Skip to main content
. 2023 Jan 31;25(5):794–799. doi: 10.1021/acs.orglett.2c04300

Table 1. Optimization of the Reaction Conditionsa.

graphic file with name ol2c04300_0007.jpg

entry cat. oxidant solventb T (°C) yield (%)c
1d [RhCp*Cl2]2 Cu(OAc)2·H2O Na2CO3 m-xyl 150 SM
2d [RhCp*Cl2]2 AgOAc m-xyl 150 SM
3d [RhCp*Cl2]2 AgOAc tol 100 SM
4 Pd(OAc)2 Cu(OAc)2 MeCN 105 20
5 Pd(OAc)2 O2/NaOAc DMF 120 20
6 Pd(OAc)2 BQ/AcOH DMF 120 33
7 Pd(OAc)2 Cu(OAc)2 DMF 120 50
8 Pd(OAc)2 AgOAc DMF 120 64
9 Pd(OAc)2 AgOAc + PivOH (1 equiv) DMF 120 75
10 Pd(OAc)2 AgOAc + PivOH (5 equiv) DMF 120 88 (80)e
11f Pd(OAc)2 AgOAc + PivOH (5 equiv) DMF 120 68
a

Typical conditions: 1a (0.2 mmol, 1 equiv), 2a (0.3 mmol, 1.5 equiv), catalyst (10 mol %), oxidant (2.1 equiv), solvent (2.0 mL), air atmosphere, unless otherwise stated.

b

m-xyl, m-xylene; tol, toluene.

c

Determined by 1H NMR analysis vs 1,3,5-trimethoxybenzene. The number in parentheses is the isolated yield.

d

[RhCp*Cl2]2 (2.5 mol %).

e

At 90 °C, 3aa was isolated in 73% yield.

f

1a (3 mmol), Pd(OAc)2 (5 mol %).