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Significance

Physical contact between 
neighboring cells is known to 
induce transcriptional changes in 
the interacting partners. Accurate 
measurement of these cell–cell 
contact-based influences on the 
transcriptome is a very difficult 
experimental task. However, 
determining such transcriptional 
changes will highly enhance our 
understanding for the 
developmental processes. 
Current scRNA-seq technology 
isolates the tissue into individual 
cells, making it hard to determine 
the potential transcriptomic 
changes due to cell-cell 
interactions. Here, we combined 
PIC-seq and computational 
algorithms to identify cell type 
contact-dependent 
transcriptional profiles focusing 
on endoderm development. We 
have computationally identified 
and experimentally validated 
specific gene expression patterns 
depending on the presence of 
specific neighboring cell types. 
Our study suggests a new 
approach to disentangle the role 
of cell–cell interactions during 
embryogenesis.
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Development of multicellular organisms is orchestrated by persistent cell–cell commu-
nication between neighboring partners. Direct interaction between different cell types 
can induce molecular signals that dictate lineage specification and cell fate decisions. 
Current single-cell RNA-seq technology cannot adequately analyze cell–cell contact-de-
pendent gene expression, mainly due to the loss of spatial information. To overcome this 
obstacle and resolve cell–cell contact-specific gene expression during embryogenesis, we 
performed RNA sequencing of physically interacting cells (PIC-seq) and assessed them 
alongside similar single-cell transcriptomes derived from developing mouse embryos 
between embryonic day (E) 7.5 and E9.5. Analysis of the PIC-seq data identified gene 
expression signatures that were dependent on the presence of specific neighboring cell 
types. Our computational predictions, validated experimentally, demonstrated that neu-
ral progenitor (NP) cells upregulate Lhx5 and Nkx2-1 genes, when exclusively interacting 
with definitive endoderm (DE) cells. Moreover, there was a reciprocal impact on the 
transcriptome of DE cells, as they tend to upregulate Rax and Gsc when in contact with 
NP cells. Using individual cell transcriptome data, we formulated a means of computa-
tionally predicting the impact of one cell type on the transcriptome of its neighboring 
cell types. We have further developed a distinctive spatial-t-distributed stochastic neigh-
boring embedding to display the pseudospatial distribution of cells in a 2-dimensional 
space. In summary, we describe an innovative approach to study contact-specific gene 
regulation during embryogenesis.

single-cell RNA sequencing | PIC-seq | contact-specific expression | mouse embryonic 
development | spatial-tSNE

Cell–cell contact is important for cell-fate specification during development (1–9). Cell–
cell communication including direct cell–cell contact directs embryonic patterning, cell 
type specification, and organ formation (6). Removing specific tissue or placing ectopic 
explants into various embryonic regions can dynamically change the fate of cells adjacent 
to the manipulated area (3). For instance, manipulation with the crucial signaling center, 
anterior visceral endoderm, causes defects in the specification of forebrain identity later 
in development (10). It is well-recognized that ectopic grafts of signaling centers such as 
the node (N) or Spemann organizer can induce a secondary neural axis (11, 12). Even 
with the importance of various cell type interactions for development, it is still challenging 
to study gene expression changes in association with neighboring tissue. While the grafting 
experiments have significantly enhanced our understanding of the inductive ability of 
various neighboring cell types (11), these experiments are technically demanding and/or 
are not always feasible.

Single-cell transcriptional profiling has been successfully applied to identify cell types 
and their developmental trajectory during mouse organogenesis (13–15). However, the 
loss of spatial information in single-cell RNA sequencing (scRNA-seq) makes it difficult 
to trace the genes induced and regulated by the interaction of different cell types. 
Coexpression of ligand–receptor pairs from scRNA-seq data has been used to predict 
interacting cell types (16, 17). However, there are other modes of cell communication 
besides ligand–receptor, such as direct cell communication through gap junctions (18). 
It is still difficult to accurately detect neighboring tissue-specific gene expression changes.

Recently, RNA sequencing of multiple-interacting cells has been used to measure the 
transcriptome of physically interacting cells (PICs) without relying on ligand–receptor 
coexpression (19–23). ProximID identified the interacting cell types in the bone marrow 
and the small intestine in mice using the transcriptome of two or more PICs by applying 
mild dissociation of cells (19). Sequencing of physically interacting cells (PIC-seq) was 
employed to interrogate interactions of immune and epithelial cells in neonatal murine 
lungs (22) and to understand transcriptomic changes of liver endothelial cells across liver 
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zones (20). Cell–cell interactions by multiple sequencing were 
applied to identify interacting cell types in the gut epithelium, 
lung, and spleen (23).

While previous approaches using multiple interacting cells have 
mainly focused on investigating interacting cell types, we hypoth-
esize that interacting multi cells will retain gene expression derived 
from the physical interaction defined by these disparate cell types. 
To identify cell type contact-associated transcriptional profiles 
focusing on endoderm development, we dissected the developing 
mouse embryos (at E7.5, E8.5, and E9.5), sorted FOXA2Venus 
expressing cells, and used this material for PIC-seq. Using PIC-seq, 
we captured both homotypic and heterotypic cell clusters physi-
cally interacting with each other. Interestingly, we identified var-
ious sets of genes expressed in the heterotypic PICs but not each 
individual cell type. Computational analysis identified the cell 
types expressing unique gene sets specific to their neighbors. For 
instance, Lhx5 and Nkx2-1 were expressed exclusively in the neural 
progenitor (NP) cells that physically interact with definitive endo-
derm (DE) cells and Gsc and Rax were expressed in the DE cells 
interacting with NP cells. Some of these neighboring cell-type-
specific genes were associated with the development of specific 
embryonic regions. Validation using Geo-seq (24) which provides 
transcriptome from the dissected developing mouse embryos 

confirmed that we had successfully identified spatially organized 
sets of cells and neighboring cell-specific genes. Additionally, we 
designed experimental tools to investigate and successfully validate 
the computational predictions. Notably, we were able to predict 
neighboring cell types from scRNA-seq based on the cell con-
tact-specific genes. We further emulated the anatomy of the mouse 
embryos by visualizing cell–cell contact information and neigh-
boring cell-specific gene expression in a modified t-distributed 
stochastic neighbor embedding plot spatial-t-distributed stochastic 
neighboring embedding (spatial-tSNE). Our results suggest that 
the local environment information retained in the transcriptome 
of individual cells can be used to reconstruct potential spatial gene 
regulation patterns during development.

Results

Mapping of PIC-seq Data onto Cell Types in the Mouse Embryo. 
To identify transcriptional profiles influenced by cell–cell contact 
during development with focus on the endoderm, we took 
advantage of a mouse line in which a Venus fluorescent protein 
had been fused to the endoderm regulator FOXA2 (25) to 
identify FOXA2-expressing endoderm cells from embryos ranging 
from E7.5 to E9.5 (Fig. 1A). We obtained PIC-seq after mild 
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Fig. 1. PIC-seq for developing mouse embryos. (A) A cartoon of mouse embryos (E7.5, E8.5, and E9.5) with fluorescently tagged FOXA2Venus based on the embryo 
images in ref. (26). (B) Clustering analysis identifies 12 cell types from scRNA-seq data from the developing mouse embryos. (C) A heatmap of the marker genes 
exhibits distinct expression profiles for the 12 identified cell types. The cell types from the clustering analysis and the embryonic days are shown at the Bottom. 
(D) Gene expression profiles of the identified marker genes for 367 PICs. The predicted cell types for the PICs are shown and their embryonic days are shown 
at the Bottom.
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dissociation of these mouse embryos followed by fluorescence-
activated cell sorting (FACS) against FOXA2Venus, and cell size 
was used to filter out potential single cells.

After applying stringent quality control measures, RNA 
sequencing data from 367 PICs were obtained using massively 
parallel RNA single-cell sequencing (MARS-seq) technology  
(27, 28). To analyze the PIC-seq data, we used scRNA-seq from 
MARS-seq (total of 6,288 cells) against mouse embryos obtained 
at matching time points (26). Data are presented to summarize 
the number of PIC-seq pairs and the number of cells from scR-
NA-seq obtained at each stage as well as the gene and read count 
distribution (SI Appendix, Fig. S1).

From the scRNA-seq, we identified 13 clusters: neural progen-
itors (NP; n = 767), foregut (FG; n = 927), midgut (MG;  
n = 537), hindgut (HG; n = 444), definitive endoderm (DE;  
n = 677), liver (L; n = 402), extra-embryonic visceral endoderm 
(ExVE; n = 385), embryonic visceral endoderm (EmVE; n = 314), 
primitive streak (PS; n = 302), (N; n = 422), notochord (NC;  
n = 350), parietal endoderm (PE; n = 160), and one undefined 
cluster (Fig. 1 B and C) and (SI Appendix, Fig. S2). From the clus-
ter analysis, we identified 545 cell-type-specific marker genes (false 
discovery rate (FDR) < 0.01 and log ratio > 0.4) (Dataset S1).

To annotate the cell types of the PICs, we used the cell type 
marker genes identified from scRNA-seq clustering (Fig. 1C). For 
this purpose, multiclass support vector machines (SVMs) were 
trained with artificial doublets from two randomly selected single 
cells for the three time points. SVMs were known to perform well 
for classifying high-dimensional data even with a small number of 
samples (29). The trained SVMs classified the 367 PICs into homo-
typic and heterotypic combinations of cell types (Fig. 1D and 
Dataset S2). The error rate of 10-fold cross-validation for the SVMs 
were 17.27%, 18.76%, and 28.56% in E7.5, E8.5, and E9.5, 
respectively, suggesting comparable performance with a previous 

deconvolution approach (22). The designated marker genes were 
well expressed in the annotated PICs (Fig. 1D). Notably, the fre-
quencies of the heterotypic combinations identified using PICs were 
significantly high as compared with the combination of erroneous 
doublets identified using DoubletFinder (30) (SI Appendix, Fig. S3). 
The observed heterotypic combinations such as ExVE+EmVE (at 
E7.5) and NP+DE (at E8.5) reflect the neighboring tissues in devel-
oping mouse embryos (13, 31, 32).

PIC-seq Enables Detection of Cell–Cell Contact-Specific Gene 
Expression. To examine cell–cell contact-specific gene expression, 
we investigated genes highly expressed in the heterotypic PICs but 
not in the homotypic combinations of each individual cell type. 
For the PIC types with at least 10 cell type pairs (ExVE+EmVE in 
E7.5, NP+DE in E8.5, NP+NC in E8.5, MG+HG in E9.5, and 
FG+MG in E9.5), we investigated neighboring cell–cell contact-
associated gene expression (Fig. 2 and SI Appendix, Figs. S4–S7). 
We identified 167 genes highly expressed in the heterotypic PICs 
as compared to the expected expression levels for individual cell 
types obtained from scRNA-seq (FDR < 0.01 & log ratio > 0.5) 
(Dataset S3). For instance, the heterotypic PICs for NP+DE 
expressed genes such as Lhx5, Nkx2-1, and Gsc. These PICs also 
expressed the marker genes for NP and DE: Crabp1 and Col8a1 
for NP and Trh and Slc2a3 for DE (Fig. 2 A and B). Interestingly, 
some of the identified neighboring cell-type-specific genes are 
known to play crucial roles during development. Lhx5 is known 
to promote forebrain development (33). Nkx2-1 is required for 
the proper specification of interneuron subtypes (34). Gsc is a 
known marker of the anterior endoderm (EA) (35) and prechordal 
plate (36) and has been implicated in embryonic stem cells (ESC) 
differentiation to DE differentiation (37–39).

The 54 genes highly expressed in the heterogeneous PIC of 
NP+DE at E8.5 were linked to endodermal or neuroectodermal 
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Fig. 2. PIC-seq analysis identified genes highly expressed in NP+DE. (A) A heatmap of PIC-seq of NP+DE showed contact-specific expression as well as the 
marker genes for NP and DE. (B) Contact-specific expression levels are significantly high for the PIC-seq compared with the expected expression levels obtained 
from scRNA-seq. (C) GO and KEGG pathway terms enriched in the contact-specific genes. (D) Validation of the contact-specific marker genes using Geo-seq data.  
EA: anterior endoderm; MA: anterior mesoderm; A: anterior; L1: anterior left lateral; R1: anterior right lateral; L2: posterior left lateral; R2: posterior right lateral; 
P: posterior; MP: posterior mesoderm, EP: posterior endoderm.

http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials


4 of 10   https://doi.org/10.1073/pnas.2205371120� pnas.org

embryo development including gland development (Sox3, Nkx2-1, 
and Wnt4, P value: 1.1E-3) and nervous system development (Sox3, 
Gbx2, Dpysl5, Sall3, Ptn, and Apba2, P value: 1.38E−3) based on 
the gene ontology (GO) terms and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways enrichment tests (40) (Fig. 2C). 
The 39 NP+NC contact-specific genes were mainly associated with 
mesodermal development, e.g., Mesp1, Meox1, Lef1 (SI Appendix, 
Fig. S6). Our results suggest that PIC-seq could be used to identify 
and stratify genes induced in regions where different cell types are 
in physical contact during embryonic differentiation.

In the same manner, we identified 50 genes lowly expressed in 
the heterotypic PICs as compared to the expected expression levels 
for individual cell types obtained from scRNA-seq (FDR < 0.01 
and log ratio > 0.5) (Dataset S4 and SI Appendix, Fig. S8). Among 
the 12 genes downregulated in the heterogenous PIC of NP+DE, 
we found Sox17, an important factor for cardiac mesoderm spec-
ification (41). Among the 27 downregulated genes in the heter-
ogenous PIC of ExVE+EmVE is Ctsh, an important factor for 
lung morphogenesis (42).

Contact-Specific Gene Expression Is Spatially Localized at the 
Boundary Regions between Two Cell Types. To validate the spatial 
expression of contact-specific marker genes, we used a publicly 
available Geo-seq dataset (24) which contains transcriptome 
from 83 dissected regions in the developing mouse embryos 
at E7.5 (SI  Appendix, Figs. S9–S11). DE marker genes (Cer1 
and Trh) were strongly expressed in the EA, while NP marker 
genes (Nkx6-1, and Crabp1) were strongly expressed interior to 
the endoderm in Geo-seq (Fig. 2D and SI Appendix, Fig. S9). 
Intriguingly, the contact-specific genes (Lhx5 and Tubb3) were 
expressed in-between the regions expressing NP- and DE-specific 
genes (Fig. 2D and SI Appendix, Fig. S10). The averaged profiles 
for NP+DE genes also showed the strongest expression of the 
contact-specific genes in between NP- and DE-marked regions 
in the Geo-seq (SI Appendix, Fig. S11A).

In addition, we found that the ExVE+EmVE-specific genes 
were mainly expressed in-between the regions marked by the two 
cell types (upper part of the corn plot) in the Geo-seq dataset 
(SI Appendix, Fig. S11B). While the nature of the Geo-seq dataset 
is such that it does not include structures like gut or NC, we 
identify coexpression of contact-associated genes, e.g., the 
NP+NC-specific genes were highly expressed in the posterior mes-
oderm (SI Appendix, Fig. S11C), which was located between the 
posterior ectoderm and N region (bottom of the corn plot). Our 
results indicate that the contact-specific genes obtained from PIC-
seq reflect the original and accurate spatial expression.

To further confirm our observations, we used the public 
seqFISH data (43) from mouse embryos at E8.5–E8.75 for 351 
genes. The cell type annotation (brain/spinal cord, gut tube, and 
DE) visualized the anatomical structure for NP, DE, FG, MG, 
and HG (SI Appendix, Fig. S12A). The NP markers (Aldh1a2, 
Sfrp1, and Sox2) and the DE markers (Cdh1, Cer1, Dkk1, Dnmt3b, 
Krt18, Otx2, Sfrp1, and Sox17) were highly expressed in the brain/
spinal cord and the DE regions, respectively (SI Appendix, Fig. 
S12A). The zoomed-in view at the boundary regions for NP and 
DE shows that the contact-specific genes (Foxb1, Gbx2, Irx5, 
Lefty1, Pou3f1, Ptn, Sall3, and Socs2) were expressed in between 
those two regions (SI Appendix, Fig. S12 B and C).

Prediction of the Neighboring Cell Type from scRNA-seq Tells 
the Contributing Cell Type for the Gene Expression Changes 
in PIC-seq. Based on the contact-specific gene expression, we 
originated an approach to predict neighboring cell types by using 
the transcriptome of single cells. The neighboring cell type can be 

predicted by examining specific neighbor-specific genes detected 
from PICs. Therefore, the contact-specific genes in the PIC-seq 
were used to train a multiclass SVM. The trained SVM predicts 
the interacting cell types of a cell by forming artificial doublets and 
voting from the SVM output. Among the 767 NP cells, 85 were 
predicted to neighbor with DE, 123 interacted with NC, and the 
majority (559 cells) interacted with other NP cells (Fig. 3A). Among 
the 677 DE cells, 252 were predicted to interact with NP (Fig. 3B). 
Notably, neighboring cell type prediction further informed us of 
the cell-type-expressing contact-specific genes. Among the contact-
specific genes in the heterotypic NP+DE PICs, Lhx5, Pou3f1, Mest, 
Ptn, Nkx2-1, and Slc1a3 were from the NP cells and Gsc, Sox3, and 
Rax were from the DE cells (Fig. 3 A and B and Dataset S5). These 
analyses further predicted the list of neighboring cell-specific genes 
expressed in each cell type. For instance, NP cells expressed Lhx 
and Nkx2-1 when interacting with DE and Prtg and Gas1 when 
interacting with NC cells (FDR < 0.01) (Fig. 3A).

To validate these contact-specific genes, we performed co-stain-
ing of FOXA2 (a DE marker), SOX2 (an NP marker), and 
NKX2-1 (a contact-specific gene) in the mouse embryo at E8.25. 
FOXA2 was expressed in DE as well as the floor plate that connects 
to NP. SOX2 was expressed stronger in NP (compared with DE). 
NKX2-1 was expressed in the part of NP cells when they were 
proximal to DE, consistent with our prediction (Fig. 3C).

We designed a specific set of experiments to experimentally val-
idate the accuracy of the computational predictions. Focus was on 
a subset prediction that involves the impact of contact between the 
NP and DE cells on their respective transcriptome. The experimen-
tal strategy we adopted is demonstrated graphically (Fig. 4A). The 
strategy involves the isolation of NP and DE cells from E8.5 mouse 
embryos, using predefined cell-specific markers, NCAM-1 positive, 
SSEA-1 positive, and SSEA-4 negative for NP cells and CD24 
positive, Claudin positive, SSEA-1 negative, and SSEA-4 negative 
for DE cells. The isolated cells were maintained in culture media. 
A specific set of DE cells were infected with comet-pD2109-CMV 
lentiviral particles expressing blank green fluorescent protein (GFP) 
and mixed with NP cells in a 1:1 ratio. The GFP-positive DE cells 
and GFP-negative NP cells were co-cultured for 48 h. At the end 
of this 48 h, the GFP-positive DE cells and GFP-negative NP cells 
were sorted using a flow-based cell sorter (Fig. 4B). The expression 
of 4 genes Lhx5, Nkx2-1, Gsc, and Rax was observed in the NP and 
DE cells maintained as a mono-culture and the NP and DE cells 
that were in contact with each other in a co-culture experiment 
(Fig. 4C). The qPCR-based mRNA expression analysis revealed 
elevated expression levels of Lhx5 and Nkx2-1 genes in NP cells 
exclusively when they were in contact with DE cells. The expression 
of these genes in the NP cells maintained in mono-culture was 
around 2.8-fold for Lhx5 and 2.2-fold for Nkx2-1 lower, when 
compared to NP cells that came in contact with DE cells. Similarly, 
the qPCR-based mRNA expression analysis revealed elevated 
expression levels of Gsc and Rax genes in DE cells exclusively when 
they were in contact with NP cells. The expression of these genes 
in the DE cells maintained in mono-culture was around 3.2-fold 
for Gsc and 3.7-fold for Rax lower, when compared to DE cells that 
came in contact with NP cells. This experiment suggests that cell–
cell contact or local paracrine signaling can induce de novo gene 
expression at different stages of development and our computational 
methods are able to accurately detect these signals (Fig. 4C).

We also determine how long the contact-specific genes are main-
tained once cells are isolated. We tested the expression of genes Lhx5, 
Nkx2-1, Gsc, and Rax before (0 h) and after NP and DE cells were 
isolated with an interval of 3 h until 24 h (SI Appendix, Fig S13). 
Our results show that the expression of contact-specific genes pro-
gressively decreased to the precontact level by 9 h after separation.

http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials


PNAS  2023  Vol. 120  No. 2  e2205371120� https://doi.org/10.1073/pnas.2205371120   5 of 10

We also predicted the neighboring cell type for FG, MG, HG, 
NC, and EmVE cells using the same strategy (SI Appendix, Fig. S14). 
We further tested if the trained SVM could annotate the neighboring 
cell types for publicly available scRNA-seq data from developing 
mouse embryos (13, 15). After the annotation, we still found the 
distinctive groups of DE cells expressing contact-specific genes when 
contacting NP such as Rax and Gsc in these independent datasets 
(SI Appendix, Figs. S15 and S16). Our results indicate that scR-
NA-seq retains the information about the neighboring cell type even 
after cells are isolated. In summary, we observed a diverse repertoire 
of contact-specific genes depending on their neighboring cell types.

Visualizing Spatio-Structure of Tissue Using Spatial-tSNE. Our 
prediction suggests that the transcriptome of a cell contains 
information about the neighboring cell type. However, the 
current visualization algorithms for scRNA-seq including UMAP 
(Fig.  1B) or t-distributed stochastic neighboring embedding 
(tSNE) cannot accurately represent the neighboring cell types. 
To visualize neighboring cells and the neighboring cell-type-
specific expression profiles, we revisited the tSNE algorithm 
which assigns small probabilities when locating cells in the 

2D plot for the cells whose transcriptomic distances are large. 
The spatial-tSNE algorithm we developed can visualize the 
neighboring cells located near each other by assigning the highest 
probability for the cell pairs that are classified into neighboring 
cells. Compared with conventional visualization approaches 
based on the transcriptomic similarities (Fig. 1B), spatial-tSNE 
provides information about interacting cell types in the mouse 
embryos. For instance, the spatial-tSNE showed the physical 
interactions between EmVE and DE cells (Fig. 5A), while they 
were distally located in the classical UMAP plot (Fig. 1B). In 
addition, the spatial-tSNE plot provided spatial layouts of 
NP+DE, MG+NC, and DE+EmVE, which are consistent with 
the anatomy of the mouse embryos.

The spatial-tSNE plot summarizes the neighboring cell-type-
specific expression patterns in 2D embedded dimensions (Fig. 5A). 
The average expressions of NP+DE, MH+HG, and NP+NC 
markers were localized near the border of the corresponding two 
cell types (SI Appendix, Fig. S17). Spatial-tSNE visualizes the 
neighboring cell-type-specific factors. For instance, Lhx5 is 
expressed in NP cells close to DE and Gsc is expressed more pro-
foundly in DE cells close to NP (Fig. 5B).

A B

C

Fig. 3. Neighboring cell type prediction from scRNA-seq. (A) Single NP cells in the original MARS-seq dataset that are predicted to interact with DE or NC. 
Predictions are based on expression of defined neighbor-specific genes from PIC-seq. (B) Single DE cells in the original MARS-seq dataset that are predicted to 
interact with NP. Predictions are based on expression of defined neighbor-specific genes from PIC-seq. (C) Validation of a contact-specific gene Nkx2-1 using 
staining of a mouse embryo. Nkx2-1 is expressed in the NP (SOX2+) cells contacting with DE (FOXA2+).

http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
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A B

C

Fig. 4. Experimental validation of the neighboring cell type prediction. (A) A model depicting the experimental approach used to analyze changes in the expression of 
contact-specific genes from NP and DE cells. Briefly, we isolated NP and DE cells from E8.5 mouse embryos, tagging DE cells with GFP. Then, we performed monoculture 
of DE and NP cells as well as co-culture of both cell populations for 48 h. After co-culture, DE and NP cells were sorted by GFP expression. Finally, we used mono-
cultured and sorted DE and NP cells to perform RT-qPCR, which allowed us to measure the expression of the DE contact-specific genes Lhx5 and Nkx2-1 and the NP 
contact-specific genes Gsc and Rax. (B) FACS of NP and DE cells from mouse embryo at E8.5. On the left-top gate, we sorted double-positive cells for NCAM-1 and 
SSEA1 (blue population). From this population we sorted SSEA4-negative cells, which represent NP cells (red population, left-middle gate). On the right-top gate, we 
sorted double-positive cells for Claudin-6 and CD24 (blue population). Then, we sorted SSEA1- and SSEA4-negative cells, to obtain DE cells (red population, right-middle 
gate). The bottom gate shows the sorting of DE and NP cells after co-culture for 48 h. Cells were sorted accordingly to GFP expression since DE cells were tagged 
with GFP prior to their use in the co-culture experiment. (C) The analysis through RT-qPCR of contact-specific genes from NP and DE cells shows that after co-culture, 
NP cells upregulate Lhx5 (P = 5.37E−5) and Nkx2-1 (P = 2.49E−3) while DE cells increase the expression of Gsc (P = 2.57E−4) and Rax (P = 1.14E−4). Expression in these 
genes in the total embryonic tissue represents the control (lane 1, blue bar in every plot); the relative expression of these genes in the monoculture and coculture is 
calculated relative to the expression of these genes in the total embryonic tissue (N = 5). We performed a two-tailed Student’s t test.
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Discussion

Cells are influenced by the neighboring cells in many ways, includ-
ing cell size, stiffness, and mechanical forces (44, 45). During 
embryogenesis, coordination between adjacent cells is essential to 
regulate the expression of genes in correct spatial and temporal 
contexts. To establish these patterns during morphogenesis, these 
cells influence each other’s gene expression by exploiting various 
signaling molecules, direct cell–cell contact (46), or reconfiguring 
the mechanical environment (47, 48).

Here, we asked if there are unique genes expressed when cells 
are in contact with each other. To obtain cell–cell contact infor-
mation, we used PIC-seq and established computational algo-
rithms to identify neighboring cell-type-specific gene expression. 
PIC-seq, by retaining cell contact, enabled us to predict neigh-
boring cell-type-specific gene expression. Our predictions indi-
cated that cells present specific gene expression patterns depending 
on their neighboring cell type (Fig. 3A). For instance, NP cells 
expressed Lhx5 and Nkx2-1 when neighboring DE and Gas1 when 
neighboring with more posterior NC.

To confirm our observation in an unbiased way, we used inde-
pendent publicly available Geo-seq (24) and seqFISH (43) data-
sets. The neighbor-specific genes we identified were spatially 
expressed between the regions marked for each cell type (Fig. 2). 
Even though Geo-seq (24) is limited to the mouse embryos at 
E7.5, it was sufficient to highlight the likely spatial location of 
pairs of interactors for NP+DE, ExVE+EmVE, and NP+NC 
(SI Appendix, Fig. S10). The seqFISH data (43) also confirmed 
that neighbor-specific genes are expressed in the regions between 
two cell types.

We further questioned if cell contact or proximity induces spe-
cific gene expression. For this, we devised a co-culture system 
followed by sorting individual cell types and measured gene 
expression changes (Fig. 4). Our experimental strategy clearly 
showed that there are genes induced by cell contact or proximity, 
and PIC-seq provided an approach to obtain this information in 
an unbiased manner.

Among the predicted neighboring cell-type-specific genes, we 
identified several factors with established roles during develop-
ment. For instance, Lhx5, a gene expressed in NP cells when 
contacting DE, is known to promote forebrain development by 

regulating the Wnt signaling pathway (33). Knockdown of Lhx5 
resulted in apoptotic hypothalamic development (49). Nkx2-1, 
another gene expressed in NP cells when contacting DE, is also 
recognized for its role in response to dorsal–ventral patterning in 
the neural tube and for specifying cortical interneuron subtypes 
(34). Also, DE cells interacting with NP cells expressed Gsc 
(Figs. 2A and 3B) which has a role in EA (35), prechordal plate 
(36), DE differentiation (38), and FG formation (39). Our results 
indicate that cell contact or proximity has the potential to activate 
cell type specification during embryogenesis.

Our study indicates that a cell encodes details about its local 
environment in its transcriptome. For instance, single NP cells 
identified as interacting with DE retained the expression of Nkx2-
1 even after cell isolation (Figs. 2A and 3A). Based on the local 
information detailed in the transcriptome of a cell, we were able 
to predict its neighboring cell type (Fig. 3 A and B). The trained 
model was further applied to identifying neighboring cell types 
for publicly available scRNA-seq during embryogenesis (13, 15) 
(SI Appendix, Figs. S13 and S14). This indicates that the con-
tact-specific genes identified from PIC-seq can be used as a refer-
ence to reannotate the neighboring cell types of public 
scRNA-seq.

Gene expression varied between cells as a function of their 
neighbors. In our study, NP cells interacting with DE cells 
expressed Lhx5 and Nkx2-1, and those interacting with NC 
expressed Prtg (Fig. 3A). These findings may underlie anterior–
posterior axis inducing activities of these N derivatives. The EA 
emerges very early in gastrulation to pattern the presumptive ante-
rior neural plate, while the NC emerges later, patterning more 
posterior locations along the neural tube. Deconstructing posi-
tional information within the transcriptome could provide a 
detailed map of cells localized to the axis promoting organizing 
centers that emerge in embryonic development. Given the role of 
the EA in patterning the nascent neural plate (10) and NC for the 
patterning of the neural tube (50–52), our identification of 
NP+DE and NP+NC supports the inductive profile of these cells.

A widely used approach to understand cell communication is to 
use ligand–receptor pairs (16, 17). We did not find the overlap 
between the genes identified by a ligand–receptor analysis using 
CellPhoneDB (17) and the contact-specific genes identified by PIC-
seq (SI Appendix, Fig. S18). Moreover, the cell types predicted to 

A B

Fig. 5. Visualizing spatio-structure of tissue using spatial-tSNE for scRNA-seq. (A) A spatial-tSNE plot recapitulating the spatial distribution of cells in mouse 
embryos. (B) Expression patterns of NP, DE, and NP+DE markers on the spatial-tSNE plot for the boxed region in A.

http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials


8 of 10   https://doi.org/10.1073/pnas.2205371120� pnas.org

be communicating frequently using ligand–receptor pairs do not 
reflect well with the anatomical structure (SI Appendix, Fig. S19). 
These observations indicate that PIC-seq enabled the investigation 
of cell contact-associated gene expression which cannot be studied 
using ligand–receptor pairs. Furthermore, the use of co-expression 
of ligand–receptor pairs only shows the most frequently interact-
ing cells and does not explain specific cells engaged in cell-cell 
communication. The cell contact information derived from PIC-
seq may provide additional layers of detail, explicitly unravelling 
inductive cell interactions.

We developed spatial-tSNE to visualize the spatial proximity 
that we predicted. Previous visualization methods locate cells 
mainly based on transcriptomic similarities. The UMAP plot using 
scRNA-seq data appears to reflect the spatial organization of 
EmVE and ExVE as well as FG, MG, and HG, because their gene 
expression similarities reflect their spatial interactions (Fig. 1B). 
However, transcriptome-based visualization could not represent 
the physical interaction of NP+DE, MG+NC, and NP+EmVE, 
while these are well visualized in the spatial-tSNE (Fig. 5A). 
Consistent with this representation, contact-specific genes are 
found in association with their locations in the spatial-tSNE plot 
(Fig. 5B). Spatial-tSNE depends on the prediction of neighboring 
cell types (Fig. 3 A and B and SI Appendix, Fig. S12). In this work, 
we used 367 PICs for training. The performance of neighboring 
cell type prediction can be further improved as we accumulate 
more PICs for training. Even though spatial-tSNE cannot repre-
sent the real 3D structure of a tissue, it provides a more compre-
hensive map for context-dependent relationships inherent in 
mammalian development. In addition, the computational 
approaches that we designed for PIC-seq can also be applied to 
image-based spatial transcriptomics data, such as seqFISH (43), 
to identify contact-specific and regulated genes.

As our study is about de novo gene discovery, it is difficult to 
assign specific roles in mechanobiology, although Gsc is a known 
marker of the N (53), a region that has inductive properties in 
heterotopic grafting experiments (54). The history of develop-
mental biology is based on a large number of embryonic grafting 
experiments to define inductive interactions that occur during 
development (12). Grafting experiments were pivotal in our 
understanding of how signals produced from one cell can illicit 
patterning responses in another cell. However, grafting experi-
ments are technically challenging and inherently limited to a pre-
defined set of interactions. Here, we take an unbiased approach 
to understand developmental context, producing spatial-tSNEs 
to provide an unbiased catalog of potential developmental inter-
actions. Through assessing these interactions, one could develop 
a comprehensive map of embryonic induction providing a set of 
all possible sites. While directionality can only be inferred by 
experiments, we present an impartial approach to study spatial 
gene regulation during development.

STAR Methods

Multiplet Cell Isolation. Mouse FOXA2Venus embryos were 
collected between embryonic days (E) 7.5 and 9.5. The E9.5 
embryos were dissected in order to enrich the sample with gut 
endoderm cells. Embryos were dissociated with Accutase (Sigma) 
into multiplet cells immediately after collection. The collected 
embryos were mixed with mouse ESC, which were counterstained 
with CellVue Maroon Cell Labeling Kit (Thermofisher, # 88-
0870-16) to increase the number of cells in the sample in order to 
avoid loss of the scarce FOXA2Venus-positive cells by spinning. The 
samples were then incubated with prewarmed Accutase at 37 °C. 
For the multiplet cell dissociation, the samples were incubated for 

4 min with 1 mL Accutase and pipetted up and down carefully to 
ensure that cells were not dissociated into single cells. The Accutase 
was diluted by adding 3ml of FACS buffer 1 (10% FBS in PBS) 
and spun down. The cells were washed with FACS buffer 1 two 
more times and transferred to a FACS tube with FACS-DAPI 
buffer for the FACS process.

Flow Cytometry and Multiplet Cell Capturing. Multiplet cells 
were isolated from FOXA2Venus mouse embryos. Cells were 
sorted using a BD FACS Aria III. FSC/SSC gates were used to 
define a homogeneous population, FSC-H/FSC-W gates were 
used to include multiplets and remove singlets, and dead cells 
were excluded based on DAPI inclusion. The sorting speed was 
kept at 100 to 300 events/s to eliminate sorting two or more 
drops containing cells into one well. Single-drop deposition 
into the 384-well plates was verified colorimetrically based on a 
previously published protocol (55). Cells were sorted directly into 
the lysis buffer containing first RT primer and RNase inhibitor, 
immediately frozen, and later processed by MARS-seq protocol 
as described previously (27).

Flow Cytometry and Cell Sorting of NP and DE Populations. 
Embryonic cells were isolated from E8.5 mouse embryos and 
incubated with cell surface antibodies specific to NP and DE cell 
populations. Following the incubation, these populations were 
sorted using BD FACSAria Fusion, and data were analyzed by 
FACSDiva 8.0.2 software as follows. FSC/SSC gates were used 
to define a homogeneous population, and FSC-H/FSC-A gates 
were used to sort singlets exclusively. For the purpose of isolating 
the NP cells, the embryonic cells were suspended in FACS buffer 
2 (PBS, 1mM EDTA, 25mM HEPES pH 7, 2% FBS) and 
stained with NCAM-1:PE (Biolegend #125618), SSEA1:APC 
(Abcam #ab18277), and SSEA4:Alexa Fluor 488 (Thermo Fisher 
Scientific # 53-8843-42). The NCAM-1 (56)/SSEA1 (57) gate was 
used to select double-positive populations, from which SSEA4-
negative cells were selected using the SSC/SSEA4 gate as described 
previously (57).

For the purpose of isolating the DE cells, the embryonic cells 
were suspended in FACS buffer 2 and stained with SSEA1:APC, 
SSEA4:PE (Thermo Fisher Scientific # 12-8843-42), Claudin-
6:FITC (Bioss #bs-3754R-FITC), and CD24:BV421 (BD 
Horizon™ #562563). Here, the CD24 (58)/Claudin-6 (59) gate 
was used to select double-positive cells followed by the selection 
of populations negative for SSEA1 and SSEA4 using the SSEA1/
SSEA4 gate to avoid contamination with NP and visceral endo-
derm cells (57, 58). Isolated NP and DE cells were maintained in 
culture using the StemFlex Medium (Thermo Fisher) at 37 °C, 
5% CO2 incubator.

A subpopulation of the DE cells were infected with 109 TU/
ml of GFP comet-pD2109-CMV lentiviral particles (ATUM) and 
5 μg/ml of polybrene. After 24h infection, GFP-positive DE cells 
were selected by GFP expression using BD FACSAria. Following 
a 48-h co-culture of GFP+ DE and GFP- NP cells in a 1:1 ratio, 
the BD FACSAria was used to sort the GFP-positive DE cells and 
GFP-negative NP cells according to their GFP expression using 
SSC/GFP gate.

DE and NP Contact-Specific Genes Quantification by RT-qPCR. 
We isolated total RNA from DE and NP cells individual cul-
tures and cocultures using the PureLink RNA Mini kit, as per 
the manufacturer’s instruction, and eluted total RNA in 50 μL 
RNase/DNase-free H2O. Then, we reverse-transcribed to cDNA 
10 ng of total RNA using Superscript Vilo cDNA synthesis kit. 
Finally, we performed real-time PCR (qPCR) in QuantStudioTM 

http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205371120#supplementary-materials
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5 (Applied Biosystems) using PowerUp SYBR Green master mix 
(Thermo Fisher Scientific) and the following reaction conditions. 
The initial denaturation step was performed at 95 °C for 2 min, 
followed by 40 cycles of 95 °C for 15 s and 60 °C for 60 s. We used 
the comparative CT method (ΔΔCt) to quantify relative gene 
expression, normalizing the expression of our target genes with the 
housekeeping gene Gapdh. All samples were run using the follow-
ing primers: Gapdh: 5′-CATCACTGCCACCCAGAAGACTG-3′ 
(F) and 5′-ATGCCAGTGAGCTTCCCGTTCAG-3′ (R); Lhx5: 
5′-CTCGACCGCTTTCTGCTGAA-3′ (F) and 5′-CGCTCG-
GAGAGATACCTTGC-3′ (R); Nkx2-1: 5′-AGGACACCAT 
GCGGAACAG-3′ (F) and 5′- CCATGCCGCTCATATTCA 
TGC-3′ (R); Gsc: 5′-GACGAAGTACCCAGACGTGG-3′ (F) 
and 5′-CGGTTCTTAAACCAGACCTCCA-3′ (R); and Rax: 
5′-TGGGCTTTACCAAGGAAGACG-3′ (F) and 5′-GGTAG-
CAGGGCCTAGTAGCTT-3′ (R).

Data Processing of scRNAseq and PIC-seq Data of Mouse 
Embryo. All scRNA-seq libraries were sequenced using Illumina 
NextSeq 500. Sequences were mapped to mouse mm9 genome, 
demultiplexed, and filtered as previously described (27, 28). 
We estimated the level of spurious unique molecular identifiers 
(UMIs) in the data using statistics on empty MARS-seq wells 
as previously described (27). Mapping of reads was done using 
HISAT (version 0.1.6) (60); reads with multiple mapping 
positions were excluded.

Among the transcriptome of 6,600 single cells and 382 PICs, 
we filtered the low-quality samples that had UMI counts over 217 
or less than 256 28. The remaining samples contained 6,288 single 
cells and 367 PICs. To remove any batch effect, we used the Seurat 
v3 standard integration workflow (61). The 13 clusters were 
obtained using a graph-based Louvain clustering algorithm.

SVMs for Classification. For the classification of PICs, we trained a 
multiclass classifier for SVMs using a MATLAB (version R2020a) 
function ‘fitcecoc’. The classifier consists of multiple SVM binary 
learners in a one-vs.-one design. We trained three SVMs for each 
stage (E7.5, E8.5, and E9.5) of PIC-seq and scRNAseq data. We 
used the major clusters for each stage (DE, N, ExVE, EmVE, PS, 
and PE for E7.5; NP, FG, DE, MG, HG, and NC for E8.5; and 
FG, MG, HG, L, and NC for E9.5) and the top 5 DEGs for each 
cluster. We run 10-fold cross-validation for the trained models 
using a MATLAB function ‘crossval’ and calculated the error rate 
using ‘kFoldLoss’ with 10. We calculated the significance of the 
frequencies of PICs against doublets identified from scRNAseq 
using Fisher’s exact test.

SVMs for Neighboring Cell Type Prediction. For the prediction of 
the identity of neighboring cells, we applied multiclass SVM using 
fitcecoc function in MATLAB R2020a. We only used the contact-
specific genes for training and prediction. The SVMs for each cell 
type were trained using the PIC-seq data with their annotations. 
For example, to train an SVM for NP, PICs included in NP+NP, 
NP+DE, and NP+NC were used. To predict the neighboring cell 
type from the single-cell transcriptome, we made artificial PIC-seq 
by mixing the transcriptome of the cell of interest with all other 
cells one by one. The artificial PIC-seq data for the cell of interest 
were predicted using the corresponding SVM. The voting scheme 
(i.e., most frequent) is used to assign the neighboring cell type. 
We applied this scheme to all single cells.

Statistical Analysis and Enrichment Analysis. The P value for 
cell-type-specific and contact-specific marker genes was calculated 
by using a two-sided Wilcoxon rank sum test. The P value for  

RT-qPCR of contact-specific genes was calculated by using a 
two-sided Student’s t test. We used Enrichr (40), an enrichment 
analysis tool, to investigate the enriched GO terms and KEGG 
pathways for each marker gene group.

Staining of Mouse Embryo. E8.5 embryos were isolated in 
PBS and then fixed overnight in 4% paraformaldehyde (PFA) 
overnight at 4 °C. The following day, embryos were washed in PBT 
(PBS containing 0.1% Tween-20), dehydrated in an ascending 
methanol sequence, xylene treated, embedded in paraffin, and 
sectioned at 6.5 µm. Immunofluorescence was performed on 
6.5-µm deparaffinized sections. The sections were subjected to 
antigen retrieval in Tris buffer pH 10.2 for 10 min, washed in 
0.1% PBT, and incubated in blocking buffer (0.5% milk powder, 
99.5% PBT) for 2 h at room temperature. Primary antibodies were 
incubated in a blocking buffer overnight at f4 °C. The following 
day, the sections were washed three times with PBT and incubated 
for 1 h with corresponding secondary antibodies in a blocking 
buffer at room temperature. After three washes in PBT, DAPI 
(Sigma-Aldrich, 1:2,000) was added to counter-stain the nuclei. 
The sections were mounted using Prolong Gold Antifade Reagent 
(Invitrogen, P36934) and imaged using Zeiss LSM-700 confocal 
microscope. The following primary antibodies were used: FOXA2 
(Thermofisher, 7H4B7, 1:250), SOX2 (eBioscience, 14-9811-80,  
1:250), and NKX2-1 (Abcam, ab76013, 1:250). Secondary 
antibodies were Alexa Fluor conjugates 488, 555, and 647 (Life 
Technologies) at 1:500.

Spatial-tSNE. Spatial-tSNE is designed for visualization of 
neighboring cells in scRNA-seq data, which is modified from 
tSNE (62) by considering neighboring cell information. In the 
original tSNE, the 2D embeddings are obtained by rearranging 
each cell based on the probability of the pairwise similarities of 
the cells on the original high-dimensional space. The pairwise 
similarity of two cells i and j in the high-dimensional space is 

defined by the probability, pij =
exp
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xi is the data points of cell i and σi is the variance of the Gaussian 
which is centered on data point xi. The distance between two cells 
in the reduced t-SNE dimension is determined by the probability 
pij in high-dimensional space.

Spatial-tSNE shows the clustering and spatial information at the 
same time by changing the similarity probability for the cells that 
are predicted to neighbor with each other. To reflect spatial informa-
tion in the t-SNE dimension, we modified the probability pij so that 
the similarity probability of two neighboring cells is the maximum 
probability of all pairs. With these modified probabilities, the pre-
dicted neighbor cells are located at the border of the two clusters 
without ruining the relative position of other cells. To clearly visualize 
neighbored cells, an imaginary line was drawn between the two pop-
ulations, which can be rotated so that cells have the longest distance 
to it. Other cells are rearranged based on their probabilities.

Data, Materials, and Software Availability. Source code and input files for the 
PIC classification and the neighboring cell-type prediction are available at https://
github.com/neocaleb/NicheSVM. Source code for spatial-tSNE is available at https://
github.com/wgzgithub/sp_tSNE. The PIC-seq data can be downloaded from Gene 
Expression Omnibus database with accession number (GSE182393) (63).
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