
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
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by MGMT promoter methylation status, progression-free 
or overall survival based on the global proteome (Figure 
2C). However, correlations of protein levels between pa-
tients were significantly lower in recurrent tumors com-
pared to newly diagnosed tumors suggesting an overall 
higher heterogeneity of the disease at recurrence (Figure 
2D). Comparative gene set enrichment analysis between 
initial and recurrent tumors revealed 15 significantly en-
riched Reactome pathways shared by both cohorts, all of 
which are associated with proteins that are less abundant 
at recurrence (Figure 2E, Supplementary Figure 1). Several 
of these pathways are involved in modifications of trans-
lation elongation, which is a frequently altered process in 
cancer.32

BCAS1, FBXO2, and INF2 Are More Abundant at 
Recurrence

To identify individual proteins that showed quantitative 
differences from initial diagnosis to recurrence, we in-
vestigated longitudinally differentially expressed pro-
teins with a 2-fold change or higher across both cohorts 
(Supplementary Note). This revealed 75 proteins with 
higher and 242 proteins with lower abundance at recur-
rence, of which 5 and 21, respectively, were statistically 
significant after follow-up statistical inference (Figure 
3A). Subsequently, we focused on the 5 upregulated pro-
teins CaMK2, BCAS1, FBXO2, INF2, and PRPS2 as their 
inhibition might be therapeutically exploited for recurrent 
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by PCT, and SWATH mass spectrometry. (B) Overview of the number of detected proteins and proportion of samples in which the proteins were 
quantified. (C) Number of common and unique proteins detected in cohort 1 and cohort 2, respectively.
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glioblastoma. Calcium-calmodulin-dependent protein ki-
nase II (CaMK2), including the beta (CAMK2B) and gamma 
(CAMK2G) isoforms, has been previously studied in re-
current glioblastoma, with high expression linked to poor 
prognosis.33,34 In contrast, INF235 and PRPS236 have only 
been scarcely investigated and BCAS1 and FBXO2 have 
not been investigated in glioblastoma. Increased abun-
dance of BCAS1, FBXO2, and INF2, but not PRPS2, in re-
current tumors, was confirmed by immunohistochemical 
staining of a TMA comprising 20 initial-recurrent glioblas-
toma pairs (Figure 3C, Supplementary Figure 2A) and on 
independent RNA sequencing data5 (Figure 3D). Univariate 
Cox regression models of published proteomics24,25 and 
RNA sequencing data5 showed an opposing trend for an 
association of FBXO2 protein or transcript level with sur-
vival, whereas there was a consistent trend of INF2 expres-
sion with inferior survival on both protein and transcript 
levels (Figure 3E and F, Supplementary Figure 2C–E). In ad-
dition, both FBXO2 and INF2 abundance was significantly 
lower in long-term surviving (≥3-year OS) glioblastoma pa-
tients. Furthermore, protein abundances were significantly 
different among different transcriptional subtypes of gli-
oblastoma37,38 (Figure 3E and F, Supplementary Figure 2D 
and E).

FBXO2 Knockout Increases Survival in Orthotopic 
Xenograft Mouse Models and Reduces Glioma 
Cell Growth in Human Organotypic Brain Slice 
Cultures

To investigate the functional roles of BCAS1, FBXO2, and 
INF2 in glioblastoma, we used CRISPR/Cas9 to generate 
individual knockout cell clones from the human glioma 
cell line LN-229 and the glioma-initiating cell line ZH-161 
(Figure 4A and B, Supplementary Figure 3). Notably, 
protein-level confirmation of gene knockout was not pos-
sible for BCAS1 due to poor specificity of available anti-
bodies. In both glioma cell lines, knockout of BCAS1, 
FBXO2, and INF2 did not lead to a consistent phenotype 
in growth and clonogenicity assays in vitro (Figure 4C 
and D, Supplementary Figure 4) but led to an increased 
migratory capacity in vitro (Figure 4E, Supplementary 
Figure 5). In contrast to the in vitro situation, tumor cell 
growth in vivo depends on complex interactions with 
the surrounding extracellular matrix (ECM), cell types, 
metabolites, and growth factors. In orthotopic xenograft 
models, FBXO2 knockout cells led to improved survival 
and an increased fraction of long-term surviving mice 
compared to the control cells in both cell line models 
(Figure 5A). Histological assessment of mouse brains at 
the onset of neurological symptoms confirmed the pres-
ence of tumors and indicated reduced tumor growth in 
FBXO2-KO cells (Figure 5A). In contrast, the survival ef-
fects upon implantation of BCAS1- or INF2-knockout 
glioma cells were less consistent between the individual 
clones and cell lines. To confirm the role of FBXO2 for the 
integration and growth of glioma cells in a environment 
recapitulating human microenvironment, we injected 
LN-229 FBXO2 knockout cells or control cells into human 
organotypic brain slices39 (Figure 5B). LN-229 control cells 
exhibited a more infiltrative behavior characterized by 
the extensive spreading of glioma cells whereas LN-229 

FBXO2 knockout cells displayed a spot-like growth pat-
tern, resulting in an overall reduced infiltrated area. 
Overexpression of FBXO2 in a FBXO2-negative cell line 
model did not reveal striking morphological differences 
(Supplementary Figure 6), which might suggest that not 
FBXO2 itself determines the different growth patterns but 
rather cellular changes associated with its physiological 
expression or loss. We further investigated the associa-
tion of FBXO2 with infiltrative tumor growth using MRI 
and matched transcriptomic data from the TCGA data-
base. This revealed that tumors with high FBXO2 expres-
sion, had a reduced tumor sphericity compared to tumors 
with low FBXO2 expression, which suggests a more dif-
fuse tumor infiltration of tumors with high FBXO2 expres-
sion (Figure 5C).

FBXO2 Expression in Glioma Cells Is Associated 
With Developmental Transcription Programs 
and Pathways Modulating Synaptic Activity and 
Interaction With the Environment

External scRNA-seq data9 as well as spatial transcriptomics 
data from external glioblastoma samples10 were ana-
lyzed to identify glioma cell states that are associated with 
FBXO2 expression and the spatial distribution of FBXO2-
expressing cancer cells. FBXO2-expressing glioma cells 
were associated with tumor regions exhibiting a reactive 
immune signature and neurodevelopmental transcrip-
tion programs (Figure 6A), whereas BCAS1 and INF2 
were more broadly expressed across different tumor re-
gions (Supplementary Figure 7A). Incorporation of known 
gene expression signatures9,10,40 confirmed a strong spa-
tial correlation between FBXO2-enriched tumor regions 
and neurodevelopmental, NPC/OPC-like, and proneural 
gene signatures (Figure 6B), thereby confirming increased 
FBXO2 protein abundance observed in proneural tumors 
(Figure 3F). In contrast, MES-like signatures and FBXO2 
were negatively correlated in a spatial context (Figure 
6B, Supplementary Figure 7B). In spatial transcriptomic 
data from healthy brain tissue, FBXO2 expression was re-
stricted to layer 1 (L1) of the neocortex (Figure 6C), which 
is a niche for neural progenitor cells.41 Importantly, FBXO2 
expression was strongly enriched within the infiltration 
zone and also upregulated at recurrence (Figure 6D and 
E), confirming proteomics and bulk RNA-seq data (Figure 
3B and D). In FBXO2+ glioma cells, pathways associated 
with synaptic activity, cell-cell interaction, transmembrane 
transport, vesicle secretion, and phospholipase C signaling 
were significantly enriched (Supplementary Figure 7C). 
These associations were also confirmed by meta-pathway 
analysis combining both bulk and scRNA-seq data (Figure 
6F) and by reduced formation of PSD-95 puncta in the vi-
cinity of FBXO2-KO glioma cells in organotypic brain slice 
cultures (Figure 6G, Supplementary Figure 8), suggesting 
a role of FBXO2 in glioma cells in mediating interactions 
with the surrounding CNS tissue.

Discussion

Despite multimodal treatment efforts, there is an 
unmet need to better characterize factors that are 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
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http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac169#supplementary-data
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Fig. 6  Single-cell, bulk RNA sequencing, and spatial transcriptomics reveal cell states, locations, and pathways associated with FBXO2 expres-
sion in glioma cells. (A) Transcriptional profiles of spatially separated tumor regions. Each vertical line is a tumor region and transcriptional pro-
files of different regions are indicated as radial glia, reactive immune, OPC, neural development, and reactive hypoxia (upper panel). Glioma cells 
were identified by copy number variation (CNV) and FBXO2, BCAS1, and INF2 expression in glioma cells was mapped to different tumor zones 
(lower panel). (B) Spatial correlation between FBXO2 expression and different single-cell, spatial, and bulk expression signatures. (C–E) FBXO2 
expression in spatial transcriptomic data from healthy brain cortex (C), glioblastoma tissue samples (D), and initial-recurrent glioblastoma tissue 
(E). Expression level of FBXO2 in different tumor regions is color-coded by normalized gene expression. (F) Meta-pathway enrichment anal-
ysis based on external glioblastoma single-cell and bulk RNA sequencing data. (G) Effect of FBXO2 knockout on PSD-95-positive post-synaptic 
puncta formation in the vicinity of glioma cells in organotypic brain slice cultures. Filled and empty arrowheads represent positive and negative 
puncta, respectively. Quantification of puncta by Wilcoxon rank-sum test. Scale bar = 25 µm.
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associated with disease progression of glioblastoma. 
Recent studies investigated longitudinal genomic3,4 and 
transcriptomic5 changes in glioblastoma, whereas only 
one study so far characterized initial-recurrent tissue 
pairs on the proteome level.42 This study revealed sto-
chastic patient-individual longitudinal protein changes 
and poor separation of initial and recurrent tumors but 
is limited by low sample size and limited protein cov-
erage. We extend these findings using PCT-SWATH-MS 
of FFPE samples from two independently assembled, 
processed, and acquired patient cohorts. Despite the 
overall similar global proteomic landscapes of matched 
initial and recurrent glioblastomas, we identified shared 
proteins that were down- or upregulated at recurrence 
in both cohorts (Figure 3). FBXO2, a brain-enriched ubi-
quitin ligase substrate adaptor,43 was highly upregulated 
at recurrence across both independent cohorts and is 
also significantly less abundant in long-term surviving 
glioblastoma patients (Figure 3). This protein has not 
been investigated in the context of glioblastoma and its 
role in physiological and pathophysiological processes 
is poorly understood. Recent experimental studies have 
demonstrated an oncogenic role of FBXO2 in other 
cancer types.44,45 In addition, retrospective studies 
have demonstrated an association between FBXO2 ex-
pression and metastatic rate in colorectal and gastric 
cancer.46 FBXO2 knockout in two human glioma models 
did not reveal a consistent phenotype in vitro (Figure 4) 
but led to a strong survival increase in vivo and impaired 
growth and infiltration in human organotypic brain 
slice cultures (Figure 5). Furthermore, our data provide 
early evidence for reduced post-synaptic puncta forma-
tion in the vicinity of FBXO2 knockout cells, suggesting 
a role of FBXO2 in shaping the interaction of glioma 
cells with their microenvironment. Recent studies have 
demonstrated that FBXO2 may modulate synaptic con-
nectivity47 and neurodegeneration,48 which potentially 
could be exploited by glioma cells to facilitate integra-
tion into the microenvironment. Additionally, analyses 
of spatial transcriptomic, single-cell, and bulk RNA 
sequencing data demonstrate enrichment of synaptic 
signaling, cell-cell interaction, and neurodevelopmental 
pathways in FBXO2-expressing glioma cells and reveal 
spatially enriched FBXO2 expression at the infiltration 
margin of tumors. These findings are consistent with re-
cent transcriptomics data showing increased neuronal 
signaling in recurrent tumors.49 Overall, this study in-
dicates a potential role of FBXO2 in promoting tumor 
growth in vivo. However, additional efforts will be re-
quired to understand the underlying molecular mechan-
isms for potential therapeutic targeting.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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