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Abstract 

Background:  Epigenetic modifications like DNA methylation are understood as an intermediary between environmental factors and 
neurobiology. Cerebral monoamine oxidase A (MAO-A) levels are altered in depression, as are DNA methylation levels within the 
MAOA gene, particularly in the promoter/exon I/intron I region. An effect of MAOA methylation on peripheral protein expression was 
shown, but the extent to which methylation affects brain MAO-A levels is not fully understood.

Methods:  Here, the influence of MAOA promoter/exon I/intron I region DNA methylation on global MAO-A distribution volume (VT), 
an index of MAO-A density, was assessed via [11C]harmine positron emission tomography in 22 patients (14 females) suffering from 
seasonal affective disorder and 30 healthy controls (17 females).

Results:  No significant influence of MAOA DNA methylation on global MAO-A VT was found, despite correction for health status, 
sex, season, and MAOA variable number of tandem repeat genotype. However, season affected average methylation in women, with 
higher levels in spring and summer (Puncorr = .03). We thus did not find evidence for an effect of MAOA DNA methylation on brain 
MAO-A VT.

Conclusions:  In contrast to a previous study demonstrating an effect of methylation of a MAOA promoter region located further 5’ 
on brain MAO-A, MAOA methylation of the region assessed here appears to affect brain protein levels to a limited extent at most. The 
observed effect of season on methylation levels is in accordance with extensive evidence for seasonal effects within the serotonergic 
system.

Clinicaltrials.gov Identifier:  NCT02582398 (https://clinicaltrials.gov/ct2/show/NCT02582398).
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Significance Statement

Changes to methylation of the promoter/exon I/intron I region of the MAOA gene were shown in depression, as were changes to 
brain levels of the corresponding monoamine oxidase A (MAO-A) protein, which is essential for serotonin degradation. However, 
though MAOA methylation was shown to affect expression in vitro, the extent to which methylation within this gene region affects 
brain levels in humans in vivo, and whether effects differ between healthy and depressed individuals, is unclear. Here, we did not 
detect a significant influence of MAOA promoter/exon I/intron I DNA methylation on cerebral MAO-A levels assessed with [11C]
harmine positron emission tomography, suggesting that methylation effects are minor in the context of in vivo brain MAO-A vari-
ability. However, methylation levels varied across the seasons in women, with higher levels in spring/summer than autumn/winter, 
providing evidence for seasonal variation in serotonergic gene regulation.

https://creativecommons.org/licenses/by/4.0/
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INTRODUCTION
As the enzyme primarily responsible for degradation of seroto-
nin, monoamine oxidase A (MAO-A) is integral to monoaminergic 
homeostasis in the human brain. Alterations to MAO-A function 
have been associated with risk (Ducci et al., 2008; Weder et al., 
2009), pathophysiology, and treatment (Chiuccariello et al., 2015) 
of various psychiatric illnesses. These include affective (Meyer et 
al., 2006), anxiety (Reif et al., 2014), obsessive compulsive (Taylor, 
2013), substance use (Matthews et al., 2014), and personality dis-
orders (Kolla et al., 2016). In depression, MAO-A hyperactivity is 
thought to result in reduced serotonin signaling (Meyer et al., 2006). 
Information provided by peripheral assessments of MAO function 
is limited, as platelet MAO expression is restricted to that of MAO-
B, while the brain expresses both isoenzymes (Shih et al., 1999). 
Positron emission tomography (PET) with [11C]harmine provides 
specific in vivo information on brain MAO-A density and distri-
bution (Bergstrom et al., 1997a; Ginovart et al., 2006). In particu-
lar, [11C]harmine PET studies have provided evidence for changes 
to MAO-A distribution volume (VT), an index of protein levels, in 
major depression (Meyer et al., 2006).

Changes to DNA methylation within the MAOA gene have been 
observed in multiple psychiatric conditions (Domschke et al., 2012; 
Peng et al., 2018; Schiele et al., 2018, 2020; Ziegler and Domschke, 
2018; Ziegler et al., 2018). They are mediated both by risk factors 
for (Checknita et al., 2018, 2021)—as well as treatment of (Ziegler et 
al., 2016; Schiele et al., 2018)—these diseases, suggestive of a role of 
MAOA gene methylation as an intermediary between environment 
and neurobiology. In vitro studies demonstrate a negative associ-
ation between peripheral blood MAOA promoter/intron I/exon I 
methylation and protein function (Checknita et al., 2015; Schiele 
et al., 2018). Methylation of this region has been linked to clinical 
conditions (Melas and Forsell, 2015; Bendre et al., 2018; Checknita 
et al., 2018). In theory, methylation of this region may be associated 
with particularly strong downregulation of transcription (Brenet et 
al., 2011). In a PET study utilizing in vivo [11C]clorgyline in healthy 
individuals, a negative association between MAOA promoter meth-
ylation and brain MAO levels was demonstrated (Shumay et al., 
2012). However, the effect of promoter/exon I/intron I methylation 
on human in vivo brain MAO-A levels in patients with depression, 
as measured by [11C]harmine, has yet to be assessed.

Seasonal affective disorder (SAD) is characterized by depres-
sive symptoms in autumn and winter and remission in spring 
and summer. Though evidence points toward a serotonergic 
pathophysiology (Neumeister et al., 2000; Praschak-Rieder et al., 
2008) and efficacy of MAO inhibitors such as moclobemide are 
suggestive of a role for MAO-A (Lingjaerde et al., 1993), a study 
by our group did not find altered MAO-A VT in SAD (Spies et al., 
2018). However, the role of epigenetic mechanisms in driving dif-
ferences in cerebral MAO-A levels is insufficiently understood.

Here we assessed (1) the effect of average and CpG-specific 
MAOA promoter/exon I/intron I region DNA methylation on brain 
MAO-A VT assessed with [11C]harmine PET in 30 healthy individ-
uals and 22 patients with winter-type SAD. (2) We additionally 
took the seasonal pathophysiology of SAD into consideration by 
probing the impact of season on MAOA DNA methylation.

METHODS
Study Design
The current study utilizes [11C]harmine PET and MAOA DNA meth-
ylation data from 30 healthy controls (HCs) and 22 patients with 
winter-type SAD (n = 52). Data were gleaned from a previously 

published study assessing changes to MAO-A VT in SAD after treat-
ment with bright light therapy (BLT) and across the seasons (Spies 
et al., 2018) that comprised a screening visit, 3 PET measurements 
(PET1, before treatment in autumn/winter; PET2, after treatment 
in autumn/winter; and PET3, after treatment in spring/summer), a 
structural magnetic resonance imaging scan, and a follow-up visit. 
A blood draw for methylation analysis was performed at either 
PET1, PET3, or the follow-up visit. Here, we utilized the PET scan 
(PET1 or PET3) that was performed closest to genetic/epigenetic 
blood sampling (mean difference 27.63 ± SD, 51.74 days between 
PET and blood draw). At PET3, patients were remitted from SAD, 
and some individuals had received BLT or placebo. The study was 
conducted in accordance with the Declaration of Helsinki, includ-
ing all current revisions and the good scientific practice guidelines 
of the Medical University of Vienna. The protocol was approved 
by the ethics committee of the Medical University Vienna (EK Nr.: 
1681/2016) and registered at clinicaltrials.gov (NCT02582398).

Participants
SAD patients were recruited via the respective outpatient clinic 
at the Department of Psychiatry and Psychotherapy, Medical 
University of Vienna. HCs were recruited via advertisements 
in local newspapers, electronic media, and dedicated message 
boards at the Medical University of Vienna. The Structured Clinical 
Interview for DSM-IV Axis I disorders was used to diagnose uni-
polar, winter-type SAD and exclude psychiatric comorbidities in 
patients as well as to confirm psychiatric health in HCs. In addi-
tion, to confirm (SAD patients) or exclude (HCs) the diagnosis of 
SAD, all individuals completed the Seasonal Pattern Assessment 
Questionnaire (Raheja et al., 1996). Participants were free from 
psychopharmacologic medication for the period of study partic-
ipation and within 6 months prior to study enrollment. Severe 
somatic illness, neurologic comorbidities, current drug abuse, cur-
rent smoking, and pregnancy (female participants) were excluded 
based on medical history, routine laboratory parameters (blood 
draw and urine tests), electrocardiography, and physical exami-
nation performed at the screening visit. All individuals provided 
written informed consent and received financial reimbursement 
for their participation.

Positron Emission Tomography
PET scans were performed with a GE Advance full-ring PET scan-
ner (GE Medical Systems, Waukesha, WI, USA) at the Department 
of Biomedical Imaging and Image-guided Therapy, Medical 
University of Vienna. [11C]harmine (7-[11C]methoxy-1-methyl-9H-
[3,4-b]indole) synthesis and quality control were performed in 
line with the workflow presented by (Philippe et al., 2015). In a first 
step, a 5-minute transmission scan was performed with 68GE rod 
sources for tissue attenuation. Dynamic PET scans started simul-
taneously with the i.v. bolus application of [11C]harmine (4.6 MBq/
kg body weight) (Bergstrom et al., 1997b; Ginovart et al., 2006). All 
scans were acquired in 3D mode, collecting 51 successive time 
frames (12 × 5 seconds, 6 × 10 seconds, 3 × 20 seconds, 6 × 30 sec-
onds, 9 × 1 minute, and 15 frames × 5 minutes), resulting in a total 
acquisition time of 90 minutes. Scans were reconstructed into 35 
transaxial section volumes (128 × 128 matrix) utilizing an itera-
tive filtered back-projection algorithm (FORE-ITER) with a spatial 
resolution of 4.36 mm full width at half maximum 1 cm next to 
the center of the field of view. Additionally, arterial blood samples 
for [11C]harmine quantification were drawn via automated blood 
sampling for the first 10 minutes of measurement (ALLOGG, 
Mariefred, Sweden), complemented by manual sampling at 5, 10, 
20, 30, 45, 60, and 80 minutes after tracer application.
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Magnetic Resonance Imaging
T1-weighted MR images (magnetization prepared rapid gradient 
echo sequence, 256 × 240 matrix, 1 × 1 mm voxel size, slice thick-
ness 1.1 mm, 200 slices) were acquired using a 3 Tesla PRISMA 
MR Scanner (Siemens Medical, Erlangen, Germany) at the Medical 
University of Vienna.

MAO-A VT Quantification
Prior to quantification, each PET scan was spatially normalized 
to Montreal Neurological Institute (MNI) space using SPM12 
(Wellcome Trust Centre for Neuroimaging, London, UK; http://
www.fil.ion.ucl.ac.uk/spm/). In short, each PET was corrected 
for head motion and co-registered to the T1 structural image. 
Afterwards, each MR scan was normalized to MNI space utilizing 
a tissue probability map, producing the transformation matrix 
that was used to normalize the co-registered PET scan to MNI 
space.

Manually drawn arterial blood samples were processed accord-
ing to the protocol published by (Ginovart et al., 2006). A gamma 
counter was cross-calibrated with the PET scanner as well as 
the automated arterial blood sampling system. Arterial blood 
samples drawn at 5 and 10 minutes were used for cross-calibra-
tion between the gamma counter and PET scanner. To acquire 
non-metabolized [11C]harmine in arterial blood as a function of 
time, the arterial input function was calculated as the product 
of whole blood activity (fit with 3 exponentials), plasma-to-whole 
blood ratio (linear fit), and the fraction of non-metabolized tracer 
concentration in arterial plasma (fit with Watabe function).

Logan plot was used for voxel-wise quantification of MAO-A VT. 
Previous studies have shown that quantification of MAO-A VT using 
the logan plot is stable and comparable with compartment mod-
eling strategies (Ginovart et al., 2006; Spies et al., 2018). Thereby, 
the estimated arterial input function and the time activity curve of 
thalamus, representing the high uptake region, were used. Regional 
VT were extracted for frontal and temporal pole, anterior and pos-
terior cingulate gyrus, thalamus, caudate, putamen, hippocam-
pus, and midbrain as adopted from the Harvard Oxford Structural 
atlas (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) as well as stria-
tum taken from an in-house atlas (Savli et al., 2012). Afterwards, a 
global region of interest (ROI) representing the weighted average of 
regional VT was utilized, as relevant regional differences in meth-
ylation effects on MAO-A VT were not hypothesized and because 
MAO-A VT was highly correlated between regions (average corre-
lation = 0.92 ± 0.04). PMOD 3.509 (PMOD Technologies Ltd., Zurich, 
Switzerland; www.pmod.com) was used to fit the arterial input 
function and for [11C]harmine quantification.

DNA Sampling and Isolation
Venous blood (approximately 24 mL) was collected in ethylene-
diaminetetraacetic acid (EDTA) blood tubes and stored at −80°C. 
DNA extraction was performed using the QIAamp DNA Blood Midi 
and Maxi Kit (Qiagen, Hilden, Germany) according to the man-
ufacturer’s recommendations at the Department of Psychiatry, 
Psychotherapy and Psychosomatics of the University of Halle, 
Germany. Afterwards, DNA samples were again stored at −80°C.

MAOA VNTR Genotyping and Methylation 
Analysis
Participants were genotyped for the MAOA variable number of 
tandem repeat (VNTR) promoter polymorphism containing 2, 
3, 3.5, 4, or 5 copies of the repeated sequence, as this variant 

was shown in vitro to affect MAO-A expression (Sabol et al., 
1998) and was related to depression (Du et al., 2002; Gutiérrez 
et al., 2004; Yu et al., 2005). MAOA VNTR genotyping was per-
formed at the Department of Psychiatry, Psychotherapy and 
Psychosomatics of the University of Halle, Germany. Briefly, 25-µL 
PCR reactions containing 50  ng DNA, 10 pMol each of forward 
(5’-TGCTCCAGAAACATGAGCAC-3’) and reverse primers (5’- 
ATTGGGGAGTGTATGCTGGA-3‘), 1 U Taq polymerase, 10 mmol 
dNTPs, 15  mM ammonium sulfate, 60  mM Tris-HCl (pH 9.5), 
and 1.5 mmol/µL MgCl2 were amplified in 35 cycles (94°C for 30 
seconds; 56°C for 30 seconds; 72°C for 1 minute) after an initial 
denaturation step at 94°C for 5 minutes and PCR fragments were 
resolved on a 2.5% agarose gel.

DNA methylation was then assessed at the Department of 
Psychiatry and Psychotherapy, University of Freiburg, Faculty 
of Medicine, Germany, via direct sequencing of bisulfite-con-
verted DNA. Degree of methylation at 13 CpG sites located in 
an amplicon comprising promoter/exon I/intron I of MAOA 
(chromosome X, GRCh38.p2 Primary Assembly, NCBI Reference 
Sequence: NC_000023.11, 43656260–43656613) was analyzed 
individually. These CpG sites were numbered in accordance 
with prior studies on MAOA methylation in psychiatric dis-
eases: CpG 1 = 43 656 316; CpG 2 = 43 656 327; CpG 3 = 43 656 362; 
CpG 4 = 43 656 368; CpG 5 = 43 656 370; CpG 6 = 43 656 383; 
CpG 7 = 43 656 386; CpG 8 = 43 656 392; CpG 9 = 43 656 398; CpG 
10 = 43 656 427; CpG 11 = 43 656 432; CpG 12 = 43 656 514; CpG 
13 = 43 656 553 (Domschke, 2012; Ziegler et al., 2018). For detailed 
information on MAOA methylation analysis, see (Ziegler et al., 
2016). Average methylation of these 13 CpG sites was determined.

Statistical Analysis
Statistical tests were performed using SPSS version 28 for 
Windows (SPSS Inc., Chicago, IL, USA).

Analysis of MAOA DNA Methylation
—MAOA methylation data were available for 29 SAD patients 
(mean age, 32.83 ± SD 9.55 years, 18 females) and 44 HCs (mean 
age, 34.27 ± SD 9.86 years, 26 females). Average MAOA methylation 
was defined as the average methylation of all pre-defined CpG 
sites (CpG 1-13).

Based on Shapiro–Wilk tests for normality and visual inspec-
tion, non-parametric testing was used with average MAOA meth-
ylation as the primary outcome parameter. Mann-Whitney U test 
was used to probe for differences in average MAOA methylation 
between males and females, SAD patients and HCs, the effect 
of season (methylation analysis in spring/summer, covering 
the period from April to September vs autumn/winter, covering 
the period between October and March), and of VNTR high-ex-
pressing (3.5 and 4 repeats) vs low-expressing group (2, 3, and 5 
repeats) (Sabol et al., 1998).

Inter-correlation of CpG sites ranged from −0.22 to 0.86 in 
females and from −0.24 to 0.77 in males (see supplementary 
Figures 1–3). Thus, exploratory analyses of the effects of age, sex, 
group (SAD patients vs healthy controls), season, and VNTR gen-
otype on individual CpG site methylation levels were performed 
utilizing the same steps as for average methylation.

Effect of MAOA DNA Methylation on MAO-A VT
—PET data were available for 22 SAD patients (mean age, 
33 ± 10.20 years, 14 females) and 30 HCs (mean age, 33.80 ± 9.76 
years, 17 females). A general linear model (GLM) was utilized 
using global MAO-A VT as the dependent variable. Sex, VNTR 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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MAOA Methylation and [11C]harmine PET  |  119

expression group, season, and group (SAD patients vs HCs) were 
used as fixed factors and age (Z-scored) as covariate to probe for 
their potential effect on MAO-A VT for the subsequent analysis.

The effect of average MAOA methylation on global MAO-A VT 
was assessed using GLM, with global MAO-A VT as the depend-
ent variable and average methylation (Z-scored) as the covari-
ate. Based on previous evidence for an effect of sex, season, and 
depression on brain MAO-A VT (Meyer et al., 2009; Rekkas et al., 
2014; Spies et al., 2018), a second GLM was computed additionally 
including sex, group (SAD patients vs HCs), and season as fixed 
factors.

Furthermore, an independent sample t test was conducted 
comparing MAO-A VT between SAD patients and HCs in individ-
ual ROIs (frontal pole, temporal pole, ACC, PCC, thalamus, cau-
date, putamen, hippocampus, midbrain, and striatum).

In an exploratory manner, GLM analysis was repeated to assess 
the effects of individual CpG cite methylation on global MAO-A 
VT. Also, GLM analysis was repeated to assess the effects of aver-
age methylation on MAO-A VT within the individual ROIs (frontal 
pole, temporal pole, ACC, PCC, thalamus, caudate, putamen, hip-
pocampus, midbrain, and striatum) included in the global ROI, 
based on studies suggesting that PET may underestimate differ-
ences between regions (Tong et al., 2013).

Multiple testing was corrected using the Holm-Bonferroni 
method and significance was set at P < .05.

RESULTS
Analysis of MAOA DNA Methylation
Mann–Whitney U test revealed a significant effect of sex on aver-
age methylation, with higher levels in females (Pcorr < .05), which 
was expected based on the X-chromosomal location of MAOA. 
Hereafter, methylation data of male and female participants 
were investigated separately. No effect of group (SAD patients vs 
HCs) or VNTR genotype on average methylation was detected. As 
shown in Figure 1, an effect of season on average methylation was 
observed in female participants (all women, i.e., healthy women 
and women suffering from SAD), showing higher methylation lev-
els in women whose blood was drawn during spring or summer 
vs autumn or winter (2-sided Mann–Whitney U test, Puncorr = .03). 
This finding did not survive correction for multiple comparisons.

Results of exploratory analyses of the effects of age, sex, group 
(SAD patients vs HCs), season, and VNTR genotype on individ-
ual CpG site methylation levels are presented in the supplement. 
Mean methylation levels are presented in the supplement as well 
(supplementary Tables 1 and 2).

Effect of MAOA DNA Methylation on MAO-A VT

Initial GLM implemented to detect potential covariates (exclud-
ing methylation data) revealed no significant effect of group 
(SAD patients vs HCs), season, or VNTR genotype on MAO-A VT. 
However, as shown in Table 1, an effect of sex on MAO-A VT could 
be found, with higher MAO-A VT in females compared with males 
(Puncorr = .03).

Average MAOA DNA methylation had no significant effect on 
global MAO-A VT, regardless of whether group (SAD patients vs 
HCs), sex, or season were corrected for via inclusion as covariates 
(Puncorr = .20) or not (Puncorr = .68).

In addition, no significant differences in global or ROI-specific 
MAO-A VT between SAD patients and HCs was detected. Average 
global and ROI-specific MAO-A VT for both SAD patients and HCs 
are summarized in Table 2.

Results from exploratory analyses of specific CpG site meth-
ylation on global MAO-A VT and average MAOA methylation on 
specific ROIs are reported in the supplement.

DISCUSSION
Here, we explored the effect of MAOA DNA methylation on 
global brain MAO-A VT in HCs and patients with SAD. In con-
trast to prior findings on the effect of MAOA promoter meth-
ylation on cerebral MAO-A levels (Shumay et al., 2012), no 
statistically significant association was observed for aver-
age methylation of the 13 CpG sites assessed here (promoter/
exon I/ intron I). In addition to well-known sex differences in 
methylation of X-chromosomal genes (Nugent and McCarthy, 
2011) such as MAOA, we detected a statistically significant 
effect (uncorrected) of season on MAOA DNA methylation, 
with higher methylation levels in spring/summer. Group (SAD 
patients vs HCs) and MAOA promoter VNTR genotype (grouped 
by high-/low-expressing alleles) did not affect average MAOA 
DNA methylation.

Analysis of MAOA DNA Methylation
We observed higher MAOA methylation in samples that were col-
lected during spring or summer in women. Although this asso-
ciation did not survive correction for multiple comparisons, it 

Figure 1.  Lower average MAOA promoter/exon I/intron I region 
DNA methylation in autumn and winter compared with spring and 
summer within the female participant group (all women, 2-sided 
Mann–Whitney U test, Puncorr = .030).

Table 1.  Effect of potential covariates on global MAO-A VT

Variable Value label N Mean ± SD MAO-A VT P 

Sex Male 21 13.74 ± 3.22 .03*

Female 31 14.90 ± 3.18

Season Spring/summer 24 14.04 ± 3.05 .11

Autumn/winter 28 14.76 ± 3.42

Health status PAT 22 14.11 ± 3.69 .41

HC 30 14.66 ± 2.87

uVNTR High 34 14.84 ± 3.42 .12

Low 18 13.65 ± 2.71

Abbreviations: df, degrees of freedom; GLM, general linear model; HC, healthy 
controls; MAO-A VT, monoamine oxidase A distribution value; PAT, patients; 
uVNTR, upstream variable number of tandem repeats. GLM implemented to 
detect potential covariates (i.e., health status, season or VNTR genotype) on 
global MAO-A VT (* = significant at Puncorr < .05). 

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyac085#supplementary-data
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is in accordance with the role of season within the serotonergic 
system (Mc Mahon et al., 2016) and suggests increased serotonin 
availability during spring/summer as conferred by lower MAO-A 
activity due to MAOA hypermethylation. Restriction of this effect 
to the female sex is potentially related to the aforementioned 
X-linked nature of MAOA and general consequences for methyla-
tion (Lyon, 1961; Pinsonneault et al., 2006; Nugent and McCarthy, 
2011; Domschke et al., 2015).

In general, epigenetic adaptations such as DNA methylation 
are known to be sensitive to a variety of external influences (Lam 
et al., 2012) such as drugs (Webb et al., 2020), exposure to envi-
ronmental stimuli (Tao et al., 2014; Martin and Fry, 2018), toxins 
(Lambrou et al., 2012; Kim et al., 2013; Hernandez-Vargas et al., 
2015), tobacco smoke (Launay et al., 2009; Shenker et al., 2013), or 
nutritional factors (Crider et al., 2012). Furthermore, Bind and col-
leagues observed that environmental temperature and relative 
humidity were associated with dynamic changes in DNA meth-
ylation (Bind et al., 2014b). In line with this assumption, Ricceri 
et al. reported higher mean methylation in spring and summer 
for certain genes (Ricceri et al., 2014). Notably, such findings are 
not limited to humans, with changes to methylation observed in 
hibernating animals (Fujii et al., 2006; Alvarado et al., 2014). Thus, 
some environmental, nutritional, and biologic factors that follow 
a seasonal pattern affect methylation (Scoccianti et al., 2011; Park 
et al., 2012; Azzi et al., 2014; Bind et al., 2014a). Moreover, expres-
sion of various proteins within the serotonergic system was 
shown to be sensitive to season and light (Praschak-Rieder et al., 

2008; Spindelegger et al., 2012; Harrison et al., 2015; Matheson et 
al., 2015; Tyrer et al., 2016). Based on our methylation results, one 
might hypothesize that epigenetic processes facilitate these sea-
sonal protein-level changes. However, seasonal effects on meth-
ylation did not carry over to changes in MAO-A VT expression 
in our study, suggesting that these effects are minor compared 
with other variables (Bacher et al., 2011) or pathologic conditions 
known to affect MAO-VT (Meyer et al., 2009).

Again, we did not detect evidence for a significant effect of SAD 
on average MAOA DNA methylation. As summarized by (Ziegler 
and Domschke, 2018), changes to average MAOA methylation of 
the genetic subregion we assessed were shown in psychiatric con-
ditions (Melas et al., 2013; Melas and Forsell, 2015). Furthermore, 
Peng et al. investigated changes in MAOA promoter region meth-
ylation in depressive states, showing that methylation was neg-
atively associated with depressive symptoms (Peng et al., 2018). 
Thus, in conjunction with this literature, our study is suggestive 
of a different or lesser role of MAOA methylation in SAD patho-
physiology than is the case for non-seasonal depression. On a 
theoretical level, this is in accordance with authors who promote 
the concept of SAD as an individual disease entity (Bauer and 
Dunner, 1993).

Finally, we did not find an effect of MAOA VNTR genotype on 
average MAOA DNA methylation of the amplicon comprising pro-
moter/exon I/intron I. VNTR was taken into consideration based 
on its substantial effect on MAO-A function (Sabol et al., 1998) 
and thus potential impact on MAO-A VT, methylation, or both. 
An association of VNTR genotype and MAOA DNA methylation 
levels has been discussed (Philibert et al., 2008), though contra-
dicted by others (Shumay et al., 2012). It should be considered 
that, compared with the presently investigated promoter/exon I/
intron I region, the VNTR sequence is located further 5’ within 
the promoter of MAOA. Thus, any effects would be indirect, for 
example via secondary effects on other regulatory processes that 
include the promoter.

Effect of MAOA DNA Methylation on MAO-A VT

One previous study assessed the effect of peripheral MAOA meth-
ylation on brain MAO-A levels using [11C]clorgyline (Shumay et 
al., 2012). The authors reported an association between CpG site 
specific MAOA core promoter methylation further 5’ and brain 
MAO-A levels in healthy individuals. Here, we assessed methyla-
tion within a promoter/exon I/intron I region, based on previous 
literature demonstrating altered methylation of this sequence in 
psychiatric disorders (Ziegler et al., 2016, 2018) and prior obser-
vations that exon I methylation in general may result in par-
ticularly strong downregulation of transcription (Brenet et al., 
2011). As increased MAO-A is understood as an endophenotype of 
affective disorders (Meyer et al., 2006), we postulated that altered 
DNA methylation may facilitate changes in MAO-A VT previously 
observed in depression. The lack of an association in our study 
may thus be related to the methylation sites we assessed and 
could be suggestive of a stronger association between promoter 
methylation and cerebral MAO-A. Furthermore, we did not find a 
significant difference between SAD and HC in VT in this sample or 
in an overlapping sample previously published (Spies et al., 2018), 
highlighting that, even if MAOA methylation did have an effect of 
VT, this would be of limited pathophysiologic relevance.

However, the choice of tracer may also underlie the observed 
differences in findings between studies. These involve differ-
ences between [11C]clorgyline and [11C]harmine in enzyme-bind-
ing specificity and kinetics, with [11C]harmine showing markedly 

Table 2.  MAO-A VT between SAD patients and HC in individual 
ROIs

ROI Health status Mean ± SD MAO-A VT P 

Global ROI HC 14.66 ± 2.87 .89

PAT 14.11 ± 3.69

Frontal HC 13.99 ± 2.82 .07

PAT 13.39 ± 3.69

Temporal HC 13.56 ± 2.67 .82

PAT 13.59 ± 3.27

ACC HC 16.40 ± 3.21 .82

PAT 15.75 ± 4.20

PCC HC 16.39 ± 3.19 .88

PAT 15.62 ± 3.84

Thalamus HC 18.84 ± 3.95 .82

PAT 17.76 ± 4.85

Caudate HC 11.66 ± 2.66 .96

PAT 11.48 ± 3.13

Putamen HC 16.01 ± 3.02 .78

PAT 15.52 ± 4.17

Hippocampus HC 15.85 ± 3.15 1.00

PAT 15.07 ± 3.84

Midbrain HC 18.72 ± 3.78 .60

PAT 18.04 ± 4.21

Striatum HC 10.45 ± 2.31 .78

PAT 9.84 ± 2.58

Abbreviations: ACC, anterior cingulate cortex; HC, healthy controls; MAO-A 
VT, monoamine oxidase A distribution value; PAT, patients; PCC, posterior 
cingulate cortex; ROI, region of interest; SAD, seasonal affective disorder. 
Results of the independent sample t test comparing MAO-A VT between 
SAD patients (n = 22) and HCs (n = 30) in individual ROIs (* = significant at 
Puncorr < .05). 
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higher MAO-A specificity (Bergström et al., 1997a). Moreover, in 
contrast to [11C]harmine, [11C]clorgyline binds irreversibly to MAO 
(Fowler et al., 1987) and exhibits characteristics that may limit 
data quality, including the presence of radioactive metabolites 
with MAO affinity (Narayanaswami et al., 2019). Importantly, 
[11C]harmine has developed as the most commonly utilized 
radioligand for brain MAO-A imaging in psychiatry (Meyer et 
al., 2006, 2009; Spies et al., 2018; Baldinger-Melich et al., 2019). 
Therefore, further investigations with a comparable study design 
are needed to elucidate the role of MAOA DNA region in the rela-
tionship between methylation and cerebral MAO-A. Moreover, a 
wide range of post-transcriptional processes regulate serotoner-
gic protein expression, as illustrated by recent studies demon-
strating only weak or no association between mRNA and protein 
levels (Komorowski et al., 2017; Murgaš et al., 2022; Godbersen 
et al., 2022). Importantly, Komorowski et al. found a significant 
link between gene and protein expression for certain serotonin 
receptors (5-HT1A and 5-HT2A). In contrast, only a weak associa-
tion was shown for MAO-A when PET binding values and gene 
as well as protein expression were correlated (Komorowski et 
al., 2017). These factors, which cannot be addressed within our 
study design, may obscure the effects of methylation on cerebral 
MAO-A VT.

Limitations
Analysis of MAOA DNA methylation requires a sex-specific 
approach, which results in smaller sample sizes. Because meth-
ylation is susceptible to a wide variety of influences (Lam et al., 
2012; Martin and Fry, 2018), variation is high, potentially obscur-
ing smaller effect sizes. As a result, many studies of x-linked genes 
limit testing to male participants (Shumay et al., 2012). However, 
assessment in both sexes is paramount for a more comprehensive 
understanding of x-linked genetic and epigenetic processes. Our 
study sample size, though comparable with that of other MAO-A 
PET studies (Meyer et al., 2006; Attwells et al., 2017; Moriguchi et 
al., 2019; Svensson et al., 2021; Godbersen et al., 2022), in particu-
lar other studies addressing the impact of methylation (Shumay 
et al., 2012), can be considered relatively small. However, our 
study is adequately powered to detect effect sizes on the lower 
end of medium (f2 = 0.156) (Selya et al., 2012) with an alpha = .05, 
power = 0.8. Thus, our non-significant results demonstrate that 
average MAOA promoter/exon I/intron I region DNA methylation 
has, if any, only small effects on MAO-A VT. The study at hand 
assesses methylation of a DNA region (MAOA promoter/exon I/
intron I) located further 3’ than that used in the study performed 
by (Shumay et al., 2012). This decision was hypothesis driven 
based on the region’s clinical implications and potentially potent 
effect on protein expression (Domschke et al., 2012; Ziegler et 
al., 2016, 2018; Ziegler and Domschke, 2018). However, it limits 
comparability to prior findings that focus on the MAOA promoter 
(Shumay et al., 2012). To utilize PET data with temporal proximity 
to the time point of methylation analysis, PET data acquired in 
spring/summer were used in some participants. Thereby, some 
SAD patients were remitted at the time of assessment and some 
had received either BLT or placebo. Thus, for some individuals, 
sustained effects of BLT on MAOA DNA methylation or MAO-A 
expression cannot be ruled out.

Conclusion
Here we aimed to assess the effect of MAOA promoter/exon I/
intron I region DNA methylation (Ziegler et al., 2016, 2018) on cer-
ebral MAO-A VT assessed with [11C]harmine PET. We also probed 

the influence of SAD, season, and MAOA VNTR genotype. We did 
not find evidence for an effect of MAOA promoter/exon I/intron 
I region DNA methylation on brain MAO-A VT, in contrast to a 
previous PET study that demonstrated an association between 
MAOA promoter methylation and brain MAO-A levels. Thus, com-
pared with a region within the promoter located further 5’, MAOA 
promoter/exon I/intron I region DNA methylation only appears to 
have limited, if any, impact on brain protein levels. Importantly, 
the use of different radiotracers must be considered. We observed 
an effect of season on average methylation in females irrespec-
tive of their clinical health status (i.e., both in women suffering 
from SAD and in healthy women), which is in accordance with 
evidence for seasonal changes within the serotonergic system.

Supplementary Materials
Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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