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Kidney cyst expansion in tuberous sclerosis complex (TSC) or polycystic kidney disease (PKD) requires
active secretion of chloride (Cl�) into the cyst lumen. In PKD, Cl� secretion is primarily mediated via
the cystic fibrosis transmembrane conductance regulator (CFTR) in principal cells. Kidney cystogenesis
in TSC is predominantly composed of type A intercalated cells, which do not exhibit noticeable
expression of CFTR. The identity of the Cl�-secreting molecule(s) in TSC cyst epithelia remains spec-
ulative. RNA-sequencing analysis results were used to examine the expression of FOXi1, the chief
regulator of acid base transporters in intercalated cells, along with localization of Cl� channel 5 (ClC5),
in various models of TSC. Results from Tsc2þ/� mice showed that the expansion of kidney cysts cor-
responded to the induction of Foxi1 and correlated with the appearance of ClC5 and Hþ-ATPase on the
apical membrane of cyst epithelia. In various mouse models of TSC, Foxi1 was robustly induced in the
kidney, and ClC5 and Hþ-ATPase were expressed on the apical membrane of cyst epithelia. Expression of
ClC5 was also detected on the apical membrane of cyst epithelia in humans with TSC but was absent in
humans with autosomal dominant PKD or in a mouse model of PKD. These results indicate that ClC5 is
expressed on the apical membrane of cyst epithelia and is a likely candidate mediating Cl� secretion
into the kidney cyst lumen in TSC. (Am J Pathol 2023, 193: 191e200; https://doi.org/10.1016/
j.ajpath.2022.10.007)
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Tuberous sclerosis complex (TSC), an autosomal dominant
disorder that affects >1 million people worldwide, is caused
by the lack of functional TSC1 (hamartin) or TSC2 (tuberin)
proteins.1e6 TSC1 is a co-chaperone that regulates the sta-
bility of TSC2, while the latter negatively regulates the
activation of the mammalian target of rapamycin (mTOR)
through modifying the GTPase activity of RHEB.7,8 Inac-
tivating mutations in TSC genes lead to unregulated activity
of mTOR, a serine threonine kinase that regulates cell
stigative Pathology. Published by Elsevier Inc. All rights reserved.
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proliferation in response to environmental conditions (eg,
availability of nutrients).5,9e13 TSC affects multiple organs,
including the kidney, lung, and brain. In the kidney, TSC is
associated with the development of benign tumors (angio-
myolipomata) and cysts, which result in renal parenchyma
damage and eventually renal failure.14e17

Despite extensive studies examining the initiating events
in TSC, little is known about the factors that promote cyst
expansion, especially considering that the epithelial cells
lining the cysts are predominantly composed of type A
intercalated (A-intercalated) cells.18,19 Multiple genetically
engineered TSC mouse models were used to show that cyst
enlargement was associated with the gradual disappearance
of principal cells and hyperproliferation of A-intercalated
cells. Examination of the cystic epithelium of patients with
TSC also revealed the predominance of A-intercalated cells
and a paucity of principal cells.18 Recent studies indicate
that the disruption of Notch signaling between principal
and intercalated cells, and the consequent activation of
FOXI1 and deactivation of HES1 transcription factors,
may play critical roles in kidney cyst formation.19

The crucial step in the expansion of kidney cysts entails
the secretion of fluid into the cyst lumen, which is depen-
dent on chloride (Cl�) secretion from the cyst epithelium
into the cyst lumen. In autosomal dominant polycystic
kidney disease (ADPKD), the main mechanism mediating
Cl� secretion into cysts is via the cystic fibrosis trans-
membrane conductance regulator (CFTR) in principal cells
that is activated consequent to cAMP/protein kinase A
stimulation by arginine vasopressin.20 It is highly unlikely
that CFTR is playing a major role in Cl� secretion into the
kidney cysts in TSC. The main reason for this assertion is a
profound reduction in the number of CFTR-containing
principal cells in cyst epithelia in patients with TSC.19 As
such, apical Cl� transporters in A-intercalated cells may
play crucial roles in this regard. However, little information
is available on such molecules in A-intercalated cells.

RNA-sequencing analysis in the kidneys of Tsc1 knockout
(KO) (Tsc1/Aqp2 Cre) mice revealed a significant enhance-
ment in the expression of Cl� channel 5 (ClC5). Immuno-
fluorescence studies showed the apical localization of ClC5
in A-intercalated cells in the cyst epithelia in Tsc1 KO
mice.19 Additional studies further revealed the co-localization
of ClC5 and Hþ-ATPase on the apical membrane of cyst
epithelia in Tsc1 KO mice.19 ClC5, a 2Cl�/Hþ exchanger, is
located in the endosomal membrane in proximal tubule and
A-intercalated cells of the collecting duct, where it plays a
critical role in dissipating Hþ secretion and membrane de-
polarization by Hþ-ATPase.21e24 Whether ClC5 expression
on the apical membrane of cyst epithelia is widespread and
involves both human and mouse models of TSC or is only
unique to mice with principal cellespecific deletion of Tsc1
remains speculative.

RNA-sequencing studies further showed the induction of
Foxi1 in kidneys of Tsc1 KO mice. Foxi1 is critical to the
proliferation and growth of intercalated cells and is a main
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regulator of their Hþ-ATPase subunits.25,26 The additional
deletion of Foxi1 in Tsc1 KO mice abrogated the kidney
cystogenesis in Tsc1 KO mice.19 Whether Foxi1 induction
correlates with the expansion of kidney cysts in TSC re-
mains unknown.
In the present studies, kidneys from mice with global, as

well as principal cellespecific or pericyte-specific, inacti-
vation of Tsc1 or Tsc2 were investigated. The expression of
Foxi1, along with the localization of Hþ-ATPase and ClC5,
was studied in cyst epithelia. The results show the unique
localization of ClC5 on the apical membrane of cyst
epithelium in both human and mouse models of TSC.

Materials and Methods

Tsc2 Heterozygote Mice

The homozygous Tsc2 KO mice (Tsc2�/�) are embryonically
lethal, whereas Tsc2 heterozygote (Tsc2þ/�) mice are viable
and develop many characteristics of Tsc2 disease, including
multiple bilateral renal cystadenomas by 15 months of
age.15 Three oligonucleotides were used for PCR genotyping
in these animals: H162 (50-CAAACCCACCTCCT-
CAAGCTTC-30); H163 (50-ATTGCGGCCTCAACAATCG-
30); and H164 (50-AGACTGCCTTGGGAAAAGCG-30). The
following conditions were used for the PCR genotyping: 94�C
for 2 minutes, 1 cycle; 94�C for 30 seconds, 58�C for 30
seconds, and 72�C for 1 minute, 35 cycles; 72�C for 5 mi-
nutes, 1 cycle; and hold 4�C producing an 86 bp wild-type
(WT) band and a 105 bp mutant band.

Generation of Principal CelleSpecific Knockout of Tsc1
or Tsc2 Mice or Pericyte-Specific Tsc1 KO Mice

The details regarding the generation of principal
cellespecific Tsc1 KO (Tsc1/Aqp2 cre) or Tsc2 KO (Tsc2/
Aqp2 cre) mice and pericyte-specific Tsc1 KO mice (Tsc1/
renin cre) have been previously reported from our labora-
tories.18,19 To generate Tsc1 or Tsc2 KO mice, floxed mice
for Tsc1 (#005680; The Jackson Laboratory, Bar Harbor,
ME)27,28 or Tsc2 (#027458; The Jackson Laboratory)29

were crossed with Aqp2-cre mice (#006881; The Jackson
Laboratory)30,31 to generate principal cellespecific Tsc1 or
Tsc2 KO mice. The following primer sequences were used
to verify the presence or absence of Aqp-2 cre transgene:
mAqp-2 F (50-CCTCTGCAGGAACTGGTGCTGG-30) and
CreTag R (50-GCGAACATCTTCAGGTTCTGCGG-30).
To generate pericyte-specific deletion of Tsc1, floxed Tsc1
mice were crossed with renin cre mice.18,32

Kidney Section from TSC and Patients with ADPKD

Kidney sections from patients with TSC were obtained with
institutional review board approval and de-identified before
processing for immunofluorescence studies. Slides with
kidney sections from patients with ADPKD were acquired
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Examination of Foxi1 expression and chloride channel 5 (ClC5) localization in kidneys of wild-type (WT) and Tsc2þ/� mice. A: Ontogeny of Foxi1
expression in kidneys of Tsc2þ/�. Foxi1 expression in the kidney is low in WT and 180- or 300-dayeold mice but is significantly upregulated at 450 days. B:
Histologic analysis of kidneys of WT and Tsc2þ/� mice. Hematoxylin and eosin of WT and 180-, 300-, and 450-dayeold Tsc2þ/� mice. No cysts are visible at
180 days; however, there are small cysts present at 300 days and large mature cysts detected at 450 days. C: Double immunofluorescence labeling of ClC5 and
Hþ-ATPase antibodies in kidneys of Tsc2þ/� mice. ClC5 (left panel) and Hþ-ATPase (right panel) with the merged image (middle panel). Global Tsc2 KO mice
are lethal. Scale bars: 100 mm (B); 50 mm (C). Original magnification: �10 (B); �40 (C). “C” represents cysts.

ClC5 Apical Localization in Kidney Cyst in TSC
from the Biospecimen Repository of the Baltimore Poly-
cystic Kidney Disease (PKD) Research and Clinical Core
Center (Baltimore, MD).

Histologic Analysis of Kidney Sections

Mouse kidneys were stained with hematoxylin and eosin
(H&E) and visualized under a Zeiss Axioskop 2 MOT mi-
croscope fitted with an AxioCam HR color camera (Carl
Zeiss AG, Oberkochen, Germany). Images were obtained
by using AxioVision Image Acquisition Software (Carl
Zeiss AG).

Northern Blot Analysis

After harvesting the kidneys fromWT and TscKOmice, total
kidney RNA was isolated by using the TRI Reagent (Mo-
lecular Research Center, Cincinnati, OH) protocol. A UV-
The American Journal of Pathology - ajp.amjpathol.org
1600PC spectrophotometer (VWR, Radnor, PA) was used
tomeasure RNA concentrations. The extracted RNAwas size
fractionated by agarose gel electrophoresis under denaturing
conditions and transferred to a nitrocellulose membrane. The
Foxi1 cDNA probe used for Northern blot hybridizations was
generated by RT-PCR using the following gene-specific
DNA oligonucleotides: 50-AGCAAGGCTGGCTGGCA-
GAA-30 and 50-TGGCCACGGAGCGGCTAATA-30. Hy-
bridization with a radioactive 32P labeled Foxi1 cDNA probe
was performed according to published protocols.18,33,34

Immunofluorescence Microscopy

Mouse kidneys were harvested and placed in 4% para-
formaldehyde at 4�C for 24 hours and transferred to 70%
ethanol for storage at 4�C. Fixed tissues were paraffin
embedded and then cut in 5-mm sections. To prepare for
immunofluorescence staining, slides were baked at 60�C for
193
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Figure 2 Cyst epithelium proliferation in kidneys of Tsc2þ/� mice. A: Double immunofluorescence merged images of Hþ-ATPase (red) and proliferating cell
nuclear antigen (PCNA) (green) in wild-type (WT) and 180-, 300-, and 450-dayeold Tsc2þ/� mice. Note the increasing number of PCNA-positive cells at days
300 and 450. B: Double label immunofluorescence merged images with AQP2 (red) and PCNA (green). Although there is an age-related increase in PCNA-
positive cells (day 300), there is a lack of AQP2-positive staining due to the paucity of principal cells in the cyst epithelium in Tsc2þ/� mice. White ar-
rows point to PCNA-positive cells. Scale bars Z 50 mm. Original magnification, �40. “C” represents cysts.
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2 hours and allowed to cool to room temperature for 30
minutes. After deparaffinization in xylene followed by
rehydration in decreasing concentrations of ethanol, slides
underwent antigen retrieval and were incubated with anti-
bodies against ClC5 (MilliporeSigma, St. Louis, MO)21 and
either Hþ-ATPase B1/B2 subunit (Santa Cruz Biotech-
nology, Dallas, TX), Hþ-ATPase E subunit, or AQP2 (a
kind gift from Dr. Anne Blanchard)35 overnight in a hu-
midity chamber at 4�C. To examine cell proliferation in
Tsc2þ/� mice, slides were incubated in proliferating cell
nuclear antigen along with either polyclonal Hþ-ATPase
(generated in our laboratory) or AQP2 (Santa Cruz
Biotechnology). The following day, slides were washed in
phosphate-buffered saline and incubated in Alexa Fluor 594
goat anti-rabbit IgG, as well as Alexa Fluor 488 goat anti-
mouse IgG secondary antibodies (Thermo Fisher Scientific,
Waltham, MA) for 2 hours at room temperature. After
washing in phosphate-buffered saline and allowing slides to
dry, they were cover-slipped using VECTASHIELD
HardSet mounting media (Vector Laboratories, Newark,
CA). Immunofluorescence images were obtained with a
Zeiss LSM 800 Airyscan microscope using Zeiss ZEN
version 2.6 software. Immunofluorescence quantification
was completed by using ImageJ software version 1.53k
(NIH, Bethesda, MD; https://imagej.nih.gov/ij) and
calculating for the corrected total cell fluorescence
(CTCF) using the following formula: CTCF Z integrated
density � (area of selected cell � mean fluorescence
background readings).
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Results

Expression of Foxi1 was examined in kidneys of hetero-
zygous Tsc2 (Tsc2þ/�) mice. Northern blot analyses in
Figure 1A show the progression of Foxi1 expression in
kidneys of Tsc2þ/� mice. The expression of Foxi1 in the
kidneys of 180- or 300-dayeold Tsc2þ/� mice was almost
comparable to that of WT mice. However, Foxi1 exhibited a
robust induction in the kidneys of 450-dayeold Tsc2þ/�

mice (Figure 1A). The histologic analysis of kidneys by
H&E staining showed the absence of any cysts in 180-
dayeold Tsc2þ/� mice, the appearance of a few small
cysts at 300 days (Figure 1B), and multiple cysts of varying
sizes at 450 days (Figure 1B). Double immunofluorescence
labeling with ClC5 and Hþ-ATPase antibodies showed a
remarkable co-localization of the two molecules on the
apical membrane of cyst epithelia in 450-dayeold Tsc2þ/�

mice (Figure 1C). CTCF analysis of Tsc2þ/� mice indicates
that both ClC5 and Hþ-ATPase expression in cystic
epithelium exhibit significantly higher fluorescence values
compared with background (ClC5, 23,781 � 3456; back-
ground, 3.32 � 0.08; Hþ-ATPase, 20,214 � 1084; back-
ground, 3.52 � 0.12) (Figure 1C).
Figure 2 explores the proliferation status of kidney cells

in the young and old Tsc2þ/� mice from Figure 1. Toward
this goal, double immunofluorescence labeling with the
proliferating cell nuclear antigen (a marker of proliferation)
and Hþ-ATPase (Figure 2A) or AQP2 (Figure 2B) anti-
bodies was performed. As indicated, there was increased
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Examination of Foxi1 expression and chloride channel 5 (ClC5) localization in kidneys of wild-type (WT) and Tsc1 knockout (KO) (Tsc1/Aqp2 cre)
mice. A: Expression of Foxi1 in kidneys of Tsc1 KO mice. Although Foxi1 is mainly present in the kidney cortex, there is additional up-regulation found in the
medulla as well. Foxi1 expression is low in WT mice. B: Histologic analysis of kidneys of WT and Tsc1 KO mice. Unlike Tsc2þ/� mice, which develop cysts at later
time points, Tsc1 KO mice undergo cystogenesis at an earlier age, presenting with large cysts by 51 days of age. Hematoxylin and eosin images are shown. C:
Double immunofluorescence labeling with ClC5 and Hþ-ATPase antibodies in the kidneys of Tsc1 KO mice. ClC5 (left panel) and Hþ-ATPase (right panel) show
striking co-localization in the merged image (middle panel). White arrows show an example of an area of co-localization between ClC5 and Hþ-ATPase. Scale
bars: 100 mm (B); 50 mm (C). Original magnification: �10 (B); �40 (C). “C” represents cysts.

ClC5 Apical Localization in Kidney Cyst in TSC
proliferation in cells lining the cysts (day 300), prior to the
expansion of cysts in older mice (day 450). Cysts displayed
widespread staining for Hþ-ATPase expression (Figure 2A),
while lacking AQP2 staining in the apical membrane
(Figure 2B), consistent with the propagation of A-interca-
lated cells and the disappearance of principal cells.

FoxI1 plays a critical role in kidney cystogenesis in tu-
berous sclerosis,10 as shown by the abrogation of cysts in
Tsc1/Foxi double-KO mice.10 As indicated in Figure 3A,
Foxi1 transcript showed a substantial induction in kidneys
of Tsc1/Aqp2 KO mice versus WT mice. Although Tsc1/
Aqp2 KO cyst formation is limited to the kidney cortex,
enhanced Foxi1 mRNA expression was detected in both the
cortex and medulla (Figure 3A). Histologic analysis of H&E
stained samples showed numerous large and small kidney
cysts (Figure 3B), and immunofluorescence labeling
The American Journal of Pathology - ajp.amjpathol.org
indicated a robust expression and co-localization of ClC5
and Hþ-ATPase on the apical membrane of cyst epithelia
in Tsc1/Aqp2 KO mice (Figure 3C). Image quantification
analysis showed that ClC5 (23,816 � 2420) and Hþ-
ATPase (35,658 � 9806) exhibited significantly higher
fluorescence values compared with background (ClC5,
5.02 � 0.83; Hþ-ATPase, 2.52 � 0.49) when analyzed for
CTCF (Figure 3C).

Similar to the Tsc1/Aqp2 KO mice, Foxi1 expression
showed a robust enhancement in kidneys of principal
cellespecific Tsc2 KO mice (Figure 4A). Histologic anal-
ysis showed a time-dependent increase in the number and
sizes of cysts in kidneys of Tsc2/Aqp2 KO mice
(Figure 4B), with a similar pattern of cyst expansion found
in Tsc2þ/� aging mice. The double-label immunofluores-
cence images of ClC5 and Hþ-ATPase display remarkable
195
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Figure 4 Examination of Foxi1 expression and chloride channel 5 (ClC5) localization in kidneys of wild-type (WT) and Tsc2 knockout (KO) (Tsc2/Aqp2 cre)
mice. A: Expression of Foxi1 in kidneys of Tsc2 KO mice. There is a substantial increase in Foxi1 expression in Tsc2 KO mice compared with WT mice. B:
Histologic analysis of kidneys of WT and Tsc2 KO mice. Hematoxylin and eosin images were obtained from WT and Tsc2 KO mice at 80 and 140 days of age.
Similar to Tsc2þ/� mice, there is an age-related cystogenesis that occurs in principal cellespecific Tsc2 KO mice. C: Double immunofluorescence labeling with
ClC5 and Hþ-ATPase antibodies in kidneys of Tsc2 KO mice. Images of ClC5 (right panel) and Hþ-ATPase (left panel) in Tsc2 KO mice are shown. White arrows
depict areas of co-localizations between the antibodies (merged image; middle panel). Scale bars: 100 mm (B); 50 mm (C). Original magnification: �10 (B);
�40 (C). “C” represents cysts.

Barone et al
co-localization of Hþ-ATPase and ClC5 along the apical
membrane of cystic epithelium in Tsc2/Aqp2 KO mice
(Figure 4C). This is further illustrated by the enhanced
immunofluorescence staining (ClC5, 23,816 � 2421; Hþ-
ATPase, 25,732 � 3451) compared with background (ClC5,
2.82 � 0.96; Hþ-ATPase, 5.24 � 0.22) when analyzed for
CTCF.

Expression of Foxi1 and localization of ClC5 were
examined in kidneys of pericyte-specific Tsc1 KO (Tsc1/
renin cre) mice. Similar to other models, H&E staining
revealed multiple large and small cysts (Supplemental
Figure S1A), and double immunofluorescence labeling
showed a strong and widespread co-localization of ClC5
and Hþ-ATPase on the apical membrane of cyst epithelia
in pericyte-specific Tsc1 KO mice (Supplemental
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Figure S1B). Further delineation of the importance of the
relationship between ClC5 and Hþ-ATPase toward cyst
formation is observed in human TSC patients (Figure 5A).
As indicated, there is a marked apical co-localization of the
ClC5 and Hþ-ATPase in human kidney cyst epithelium in
TSC (Figure 5A).
To determine whether the co-localization of ClC5 and

Hþ-ATPase in kidney cysts is unique to TSC or is present in
other hereditary models of kidney cysts, double immuno-
fluorescence labeling with Hþ-ATPase and ClC5 antibodies
was performed on cyst epithelium from humans with
ADPKD and in kidneys of Pkd1 mice. As shown, ClC5 and
Hþ-ATPase displayed significantly lower expression versus
TSC and exhibited few apical localizations in cyst epithelia
in both human ADPKD (Figure 5B) and PKD mice
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Expression of chloride channel 5 (ClC5) in cystic epithelium from individuals with tuberous sclerosis complex (TSC) or autosomal dominant
polycystic kidney disease (ADPKD). A: Double immunofluorescence labeling with ClC5 and Hþ-ATPase antibodies in an individual with TSC. Similar to TSC mouse
models, human cystic epithelium also shows a marked apical co-localization (merged image; middle panel) between ClC5 (right panel) and Hþ-ATPase (left
panel). B: Double immunofluorescence labeling with ClC5 and Hþ-ATPase antibodies in an individual with ADPKD. Unlike TSC, humans with ADPKD lack
ClC5epositive staining in cyst epithelium. Scale bars Z 50 mm. Original magnification, �40. “C” represents cysts.

ClC5 Apical Localization in Kidney Cyst in TSC
(Figure 6A). The double labeling with AQP2 and ClC5
antibodies indicate that the predominant cell type lining
the cysts in PKD are principal cells (Figure 6B).
Discussion

The current study shows that ClC5 is strongly expressed on
the apical membrane of cyst epithelia in various models of
TSC (Figures 1, 2, 3, 4, and 5A). It further indicates that
ClC5 is not detected on the apical membrane of cystic
epithelia in human or mouse models of PKD (Figures 5B
and 6). These data indicate that the specificity of ClC5
localization is unique to TSC kidney cysts where it co-
localizes with Hþ-ATPase on the apical membrane of cyst
epithelia in both TSC patients and various animal models of
TSC (Figures 1, 2, 3, 4, and 5A).

ClC5 encodes an electrogenic Cl�/Hþ exchanger and
belongs to the CLC family of Cl� channels/trans-
porters.21e23 It is located in the endosomal membrane in
proximal tubule and A-intercalated cells of the collecting
duct.21e23 ClC5 plays a critical role in dissipating Hþ

secretion and endosomal membrane depolarization mediated
via Hþ-ATPase by driving Cl� into the lumen of endosomes
in exchange for Hþ. The mode of transport of ClC5 is
electrogenic and comprises two inward Cl� ions in ex-
change for one outward Hþ ion.21e24 Thus, ClC5 in
collaboration with Hþ-ATPase allows parallel movement of
The American Journal of Pathology - ajp.amjpathol.org
Cl� and Hþ into the lumen of endosomes, sustaining a
highly acidic environment, which is essential for their
physiological function, while preventing the membrane
depolarization resulting from the inward transport of Hþ via
Hþ-ATPase. Inactivating mutations in ClC5 are associated
with the development of Dent disease, an X-linked renal
tubular disorder characterized by proximal tubule dysfunc-
tion, including low-molecular-weight proteinuria, hyper-
calciuria, nephrocalcinosis, and progressive renal
failure.21e23 There are no pathophysiological processes
attributable to ClC5 function in intercalated cells.

The results display the progression of Foxi1 expression
and cyst development in kidneys of Tsc2þ/� mice (Figure 1,
A and B). As shown in Figure 1A, the expression of Foxi1
in Tsc2þ/� mice remains low and comparable to that in WT
mice at 6 and 10 months after birth but shows a robust in-
duction at 15 months of age. Histologic analysis of kidneys
in Tsc2þ/� mice showed no cysts at 6 months but revealed
the appearance of a few small cysts at 10 months of age
(Figure 1B). Tsc2þ/� kidneys showed numerous large and
small cysts at 15 months of age (Figure 1B). The enlarge-
ment of cysts in 15-montheold Tsc2þ/� mice was associ-
ated with a strong and widespread apical expression of ClC5
and Hþ-ATPase in cyst epithelium (Figure 1C).

The results in Figure 1 strongly suggest that the initiation
of cystogenesis precedes the enhanced expression of Foxi1
in kidneys of Tsc2þ/� mice (300- versus 450-dayeold
mice). The results in 450-dayeold mice show that the robust
197
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Figure 6 Expression of chloride channel 5 (ClC5) in cystic epithelium of PKD1 mice. A: Double immunofluorescence labeling with ClC5 and Hþ-ATPase
antibodies in kidneys of PKD1 mice. Unlike the tuberous sclerosis complex (TSC) mouse models presented in this study, PKD1 mice express little ClC5epositive
staining (left panel) in their cystic epithelium. In addition, there are few apical Hþ-ATPaseepositive cells (right panel; white arrow) lining the cyst. Middle
panel shows the merged image. B: Double immunofluorescence labeling with ClC5 and AQP2 antibodies in kidneys of PKD1 mice. There are numerous AQP2-
positive cells (right panel) lining the cyst; however, no ClC5 staining (left panel) is detected. Middle panel shows the merged image. Scale bars Z 50 mm.
Original magnification, �40. “C” represents cyst.
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induction of Foxi1 was associated with the apical localiza-
tion of ClC5 and Hþ-ATPase in A-intercalated cells lining
the cysts (Figure 1C). ClC5 expression in WT mice is
limited to the intracellular compartments in proximal tubule
and some intercalated cells (Figure 1C). These studies
support the notion that the initiation phase of cystogenesis
precedes the robust expression of Foxi1. It is likely that
enhanced expression of Foxi1 correlates with the expansion
of kidney cysts in TSC. The results in Figure 2 indicate that
cyst epithelia exhibit robust proliferation in 300-dayeold
mice, as verified by increased PCNA expression in cyst
epithelial cells. These results further support the view that
enhanced Foxi1 expression may be critical to the expansion
of cysts and could play a role in the proliferation of cyst
epithelia.

Although the expansion of cysts correlates with a sig-
nificant disappearance of principal cells and proliferation of
A-intercalated cells lining the cyst,19 the exact mechanism
for Cl� transport and, as a consequence, fluid secretion, into
the cyst lumen in TSC remains speculative. Unlike principal
cells in ADPKD, which secret Cl� into the cyst lumen via
CFTR,20,36,37 the abundance of CFTR in A-intercalated
cells is very low.38 As such, transporters and/or channels
distinct from CFTR may play a critical role in Cl� secretion
into the cyst lumen in TSC.

The initial signal in TSC originates from the inactivating
mutations in either the TSC1 or TSC2 gene. Functionally,
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the protein products of these two genes form a complex that
is critical to the regulation of cell growth through the
phosphatidylinositol 3-kinase signaling pathway, which is a
strong inhibitor of the mTOR.5,39e41 As a result, inactiva-
tion in either the TSC1 or TSC2 gene results in permanent
activation of mTOR complex 1 in various organs.1e5

Several elegant studies have shown an essential role for
Hþ-ATPase in amino acidemediated translocation of
mTOR complex 1 to the lysosomal membrane, where it
becomes activated.42e44 Hþ-ATPase accomplishes this task
by interacting with the Ragulator, a scaffolding complex
that anchors the Rag GTPases to the lysosomes and pro-
motes mTOR complex 1 translocation and activation.37,45,46

These studies42e44 show the activation of mTOR1 and
Hþ-ATPase in lysosomal membrane. However, our studies
indicate the activation of mTOR complex 1 and Hþ-ATPase
in the apical membrane of cell epithelium.19

The current studies point to a fundamental difference in
mechanisms for Cl� secretion into the kidney cyst lumen in
TSC versus PKD. This difference reflects the distinct cell
types lining the cysts in the two kidney cyst models.
Although cells lining the cysts in PKD were predominantly
composed of principal cells (Figure 6),36,37 the current
studies indicate that the cysts in TSC were overwhelmingly
composed of A-intercalated cells. As a result, CFTR, which
is the dominant Cl�-secreting molecule in cyst epithelia in
PKD, was not a major Cl�-secreting molecule into the cyst
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


ClC5 Apical Localization in Kidney Cyst in TSC
lumen in TSC. The exocytosis of endosomal ClC5 along
with Hþ-ATPase to the apical membrane of cyst epithelia
supports a critical role for an electrogenic 2Cl�/Hþ

exchanger, ClC5, in mediating Cl� secretion and cyst
expansion in TSC. These are the first reports on the apical
membrane localization of ClC5 in A-intercalated cells in
any disease state. They suggest that, similar to late endo-
somes/lysosomes, ClC5 and Hþ-ATPase may function
synergistically on cyst epithelia by secreting Cl� and Hþ

into the cyst lumen. This coordinated action ensures cyst
expansion consequent to Cl� secretion. Maneuvers aimed at
inhibiting ClC5 may have therapeutic effects in decreasing
cyst burden in TSC.
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