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Abstract

Fully-automated segmentation of pathological shoulder muscles in patients with musculo-skeletal 

diseases is a challenging task due to the huge variability in muscle shape, size, location, 

texture and injury. A reliable automatic segmentation method from magnetic resonance images 

could greatly help clinicians to diagnose pathologies, plan therapeutic interventions and predict 

interventional outcomes while eliminating time consuming manual segmentation. The purpose of 

this work is three-fold. First, we investigate the feasibility of automatic pathological shoulder 

muscle segmentation using deep learning techniques, given a very limited amount of available 

annotated pediatric data. Second, we address the learning transferability from healthy to 

pathological data by comparing different learning schemes in terms of model generalizability. 

Third, extended versions of deep convolutional encoder-decoder architectures using encoders pre-

trained on non-medical data are proposed to improve the segmentation accuracy. Methodological 

aspects are evaluated in a leave-one-out fashion on a dataset of 24 shoulder examinations from 

patients with unilateral obstetrical brachial plexus palsy and focus on 4 rotator cuff muscles 

(deltoid, infraspinatus, supraspinatus and subscapularis). The most accurate segmentation model 

is partially pre-trained on the large-scale ImageNet dataset and jointly exploits inter-patient 

healthy and pathological annotated data. Its performance reaches Dice scores of 82.4%, 82.0%, 
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71.0% and 82.8% for deltoid, infraspinatus, supraspinatus and subscapularis muscles. Absolute 

surface estimation errors are all below 83 mm2 except for supraspinatus with 134.6 mm2. The 

contributions of our work offer new avenues for inferring force from muscle volume in the context 

of musculo-skeletal disorder management.

Keywords

Shoulder muscle segmentation; Musculo-skeletal disorders; Deep convolutional encoder-decoders; 
Healthy versus pathological transferability; Obstetrical brachial plexus palsy

1. Introduction

The rapid development of non-invasive imaging technologies over the last decades has 

opened new horizons in studying both healthy and pathological anatomy. As part of this, 

pixel-wise segmentation has become a crucial task in medical image analysis with numerous 

applications such as computer-assisted diagnosis, surgery planning, visual augmentation, 

image-guided interventions and extraction of quantitative indices from images. However, 

the analysis of complex magnetic resonance (MR) imaging datasets is cumbersome and 

time-consuming for radiologists, clinicians and researchers. Thus, computerized assistance 

methods, including robust automatic image segmentation techniques, are needed to guide 

and improve image interpretation and clinical decision making.

Although great strides have been made in automatically delineating cartilages and bones 

(Liu et al., 2018; Boutillon et al., 2020), there is a great need for accurate muscle 

delineations in managing musculo-skeletal disorders. The task of segmenting muscles from 

MR images becomes more difficult when the pathology alters the size, shape, texture 

and global MR appearance of muscles (Barnouin et al., 2014) (Fig. 1). Further, the 

large variability across patients, arising from age-related development and injury, impacts 

the ability to delineate muscles. To circumvent these difficulties, muscle segmentation 

is traditionally performed manually, in a slice-by-slice fashion (Tingart et al., 2003). 

However, manual segmentation is a time-consuming task and is often imprecise due to intra- 

and inter-expert variability. Therefore, most musculo-skeletal diagnoses are based on 2D 

analyses of single images, despite the utility of 3D volume exploration. Recently, there has 

been a growing interest in developing automatic techniques for 3D muscle segmentation, 

particularly in the area of deploying deep learning methodologies using convolutional 

encoder-decoders (Litjens et al., 2017).

Obstetrical brachial plexus palsy (OBPP), among the most common birth injuries (Pons 

et al., 2017), is one such pathology in which accurate 3D automatic muscle segmentation 

could help to quantify a patient’s level of impairment, guide interventional planning or 

track treatment progress. OBPP occurs most often during the delivery phase when lateral 

traction is applied to the head to permit shoulder clearance (O’Berry et al., 2017). It is 

characterized by the disruption of the peripheral nervous system conducting signals from 

the spinal cord to shoulders, arms and hands, with an incidence of around 1.4 every 1000 

live births (Chauhan et al., 2014). This nerve injury leads to variable muscle denervation, 

resulting in muscle atrophy with fatty infiltration, growth disruption, muscle atrophy and 
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force imbalances around the shoulder (Brochard et al., 2014). Treatment and prevention of 

shoulder muscle strength imbalances are main therapeutic goals for children with OBPP 

who do not fully recover (Waters et al., 2009). Patient-specific information related to the 

degree of muscle atrophy across the shoulder is therefore needed to plan interventions 

and predict interventional outcomes. Recent work, reporting a clear relationship between 

muscle atrophy and strength loss for children with OBPP (Pons et al., 2017), demonstrates 

that an ability to accurately quantify 3D muscle morphology directly translates into an 

understanding of the force capacity of shoulder muscles. In this direction, shoulder muscle 

segmentation on MR images is needed to both quantify individual muscle involvement and 

analyze shoulder strength balance in children with OBPP.

Therefore, the purpose of our study is to develop and validate a robust and fully-automated 

muscle segmentation pipeline, which will support new insights into the evaluation, diagnosis 

and management of musculo-skeletal diseases. The specific aims are three-fold. First, 

we aim at studying the feasibility of automatically segmenting pathological shoulder 

muscle using deep convolutional encoder-decoder networks, based on an available, but 

small, annotated dataset in children with OBPP (Pons et al., 2017). Second, our work 

addresses the learning transferability from healthy to pathological data, focusing particularly 

on how available data from both healthy and pathological shoulder muscles can be 

jointly exploited for pathological shoulder muscle delineation. Third, extended versions 

of deep convolutional encoder-decoder architectures, using encoders pre-trained on non-

medical data, are investigated to improve the segmentation accuracy. Experiments extend 

our preliminary results (Conze et al., 2019) to four shoulder muscles including deltoid, 

infraspinatus, supraspinatus and subscapularis.

2. Related works

To extract quantitative muscle volume measures, from which forces can be derived (Pons 

et al., 2017), muscle segmentation is traditionally performed manually in a slice-by-slice 

manner (Tingart et al., 2003) from MR images. This task is extremely time-consuming 

and requires tens of minutes to get accurate delineations for one single muscle. Thus, it is 

not applicable for large volumes of data typically produced in research studies or clinical 

imaging. In addition, manual segmentation is prone to intra- and inter-expert variability, 

resulting from the irregularity of muscle shapes and the lack of clearly visible boundaries 

between muscles and surrounding anatomy (Pons et al., 2018). To facilitate the process, a 

semi-automatic processing, based on transversal propagations of manually-drawn masks, 

can be applied (Ogier et al., 2017). It consists of several ascending and descending 

non-linear registrations applied to manual masks to finally achieve volumetric results. 

Although semi-automatic methods achieve volume segmentation in less time then manual 

segmentation, they are still time-consuming.

A model-based muscle segmentation incorporating a prior statistical shape model can be 

employed to delineate muscles boundaries from MR images. A patient-specific 3D geometry 

is reached based on the deformation of a parametric ellipse fitted to muscle contours, 

starting from a reduced set of initial slices (Südhoff et al., 2009; Jolivet et al., 2014). 

Segmentation models can be further improved by exploiting a-priori knowledge of shape 
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information, relying on internal shape fitting and autocorrection to guide muscle delineation 

(Kim et al., 2017). Baudin et al. (2012) combined a statistical shape atlas with a random 

walks graph-based algorithm to automatically segment individual muscles through iterative 

linear optimization. Andrews and Hamarneh (2015) used a probabilistic shape representation 

called generalized log-ratio representation that included adjacency information along with a 

rotationally invariant boundary detector to segment thigh muscles.

Conversely, aligning and merging manually segmented images into specific atlas coordinate 

spaces can be a reliable alternative to statistical shape models. In this context, various 

single and multi-atlas methods have been proposed for quadriceps muscle segmentation 

(Ahmad et al., 2014; Le Troter et al., 2016) relying on non-linear registration. Engstrom 

et al. (2011) used a statistical shape model constrained with probabilistic MR atlases to 

automatically segment quadratus lumborum. Segmentation of muscle versus fatty tissues 

has been also performed through possibilistic clustering (Barra and Boire, 2002), histogram-

based thresholding followed by region growing (Purushwalkam et al., 2013) and active 

contours (Orgiu et al., 2016) techniques.

However, all the previously described methods are not perfectly suited for high inter-subject 

shape variability, significant differences of tissue appearance due to injury and delineations 

of weak boundaries. Moreover, many of the previously described methods are semi-

automatic and hence require prior knowledge, usually associated with high computational 

costs and large dataset requirements. Therefore, developing a robust fully-automatic muscle 

segmentation method remains an open and challenging issue, especially when dealing with 

pathological pediatric data.

Huge progress has been recently made for automatic image segmentation using deep 

Convolutional Neural Networks (CNN). Deep CNNs are entirely data-driven supervised 

learning models formed by multi-layer neural networks (LeCun et al., 1998). In contrast to 

conventional machine learning which requires handcrafted features and hence specialized 

knowledge, deep CNNs automatically learn complex hierarchical features directly from 

data. CNNs obtained outstanding performance for many medical image segmentation 

tasks (Litjens et al., 2017; Tajbakhsh et al., 2020), which suggests that robust automated 

delineation of shoulder muscles from MR images may be achieved using CNN-based 

segmentation. To our knowledge, no other study has been conducted on shoulder muscle 

segmentation using deep learning methods.

The simplest way to perform segmentation using deep CNNs consists in classifying each 

pixel individually by working on patches extracted around them (Ciresan et al., 2012). 

Since input patches from neighboring pixels have large overlaps, the same convolutions 

are computed many time. By replacing fully connected layers with convolutional layers, a 

Fully Convolutional Network (FCN) can take entire images as inputs and produce likelihood 

maps instead of single pixel outputs. It removes the need to select representative patches 

and eliminates redundant calculations due to patch overlaps. In order to avoid outputs with 

far lower resolution than input shapes, FCNs can be applied to shifted versions of the input 

images (Long et al., 2015). Multiple resulting outputs are thus stitched together to get results 

at full resolution.
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Further improvements can be reached with architectures comprising a regular FCN to extract 

features and capture context, followed by an up-sampling part that enables to recover the 

input resolution using up-convolutions (Litjens et al., 2017). Compared to patch-based 

or shift-and-stitch methods, it allows a precise localization in a single pass while taking 

into account the full image context. Such architecture made of paired networks is called 

Convolutional Encoder-Decoder (CED).

U-Net (Ronneberger et al., 2015) is the most well-known CED in the medical image analysis 

community. It has a symmetrical architecture with equal amount of down-sampling and up-

sampling layers between contracting and expanding paths (Fig. 3a). The encoder gradually 

reduces the spatial dimension with pooling layers whereas the decoder gradually recovers 

object details and spatial dimension. One key aspect of U-Net is the use of shortcuts 

(so-called skip connections) which concatenate features from the encoder to the decoder 

to help in recovering object details while improving localization accuracy. By allowing 

information to directly flow from low-level to high-level feature maps, faster convergence is 

achieved. This architecture can be exploited for 3D volume segmentation (Çiçek et al., 2016) 

by replacing all 2D operations with their 3D counterparts but at the cost of computational 

speed and memory consumption. Processing 2D slices independently before reconstructing 

3D medical volumes remains a simpler alternative. Instead of cross-entropy used as loss 

function, the extension of U-Net proposed in Milletari et al. (2016) directly minimizes a 

segmentation error to handle class imbalance between foreground and background.

3. Material and methods

In this work, we develop and validate a fully-automatic methodology for pathological 

shoulder muscle segmentation through deep CEDs (Section 2), using a pediatric OPBB 

dataset (Section 3.1). Healthy versus pathological learning transferability is addressed in 

Section 3.2. Extended deep CED architectures with pre-trained encoders are proposed in 

Section 3.3. Assessment is performed using dedicated evaluation metrics (Section 3.4).

3.1. Imaging dataset

Data collected from a previous study (Pons et al., 2017) investigating the muscle volume-

strength relationship in 12 children with unilateral OPBB (averaged age of 12.1 ± 3.3 

years) formed the basis of the current study. In this IRB approved study, informed consents 

from a legal guardian and assents from the participants were obtained for all subjects. If 

a participant was over 18 years of age, only informed consent was obtained from that 

participant. For each patient, two 3D axial-plane T1-weighted gradient-echo MR images 

were acquired: one for the affected shoulder and another for the unaffected one. For 

each image set, equally spaced 2D axial slices were selected for four different rotator 

cuff muscles: deltoid, infraspinatus, supraspinatus and subscapularis. These slices were 

annotated by an expert in pediatric physical medicine and rehabilitation to reach pixel-wise 

groundtruth delineations. Image size for axial slices are constant for each subject (416 × 

312 pixels). Image resolution varies from 0.55 × 0.55 to 0.63 × 0.63 mm, allowing a finer 

resolution for smaller subjects. The number of axial slices fluctuates from 192 to 224, 

whereas slice thickness remains unchanged (1.2 mm). Overall, we had 374 (resp. 395) 
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annotated axial slices for deltoid, 306 (367) for infraspinatus, 238 (208) for supraspinatus 

and 388 (401) for subscapularis across 2400 (2448) axial slices arising from 12 affected 

(unaffected) shoulders. Among these 24 MR image sets, pairings between affected and 

unaffected shoulders are known. Due to sparse annotations (Fig. 1), deep CEDs exploit 

as inputs 2D axial slices and produce 2D segmentation masks which can be then stacked 

to recover a 3D volume for clinical purposes. Among the images from the affected side, 

8 are from right shoulders (R-P-{0134,0684,0382,0447,0660,0737,0667,0277}) 

whereas 4 correspond to left shoulders (L-P-{0103,0351,0922,0773}). Training images 

displaying a right (left) shoulder are flipped when a left (right) shoulder is considered for 

test.

3.2. Healthy versus pathological learning transferability

In the context of OBPP, the limited availability of both healthy and pathological data for 

image segmentation brings new queries related to the learning transferability from healthy 

to pathological structures. This aspect is particularly suitable to musculo-skeletal pathologies 

for two reasons. First, despite different shapes and sizes due to growth and atrophy, healthy 

and pathological muscles may share common characteristics such as anatomic locations and 

overall aspects. Second, combining healthy and pathological data for deep learning-based 

segmentation can act as a smart data augmentation strategy when faced with limited annoted 

data. In exploring the combined use of healthy and pathological data for pathological muscle 

segmentation, determining the optimal learning scheme is crucial. Thus, three different 

learning schemes (Fig. 2) employed with deep CEDs are considered:

• pathological only (P): the most common configuration consists in exploiting 

groundtruth annotations made on impaired shoulder muscles only, making the 

hypothesis that CED features extracted from healthy examinations are not suited 

enough for pathological anatomies.

• healthy transfer to pathological (HP): another strategy deals with transfer 

learning and fine tuning from healthy to pathological muscles. In this context, 

a first CED is trained using groundtruth segmentations from unaffected shoulders 

only. The weights of the resulting model are then used as initialization for a 

second CED network which is trained using pathological inputs only.

• simultaneous healthy and pathological (A1): the last configuration consists in 

training a CED with a groundtruth dataset comprising annotations made on both 

healthy and pathological shoulder muscles, which allows to benefit from a more 

consequent dataset.

By comparing these different training strategies, we evaluate the benefits brought by 

combining healthy and pathological data together in terms of model generalizability. The 

balance between data augmentation and healthy versus pathological muscle variability is a 

crucial question which has never been investigated for muscle segmentation. These three 

different schemes, referred as P (pathological only), HP (healthy transfer to pathological) and 

A (simultaneous healthy and pathological) are compared in a leave-one-out fashion (Fig. 2). 

1A stands for ‘all’.
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The overall dataset is divided into healthy and pathological MR examinations. Iteratively, 

one pathological examination is extracted from the pathological dataset and considered as 

test examination for muscle segmentation. To avoid any bias for HP and A, annotated data 

from the healthy shoulder of the patient whose pathological shoulder is considered for test is 

not used during training.

For all schemes, deep CED networks are trained using data augmentation since the amount 

of available training data is limited. Training 2D axial slices undergo random scaling, 

rotation, shearing and shifting on both directions to teach the network the desired invariance 

and robustness properties (Ronneberger et al., 2015). In practice, 100 augmented images are 

produced for one single training axial slice. Comparisons between P, HP and A schemes 

are performed using standard U-Net (Ronneberger et al., 2015) with 10 epochs, a batch size 

of 10 images, an Adam optimizer with 10−4 as learning rate for stochastic optimization, a 

fuzzy Dice score as loss function and randomly initialized weights for convolutional filters. 

Models were implemented using Keras and trained with a single Nvidia GeForce GTX1080 

Ti GPU with 11Gb/s. Once training is performed, predictions for one single axial slice take 

28 ms only which is suitable for routine clinical practice.

3.3. Extended architectures with pre-trained encoders

Contrary to deep classification networks which are usually pre-trained on a very large 

image dataset, CED architectures used for segmentation are typically trained from scratch, 

relying on randomly initialized weights. Reaching a generic model without over-fitting is 

therefore challenging, especially when only a small amount of images is available. As 

suggested in Iglovikov and Shvets (2018), the encoder part of a deep CED network can be 

replaced by a well-known classification network whose weights are pre-trained on an initial 

classification task. It allows to exploit transfer learning from large datasets such as ImageNet 

(Russakovsky et al., 2015) for deep learning-based segmentation. In the literature, the 

encoder part of a deep CED has been already replaced by pre-trained VGG-11 (Iglovikov 

and Shvets, 2018) and ABN WideResnet-38 (Iglovikov et al., 2018) with improvements 

compared to their randomly weighted counterparts.

Following this idea, we propose to extend the standard U-Net architecture (Section 2) by 

exploiting another simple network from the VGG family (Simonyan and Zisserman, 2014) 

as encoder, namely the VGG-16 architecture. To improve performance, this encoder branch 

is pre-trained on ImageNet (Russakovsky et al., 2015). This database has been designed 

for object recognition purposes and contains more than 1 million natural images from 

1000 classes. Pre-training our deep CED dedicated to muscle image segmentation using 

non-medical data is an efficient way to reduce the data scarcity issue while improving model 

generalizability (Yosinski et al., 2014). Pre-trained models cannot only improve predictive 

performance but also require less training time to reach convergence for the target task. 

In particular, low-level features captured by first convolutional layers are usually shared 

between different image types which explains the success of transfer learning between tasks.

The VGG-16 encoder (Fig. 3b) consists of sequential layers including 3 × 3 convolutional 

layers followed by Rectified Linear Unit (ReLU) activation functions. Reducing the spatial 

size of the representation is handled by 2 × 2 max pooling layers. Compared to standard 
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U-Net (Fig. 3a), the first convolutional layer generates 64 channels instead of 32. As the 

network deepens, the number of channels doubles after each max pooling until it reaches 

512 (256 for classical U-Net). After the second max pooling operation, the number of 

convolutional layers differ from U-Net with patterns of 3 consecutive convolutional layers 

instead of 2, following the original VGG-16 architecture. In addition, input images are 

extended from one single greyscale channel to 3 channels by repeating the same content in 

order to respect the dimensions of the RGB ImageNet images used for encoder pre-training. 

The only differences with VGG-16 rely in the fact that the last convolutional layer as well 

as top layers including fully-connected layers and softmax have been omitted. The two last 

convolutional layers taken from VGG-16 serve as central part of the CED and separate both 

contracting and expanding paths.

The extension of the U-Net encoder is transferred to the decoder branch by adding 2 

convolutional layers as well as more feature channels to get an exactly symmetrical 

construction while keeping skip connections. Contrary to encoder weights which are 

initialized using pre-training performed on ImageNet, decoder weights are set randomly. 

As for U-Net, a final 1 × 1 convolutional layer followed by a sigmoid activation function 

achieves pixel-wise segmentation masks whose resolution is the same as input slices.

Pathological shoulder muscle segmentation using the standard U-Net architecture 

(Ronneberger et al., 2015) as well as the proposed extension without (v16U-Net) and 

with (v16pU-Net) weights pre-trained on ImageNet is performed through leave-one-out 

experiments. In this context, we rely on training scheme A combining both healthy and 

pathological data (Section 3.2). As previously, networks are trained with data augmentation, 

10 epochs, a batch size of 10 images, an Adam optimizer and a fuzzy Dice score used as loss 

function. Learning rates change from U-Net and v16pU-Net (10−4) to v16U-Net (5 × 10−5) 

to avoid divergence for deep networks trained with randomly selected weights.

3.4. Segmentation assessment

To assess both healthy versus pathological learning transferability (Section 3.2) and 

extended pre-trained deep convolutional architectures (Section 3.3), the accuracy of 

automatic pathological shoulder muscle segmentation is quantified based on Dice 

( 2TP
2TP + FP + FN ), sensitivity ( TP

TP + FN ), specificity ( TN
TN + FP ) and Jaccard ( TP

TP + FP + FN ) 

scores (in %) where TP, FP, TN and FN are the number of true or false positive and 

negative pixels. Evaluations also rely on the Cohen’s kappa coefficient (
po − pe
1 − pe

) in % where 

po and pe are the relative observed agreement and the hypothetical probability of chance 

agreement. In practice, po = TP + TN
TP + FN + FP + TN  which corresponds to the accuracy and 

pe = (TP + FN) × (TP + FP )
TP + FN + FP + TN + (FP + TN) × (FN + TN)

TP + FN + FP + TN . Finally, we exploit an absolute surface 

estimation error (ASE) which compares groundtruth and estimated muscle surfaces defined 

in mm2 from segmentation masks. These scores tend to provide a complete assessment 

of the ability of CED models to provide contours identical to those manually performed. 

Reported results are averaged among all annotated slices arising from the 12 pathological 

Conze et al. Page 8

Comput Med Imaging Graph. Author manuscript; available in PMC 2023 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shoulder examinations. Network parameters are those reaching the best fuzzy Dice test 

scores during training.

4. Results and discussion

4.1. Healthy versus pathological learning transferability

The highest performance is achieved when both healthy and pathological data are 

simultaneously used for training (A), with Dice scores of 78.32% for deltoid, 81.58% 

for infraspinatus and 81.41% for subscapularis (Table 1). Scheme A outperforms transfer 

learning and fine tuning (HP) from 4 to 7% in terms of Dice. However, this conclusion 

does not apply to supraspinatus for which A and HP schemes achieve the same performance 

in Dice (≈65.7%) and Cohen’s kappa (≈65.6%). In particular, A increases the sensitivity 

(65.55% instead of 63.16%) but provides a slightly smaller specificity, compared to HP. 

In this specific case, medians are nevertheless rather in favour of A compared to means 

(Fig. 4). Comparing ASE from HP to A reveals improvements for all shoulder muscles, 

including deltoid whose surface estimation error decreases from 268 to 105.5 mm2. The 

same finding arises when studying Jaccard scores whose gains are 7.8% and 6.5% for 

deltoid and subscapularis. The Cohen’s kappa coefficient jumps from 70.73% (76.85%) 

to 78.15% (81.45%) for deltoid (infraspinatus). Therefore, directly combining healthy and 

pathological data appears a better strategy than dividing training into two parts, focusing on 

first healthy and then pathological data via transfer learning. Further, exploiting annotations 

for the pathological shoulder muscles only (P) is the worst training strategy (Table 1, Fig. 

4), especially for deltoid (Dice loss of 10% from A to P). However, results for subscapularis 

deviate from this result, with higher similarity scores (except for kappa) compared to HP 

combined with the best ASE (94.56 mm2). In general, the CED features extracted from 

healthy examinations are suited enough for pathological anatomies while acting as an 

efficient data augmentation strategy.

Accuracy scores for supraspinatus are globally worse than for other muscles (Fig. 4) since 

its thin and elongated shape can strongly vary across patients (Kim et al., 2017). Moreover, 

we notice the presence of a single severely atrophied supraspinatus (L-P-0922) among the 

set of pathological examinations. Dice results for this single muscle is 42.99% for P against 

38.59% and 32.33% for HP and A respectively. It suggests that muscles undergoing very 

strong degrees of injury must be processed separately, relying either on pathological data 

only or manual delineations. Nevetheless, learning scheme A appears globally better suited 

from weak to moderately severe muscle impairments.

Overall, the segmentation results for all three learning schemes are more accurate for 

mid-muscle regions than for both base and apex, where muscles appear smaller with strong 

appearance similarities with surrounding tissues (Fig. 5, top row). Above conclusions (A 

> HP > P) are confirmed with much more individual Dice scores grouped on the interval 

[75, 95 %] for A. The concordance between predicted and groundtruth deltoid surfaces 

(Fig. 5, bottom row), demonstrates a stronger correlation for A than for P and HP with 

individual estimations closer to the line of perfect concordance (L-P-0773 is the most 
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telling example), in agreement with similarity scores reported for each learning scheme 

(Table 1, Fig. 4).

Visually comparing both manual and automatic segmentation for deltoid (P, HP and A, Fig. 

6) and other rotator cuff muscles (A only, Fig. 7) further supports the validity of automatic 

segmentation. A very accurate deltoid delineation is achieved for A whereas P and HP tend to 

under-segment the muscle area (Fig. 6). Complex muscle shapes and subtle contours (Fig. 7) 

are relatively well captured. In addition, we can notice outstanding performance near muscle 

insertion regions (Fig. 7) whose contours are usually very hard to extract, even visually. 

These results confirm that using simultaneously healthy and pathological data for training 

helps in providing good model generalizability despite the data scarcity issue combined with 

a large appearance variability.

4.2. Extended architectures with pre-trained encoders

The v16pU-Net architecture globally outperforms both U-Net and v16U-Net networks 

(Fig. 4) with Dice scores of 82.42% for deltoid, 81.98% for infraspinatus, 70.98% for 

supraspinatus and 82.80% for subscapularis (Table 1). On the contrary, v16U-Net (U-Net) 

obtains 80.05% (78.32%) for deltoid, 81.91% (81.58%) for infraspinatus, 67.30% (65.68%) 

for supraspinatus and 81.58% (81.41%) for subscapularis. In one hand, despite slightly 

worse scores compared with U-Net for infraspinatus in terms of sensitivity (83.74 against 

84.61%) and ASE (80.11 against 74.47 mm2), v16U-Net is most likely to provide good 

predictive performance and model generalizability thanks to its deeper architecture. On the 

other hand, comparisons between v16U-Net and v16pU-Net reveal that pre-training the 

encoder using ImageNet brings non-negligible improvements (Fig. 4). For instance, v16pU-

Net provides significant gains (Table 1) for deltoid (supraspinatus) whose Jaccard score 

goes from 71.46 (56.98) to 74% (61.31%). The Cohen’s kappa coefficient enhancement is 

around 2.4% (3.7%). Surface estimation errors are among the lowest obtained with only 

80.38 mm2 for deltoid and 82.95 mm2 for subscapularis. Medians and first quartiles (Fig. 

4) globally highlight significant segmentation gains, especially for supraspinatus. Despite 

their non-medical nature, the large amount of ImageNet images used for pre-training 

makes the network converge towards a better solution. v16pU-Net is therefore the most 

able to efficiently discriminate individual muscles from surrounding anatomical structures, 

compared to U-Net and v16U-Net. In average among the four shoulder muscles, gains for 

Dice, sensitivity, Jaccard and kappa reach 2.8, 2.7, 3.2 and 2.8% from U-Net to v16pU-Net.

Above conclusions (v16pU-Net > v16U-Net > U-Net) are further supported by statistical 

analysis (Table 2). Except for infraspinatus, Student’s paired t-tests between v16pU-Net 

and v16U-Net or U-Net globally indicate that extended architectures with pre-trained 

encoders really bring non-negligible improvements (p-values <0.05 for similarity metrics 

and ASE). This finding is all the more verified between v16pU-Net embedded with learning 

scheme A and U-Net (Ronneberger et al., 2015) with P, HP or A for all muscles including 

infraspinatus.

From U-Net to v16pU-Net, individual Dice scores (Fig. 8, top row) are slightly pushed 

towards the upper limit (100%) with less variability and an increased overall consistency 
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along the axial axis, as for R-P-0737 and L-P-0773. Extreme axial slices are much better 

handled in the case v16pU-Net, especially when normalized slice numbers approach zero. 

In addition, a slightly stronger correlation between predicted and groundtruth deltoid surface 

can be seen for v16pU-Net with respect to U-Net and v16U-Net (Fig. 8, bottom row). In 

particular, great improvements for R-P-0737 and L-P-0773 can be highlighted.

Globally, compared to U-Net and v16U-Net, better contour adherence and shape 

consistency are reached by v16pU-Net whose ability to mimmic expert annotations is 

notable (Fig. 9). The great diversity in terms of textures (smooth in R-P-0684 versus 

granular in R-P-0737) is accurately captured despite high similar visual properties with 

surrounding structures. Visual results also reveal that v16pU-Net has a good behavior 

for complex muscle insertion regions (R-P-0447). Despite a satisfactory overall quality, 

U-Net and v16U-Net are frequently prone to under- (R-P-0134, R-P-0277) or over-

segmentation (R-P-0684). Some examples report inconsistent shapes (R-P-0667, R-

P-0737), sometimes combined with false positive areas which can be located far away from 

the groundtruth muscle location (R-P-0447, L-P-0773). Using a pre-trained and complex 

architecture such as v16pU-Net to simultaneously process healthy and pathological data 

provides accurate automated delineations of pathological shoulder muscles for patients with 

OPBB.

4.3. Benefits for clinical practice

The key contribution of this work deals with the possibility of automatically providing 

robust MR delineations for shoulder pathological muscles, despite the strong diversity in 

shape, size, location, texture and injury (Fig. 9). First, it has the advantages of reducing the 

burden of manual segmentation and avoiding the subjectivity of experts. Second, it paves the 

way for the automated inference of individual morphological parameters (Pons et al., 2017) 

which are not accessible with simple clinical examinations. This can therefore be useful 

to guide the rehabilitative and surgical management of children with OBPP. The benefit of 

the proposed technology in real clinical use can be also involved for other very frequent 

shoulder muscular disorders such as rotator cuff tears in orderto provide objective predictors 

of successful surgical repair (Laron et al., 2012a).

Despite specific segmentation difficulties in shoulder muscles related to complex shapes 

and reduced sizes, our contributions show good performance with, in particular, excellent 

specificity (Table 1). In shoulder muscles, better segmentation results are highlighted 

for mid muscle regions (Fig. 8) where muscles appear bigger and well differentiated 

from surrounding tissues. Thus, we can assume that our approach could have very good 

performance for larger muscles with stable shapes like most of arm, forearm, thigh and leg 

muscles. Additionally, it provides interesting perspectives for other muscular disorders, for 

which objective and non-invasive biomarkers are required to effectively monitor both disease 

progression and treatment response.

At a research level, it could document effects of innovative treatments like genetic 

therapies for neuromuscular disorders (Laron et al., 2012b) or improve the understanding 

of particular symptoms or diseases (Engstrom et al., 2007). It could also be integrated into 
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bio-mechanical models (Holzbaur et al., 2005; Blemker and Delp, 2005) to help clinicians 

for intervention planning.

5. Conclusion

In this work, we successfully addressed automatic pathological shoulder muscle MRI 

segmentation for patients with obstetrical brachial plexus palsy by means of deep 

convolutional encoder-decoders. In particular, we studied healthy to pathological learning 

transferability by comparing different learning schemes in terms of model generalizability 

against large muscle shape, size, location, texture and injury variability. Moreover, 

convolutional encoder-decoder networks were expanded using VGG-16 encoders pre-trained 

on ImageNet to improve the accuracy reached by standard U-Net architectures. Our 

contributions were evaluated on four different shoulder muscles: deltoid, infraspinatus, 

supraspinatus and subscapularis. First, results clearly show that features extracted from 

unimpaired limbs are suited enough for pathological anatomies while acting as an 

efficient data augmentation strategy. Compared to transfer learning, combining healthy 

and pathological data for training provides the best segmentation accuracy together with 

outstanding delineation performance for muscle boundaries including insertion areas. 

Second, experiments reveal that convolutional encoder-decoders involving a pre-trained 

VGG-16 encoder strongly outperforms U-Net. Despite the non-medical nature of pre-

training data, such deeper networks are able to efficiently discriminate individual muscles 

from surrounding anatomical structures. These conclusions offer new perspectives for the 

management of musculo-skeletal disorders, even if a small and heterogeneous dataset is 

available. The proposed approach can be easily extended to other muscle types and imaging 

modalities to provide decision support in various applications including neuro-muscular 

diseases, sports related injuries or any other muscle disorders. Methodological perspectives 

on domain adaptation should deserve further investigation to take advantage of multicentric 

data. Clinically, our method can be useful to distinguish between pathologies, evaluate the 

effect of treatments and facilitate surveillance of neuro-muscular disease course. It could 

be exploited together with bio-mechanical models to improve the understanding of complex 

pathologies and help clinicians to plan surgical interventions.
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Fig. 1. 
Groundtruth segmentation of pathological shoulder muscles including deltoid as well as 

infraspinatus, supraspinatus and subscapularis from the rotator cuff. Axial, coronal and 

sagittal slices are extracted from a 3D MR examination acquired for a child with obstetrical 

brachial plexus palsy.
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Fig. 2. 
Three different learning schemes (P, HP, A) involved in a leave-one-out setting for deep 

learning-based pathological shoulder muscle segmentation.
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Fig. 3. 
Extension of U-Net (Ronneberger et al., 2015) by exploiting as encoder a slightly 

modified VGG-16 (Simonyan and Zisserman, 2014) with weights pre-trained on ImageNet 

(Russakovsky et al., 2015), following (Iglovikov and Shvets, 2018; Iglovikov et al., 2018). 

The decoder is modified to get an exactly symmetrical construction while keeping skip 
connections.
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Fig. 4. 
Box plots on Dice, Jaccard, Cohen’s kappa and absolute surface error (ASE) slice-

wise scores over the pathological dataset using convolutional encoder-decoders (U-Net 

(Ronneberger et al., 2015), v16U-Net, v16pU-Net) embedded with learning schemes P, 

HP and A. Dashed green and solid orange lines respectively represent means and medians.
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Fig. 5. 
Deltoid segmentation accuracy using U-Net (Ronneberger et al., 2015) with learning 

schemes P, HP and A for each annotated slice of the whole pathological dataset. Top 

raw shows Dice scores (%) with respect to the normalized axial slice number obtained by 

linearly scaling slice number from [zmin, zmax] to [0, 1] where {zmin, zmax} are the minimal 

and maximal axial slice indices displaying the deltoid. Bottom row displays concordance 

between groundtruth and predicted deltoid muscle surfaces in mm2. Black line indicates 

perfect concordance.
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Fig. 6. 
Automatic pathological deltoid segmentation using U-Net (Ronneberger et al., 2015) 

embedded with learning schemes P, HP and A. Groundtruth and estimated delineations 

are in green and red respectively. Displayed results cover the whole muscle spatial extent for 

L-P-0103 examination.
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Fig. 7. 
Automatic pathological segmentation of infraspinatus, supraspinatus and subscapularis 

using U-Net (Ronneberger et al., 2015) with training on both healthy and pathological 

data simultaneously (A). Groundtruth and estimated delineations are in green and red 

respectively. Displayed results cover the whole muscle spatial extents for R-P-0447 (top), 

R-P-0660 (middle) and R-P-0134 (bottom) examinations.

Conze et al. Page 21

Comput Med Imaging Graph. Author manuscript; available in PMC 2023 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Deltoid segmentation accuracy using U-Net (Ronneberger et al., 2015), v16U-Net and 

v16pU-Net with learning scheme A for each annotated slice of the whole pathological 

dataset. Top raw shows Dice scores with respect to normalized axial slice number. Bottom 

row displays concordance between groundtruth and predicted deltoid surfaces. Black line 

indicates perfect concordance.
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Fig. 9. 
Automatic pathological segmentation of deltoid, infraspinatus, supraspinatus and 

subscapularis using U-Net (Ronneberger et al., 2015), v16U-Net and v16pU-Net with 

training on both healthy and pathological data simultaneously (A). Groundtruth and 

estimated delineations are in green and red respectively. 8 pathological examinations among 

the 12 available are involved to provide valuable insight into the overall performance.
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