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Abstract

Background Insulin resistance (IR) is a well-established factor for breast cancer (BC) risk in postmenopausal women,
but the interrelated molecular pathways on the methylome are not explicitly described. We conducted a population-
level epigenome-wide association (EWA) study for DNA methylation (DNAm) probes that are associated with IR and
prospectively correlated with BC development, both overall and in BC subtypes among postmenopausal women.

Methods We used data from Women's Health Initiative (WHI) ancillary studies for our EWA analyses and evaluated
the associations of site-specific DNAm across the genome with IR phenotypes by multiple regressions adjusting

for age and leukocyte heterogeneities. For our analysis of the top 20 IR-CpGs with BC risk, we used the WHI and the
Cancer Genomic Atlas (TCGA), using multiple Cox proportional hazards and logit regressions, respectively, accounting
for age, diabetes, obesity, leukocyte heterogeneities, and tumor purity (for TCGA). We further conducted a Gene Set
Enrichment Analysis.

Results We detected several EWA-CpGs in TXNIR CPT1A, PHGDH, and ABCGI. In particular, cg19693031 in TXNIP was
replicated in all IR phenotypes, measured by fasting levels of glucose, insulin, and homeostatic model assessment-IR.
Of those replicated IR-genes, 3 genes (CPT1A, PHGDH, and ABCGT) were further correlated with BC risk; and 1 individ-
ual CpG (cg01676795 in POR) was commonly detected across the 2 cohorts.

Conclusions Our study contributes to better understanding of the interconnected molecular pathways on the meth-
ylome between IR and BC carcinogenesis and suggests potential use of DNAm markers in the peripheral blood cells

Postmenopausal women

as preventive targets to detect an at-risk group for IR and BC in postmenopausal women.
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Background

Breast cancer (BC), the topmost leading cause of cancer
incidence in women of the USA and worldwide [1, 2],
is a heterogeneous disease with multiple clinical, histo-
pathological, and molecular subtypes, which is character-
ized by both genetic and epigenetic alterations [3, 4]. For
epigenetic events, DNA methylation (DNAm) is a well-
characterized major epigenetic modification that involves
mitotically heritable and reversible attachment of methyl
groups at the 5’ carbon of cytosine in CpG dinucleotides
(CpGs), influencing DNA transcription without altering
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the DNA sequence [5, 6]. Whereas several DNAm stud-
ies for BC initiation and progression support global
hypomethylation [7-9] and focal hypermethylation,
such that some tumor-suppressor genes are frequently
hypermethylated at CpG islands and promoters, thus
being inactivated [8, 10, 11], the role of the epigenetic
mechanisms in BC tumorigenesis has not been conclu-
sive. For example, there is no consistent trend toward an
association between identified CpGs and the risk of BC
across studies, suggesting the need for large population-
level epigenetic studies, which prospectively evaluate BC
development, specifically in BC molecular-subtype strati-
fications [7, 8].

In particular, among postmenopausal women, the obe-
sity—insulin resistance (IR) connection is a well-estab-
lished factor for BC risk/progression [1, 12—-15], but their
interrelated molecular pathways on the methylome have
not been established. In detail, IR and type 2 diabetes
(T2DM) are influenced by environmental and genomic
factors as well as by their interplay [16—19]. In prior
genome-wide association studies (GWASs), a majority of
genes are associated with insulin secretion, pointing to
pancreatic islet defects but does not represent impaired
insulin action [19-21]; and these genes explain a small
portion of the estimated heritability [19, 22]. The analy-
sis of epigenetics may address these issues. For example,
obesity status/adipose tissues and long-term exposure
of beta cell lines to hyperglycemia altered DNAm of
genes involved in glucose metabolism and their gene
expression, leading to impaired insulin secretion as well
as sensitivity [17, 23-30]. Thus, aberrant DNAm may
directly influence the function of pancreatic beta cells
as well as other organs involved in glucose homeostasis.
Also, considering that age, as measured via epigenetic
age [31, 32], influences DNAm, changes in DNAm that
are associated with IR account for aging in the methyl-
ome and thus may be a better indicator of inter-/intra-
individual genomic variability of IR. As such, DNAm can
be a biomarker of decreased insulin sensitivity, but few
epigenome-wide association studies (EWASs) have so
far examined DNAm in IR [30, 33-35]. In addition, the
previous EWASs for obesity/metabolic syndrome showed
limited evidence owing to a lack of findings’ validation
and no comparison of findings between peripheral blood
and tissues.

Further, one study [32] for IR in T2DM pancreatic
islets reported that differentially methylated genes
were enriched in pathways of cancer and MAPK signal-
ing, suggesting a close link of epigenomic mechanisms
between IR and cancer. Given that even a modest change
in DNAm causes a substantial effect on gene expression
and that in late-onset disease, it has a large effect on dis-
ease over a long time period [36], DNAm markers can
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serve as a biomarker to detect an early at-risk group for
morbid conditions, such as IR and BC, even several years
before the clinical diagnosis is made.

Our study was a population-level EWAS to detect
DNAm probes that are associated with IR phenotypes
and that, by using data from a prospective evaluation of
BC development, are further directly correlated with BC
risk, both overall and in BC subtypes among postmeno-
pausal women. DNAm is tissue specific, but the cor-
relations between peripheral blood and tissue are gene
specific. For example, the methylation levels of several
genes in relation to IR, T2DM, and/or BC are highly cor-
related between peripheral blood and tissue [37-40].
Thus, we first conducted a peripheral blood leukocytes
(PBLs)-based EWAS and compared the methylation lev-
els of detected CpGs with those of the CpGs within BC
and adjacent normal breast tissues. Corresponding to
the results in a published study [41] of gene-methylation
parallelisms between peripheral blood cells and tissues in
glucose metabolism, the PBLs may be the best non-inva-
sive alternative tissue, standing for a surrogate DNAm
marker that reflects multiple glucometabolic pathways.
With the detected EWA-based IR-CpGs, we further
tested for the associations with BC risk in PBLs and con-
ducted validation tests in BC tissues. This allowed us to
determine whether our IR-CpGs at genome-wide signifi-
cance that were associated with BC risk are systemic or
tissue specific or common in both.

Materials and methods

Study population

Our EWA analysis used data from the Women’s Health
Initiative (WHI) cohort, a large, prospective study of
postmenopausal women, whose ages were 50-79 years
at the time of enrollment between 1993 and 1998 at 40
clinical centers in the USA, consisting of 2 study arms,
namely the clinical trial (CT) and the observational study
(OS) [42]. For DNAm data, we included 3 WHI ancil-
lary studies (ASs) with available genome-wide DNAm
measured in PBLs (Fig. 1): for discovery, AS315 (Epige-
netic Mechanisms of Particulate Matter-Mediated Car-
diovascular Disease, random minority oversample from
WHI CT, n=2,243); for validation, Broad Agency Award
(BAA23, Integrative Genomics for Risk of Coronary
Heart Disease [CHD] and Related Phenotypes, case—
control study of CHD from WHI CT and OS, n=2,107)
combined with AS311 (Bladder Cancer and Leukocyte
Methylation, matched case—control study of bladder
cancer from WHI CT and OS, n=2882) [43, 44]. Racial/
ethnic variation exists in BC-related DNAm [37, 45]; for
the purpose of our EWA analysis, we restricted the study
population to those women who reported their race or
ethnicity as non-Hispanic white, a majority of the WHI
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Validation data
BAA23: N = 2,107
AS311: N = 882
Including whites &
available phenotypes
Data kept:

WHI data kept for EWA:
N = 1,132 with 485,511 CpGs

N = 94 with 482,421 CpGs
TCGA BC data:
N = 862 with 485,512 CpGs

|

Including whites & postmenopausal status;

**including those with available information
of BC subtypes and with stage I/11/1ll
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Discovery data

Including whites, available AS315: N = 2,243

phenotypes, & unique individuals
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= overlapping with those from the
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N = 1,038 with 484,220 CpGs
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& | 71| and/or had been diagnosed with any type of cancer at <
= enrollment
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WHI data kept for BC
N = 1,086 (BC = 80)
(ER/PR+ = 69; HER2/neu- = 56)

TCGA data kept for BC
N =412 (BC = 361)
(ER/PR+ = 297; SHER2/neu—= 276)

Fig. 1 Diagram of EWA and BC study populations from the WHI and TCGA cohorts. BC Breast cancer, CpGs CpG dinucleotide, DNAmM DNA
methylation, ER/PR + Estrogen receptor/progesterone receptor—positive, EWA Epigenome-wide association, HER2/neu— Human epidermal growth
factor receptor-2—-negative; TCGA The Cancer Genomic Atlas, WHI Women'’s Health Initiative. * Individuals within Stage 2 had DNAm data measured
at 2 visits and, for the analysis, the DNAm of those with a shorter interval between enrollment and blood draw were selected. ** Those selection
criteria were applied to TCGA BC tissues. § The cases of HER2/neu- contained 49 (13% of BC cases) triple negatives

ASs population, and who had available IR phenotypes
assessed via fasting blood levels of glucose (FG) and insu-
lin (FI) (n=1,132).

For our analysis of the validated IR-CpGs with the risk
of BC development, our discovery cohort included those
3 WHI ASs with available BC outcomes but excluding
women (n=46) who had been followed up for less than
1 year and/or had been diagnosed with any type of can-
cer at enrollment, leaving a total of 1,086 women (Fig. 1).
These women had been followed up through March 6,
2021, with a mean of 17 years follow-up, and 80 of them
had developed invasive BC. Our replication cohort was
derived from the Cancer Genomic Atlas (TCGA) BC
Study (n=862), housing tissue-derived genome-wide
DNAm data and molecular profiles of different BC sub-
types from BC tissues [46]. Our analyses for BC were
restricted to women who are white and postmenopausal
with available BC subtypes, but distant-metastasis free,
resulting in a total of 412 (=361 BC tissues + 51 adjacent
normal breast tissues) (Fig. 1). The institutional review
boards of each WHI clinical center and the University of
California, Los Angeles, approved this study.

Data collection and BC outcome
Participants enrolled in the WHI completed self-
administered questionnaires at screening, providing

demographic information (e.g., age, race) and medical
histories, such as DM. Trained staff obtained anthro-
pometric measurements, including height, weight, and
waist and hip circumferences at baseline. Invasive BC
development was initially ascertained through self-report
of a new cancer diagnosis by all participants, further
determined by a committee of physicians on the basis of
a review of the patients’ medical records and pathology
and cytology reports, and coded into the central WHI
database according to the National Cancer Institute’s
Surveillance, Epidemiology, and End-Results guidelines
[47]. The time from enrollment until BC development,
censoring, or study end-point was measured as the num-
ber of days and then converted into years.

BC patient data from TCGA used in this study include
information on age, race, menopausal status, and diag-
nosed tumor subtype and stage. For the study purpose,
data from primary invasive BC tissues and normal breast
tissues adjacent to BC (either primary or metastatic) tis-
sues were analyzed.

Epigenome-wide DNAm array and laboratory methods

Using peripheral blood leukocytes isolated from the fast-
ing blood of the WHI participants, we extracted DNA
and measured DNAm via the Illumina 450 BeadChip
(INlumina Inc.; San Diego, CA) at up to 485,511 CpG sites.
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DNAm levels (B values) were calculated as the ratio of
intensities between the methylated and unmethylated
probes, ranging from 0 (completely unmethylated) to 1
(completely methylated) [48]. DNAm was beta-mixture
quantile (BMIQ)-normalized, [49] and batched-adjusted
for stage and plate by using the empirical Bayes meth-
ods [50] or by using random intercept for plate and chip
and a fixed effect for row. Leukocyte heterogeneities
were estimated to be adjusted for in the analysis using
Houseman’s method [51] (for CD4" T cell, natural killer
cell, monocyte, and granulocyte) and Hovarth’s method
[52] (for plasma blast, CD8TCD28 CD45RA™ T cell, and
naive CD8 T cell).

In TCGA, tissue-derived genome-wide DNAm was
analyzed by using the Illumina Infinium450K array
and, using minfi v.1.42.0, was normalized via normal-
exponential out-of-band (Noob) background correction
[53]. The tumor purity and cell-type proportions (can-
cer and normal epithelial, stromal, and immune cells)
of each tumor sample were estimated by using the R
InfinjumPurify v. 1.3.1 [54] and RefFreeEWAS V.2.2 [55],
respectively.

Serum samples from the WHI participants fasting at
least 8 h were drawn at enrollment by trained phleboto-
mists and assayed for glucose and insulin concentrations
using the hexokinase method on a Hitachi 747 analyzer
(Boehringer Mannheim Diagnostics, Indianapolis, IN)
for glucose, and by radioimmunoassay (Linco Research,
Inc., St. Louis, MO) or automated ES300 method
(Boehringer Mannheim Diagnostics, Indianapolis, IN)
for insulin. Results from the 2 methods for insulin meas-
urement were comparable at insulin concentrations <60
pIU/ml, and the intra-class correlation coefficient with
repeatedly measured insulin was 0.7 [56]. Homeostatic
model assessment—IR (HOMA-IR), as a surrogate of IR,
was estimated as glucose (unit: mg/dl) x insulin (unit:
plU/ml) / 405 [57].

Statistical analysis

For the DNAm site-specific analysis across the genome
with IR phenotypes, each phenotype was log-trans-
formed as a result of tests conducted for linear assump-
tion and normality distribution and was also categorized
as follows: FG, FI, and HOMA-IR, using 100 mg/dl,
8.6uIU/ml, and 3.0 (respectively), corresponding to the
cut points of the American Heart Association/National
Heart, Lung, and Blood Institute, the International Dia-
betes Federation, and the Adult Treatment Panel III for
metabolic syndrome [58, 59]. The association between
DNAm and each phenotype was evaluated via multiple
linear and logistic regressions, adjusting for age and leu-
kocyte heterogeneities. The summary of the leukocyte
proportions is provided in Additional file 1: Table S1. A
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2-sided p<1E-007 (discovery) and 0.05 / number of the
discovered CpGs (replication), providing Bonferroni cor-
rection, were considered statistically significant. Results
were combined across discovery and replication in a
meta-analysis assuming a fixed—effect model.

With the selected top 20 CpG sites that were most sta-
tistically significant after multiple-comparison correc-
tions, we next performed in the WHI data the multiple
Cox proportional hazards regression for BC development
overall and within BC subtypes, with an assumption
test via a Schoenfeld residual plot and rho, by account-
ing for age, having ever been treated for diabetes, body
mass index (BMI), waist-to-hip ratio (WHR), and leuko-
cyte heterogeneities. Using TCGA data, we further con-
ducted validation tests of the top 20 CpGs with BC risk
by using logit regression that was adjusted for age, tumor
purity, and cell-type composition both overall and in the
BC subtypes. For the analysis of BC risk, the modeled
CpGs in both cohorts were further standardized across
samples; thus, the effect size reflected a 1 standardized
deviation increase in DNAm on BC risk. Given that this
testing was performed on the basis of our hypothesis-
driven questions (i.e., IR-DNAm in association with BC
systemically or in tissues), a 2-tailed p <0.05 was consid-
ered significant.

Differences in methylation levels of the modeled CpGs
by IR phenotypes in the PBLs and by BC risk in each of
PBLs and tissues, as well as differences in the DNAm sta-
tus between the PBLs and tissues among women with BC
and those without BC, were tested via unpaired 2-sample
t tests. If B values were skewed or had outliers, Mann—
Whitney/Wilcoxon’s rank-sum test was used. With the
CpGs at genome-wide significance in the discovery and
those of which were associated with BC risk in either
TCGA or WHI, we finally conducted a Gene Set Enrich-
ment Analysis (GSEA) by IR phenotypes and by BC
subtypes, respectively, using the WebGestalt [60]. All sta-
tistical analyses were performed using R.

Results

Epigenome-wide association of DNAm and IR phenotypes.
Among 484,220 CpGs in the discovery data, we found
several differentially methylated CpGs associated with
each IR phenotype (FG, FI, and HOMA-IR) and further
validated them. In detail, 19 CpGs were associated with
FG, the level of which was analyzed as a continuous vari-
able; of those, 1 CpG (cgl19693031 in TXNIP) was further
validated, with p<2.6E-03(=0.05/19) (Table 1, Figs. 2A
and B). This same CpG was also replicated in the analy-
sis for FG as a categorical variable, showing the same
direction as the effect size estimated in the FG analysis
as a continuous variable (Additional file 1: Table S2).
Of 20 CpGs in relation to FI as a continuous variable in
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assessment-insulin resistance). A Line graph: FG: 19 CpGs; B Scatter plot: FG: 19 CpGs; C Line graph: FI: 20 CpGs; D Scatter plot: FI: 20 CpGs; E Line
graph: IR: 35 CpGs; F Scatter plot: IR: 35 CpGs
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discovery, 7 CpGs were further validated, with p<2.5E—
03 (=0.05/20; Table 2, Figs. 2C and D). Of those 7 CpGs,
1 CpG (cg00574957 in CPT1A) was also replicated in the
analysis of FI as a categorical variable (Additional file 1:
Table S3); in both linear and logistic analyses, this CpG
was negatively associated with FI. For HOMA-IR as a
continuous variable, 35 CpGs were detected in discovery;
7 of those were further validated (p<1.4E-03; Table 3,
Figs. 2E and F). In the analysis of HOMA-IR as a cate-
gorical variable, 4 of the validated 7 CpGs (cg14476101 in
PHGDH, ¢g19693031 in TXNIP, cg00574958 in CPT1A,
and cg06500161 in ABCG1I) were also detected in discov-
ery, yielding the same directions as those of effect sizes
estimated in the linear analyses, but none of them were
further validated (Additional file 1: Table S4). Finally, we
conducted a meta-analysis of all the detected epigenome-
wide CpGs by combining their discovery and replication
data. We detected 1 CpG (cg19693031 in TXNIP) that
was replicated inversely related to FG, FI, and HOMA-IR
each as a continuous variable; and that CpG was also sig-
nificant at the epigenome-wide level in association with
FG and HOMA-IR each as a categorical variable.

Further, we conducted a subset analysis by selecting
CpGs with>5% of a mean difference in DNAm by IR phe-
notypes and compared their mean differences in DNAm
levels by each IR phenotype across chromosome (Chr),
CpG context, enhancer and/or promoter, and gene region
(Additional file 1: Figure S1). The mean levels of DNAm
by FG (<100 mg/dl vs.> 100 mg/dl) differed in Chr 1, 7,
8, and 16. The mean levels of DNAm by FI (<8.6puIU/ml
vs.>8.6ulU/ml) and those of DNAm by HOMA-IR (<3.0
vs. > 3.0) were different in Chr 1, 7, and 8 and in Chr 4, 8,
and 11, respectively. Whereas S-Shores were hypometh-
ylated in the groups with impaired glucose metabolism
measured via FG and HOMA-IR, OpenSea, N Shelf, and
S Shelf were hypermethylated in those with a greater level
of FI. In this group with a higher level of FI, the enhancer
was hypermethylated, whereas the promoter was hypo-
methylated. Gene regions, including intergenic, gene
body, and 5" untranslated regions (5" UTR), were hyper-
methylated in the groups with, respectively, greater levels
of FG, FI, and HOMA-IR, but the 200-1500 bp upstream
of transcription start site (TSS1500) was hypomethylated
in the group with a greater level of either FI or HOMA-IR.

Association of the detected IR-DNAm with BC risk.

With the top 20 epigenome-wide IR-DNAm, we next
tested for correlation with BC risk in the 2 independ-
ent cohorts, WHI and TCGA. In the WHI cohort, sev-
eral CpGs were associated with BC development; their
hazard ratios were consistent across the analyses both
with and without adjustment for DM, BMI, and WHR
(Table 4). In particular, 3 CpGs in WDR8 were detected
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across overall, estrogen receptor/progesterone receptor—
positive (ER/PR+), and human epidermal growth factor
receptor-2—negative (HER2/neu-) subtypes, with a posi-
tive association with BC risk (Table 4, Additional file 1:
Figure S2). None of the CpGs replicated in the analysis of
IR phenotypes were detected in the analysis for BC risk,
but 2 epigenome-wide level CpGs detected in discovery
(cgl7058475 and cgl6246545) in CPTIA and PHGDH
(replicated genes in relation to IR phenotypes), respec-
tively, were associated with the risk of BC.

In the TCGA cohort, multiple CpGs were significant
across BC subtypes; specifically, 2 CpGs (cg06500161
and cg27243685) in ABCGI (replicated gene in IR pheno-
types) were significantly associated with BC risk (Table 5,
Additional file 1: Figure S3). Only 1 CpG (cg01676795
in POR) was commonly detected across the WHI and
TCGA analyses. This CpG with a 1 standardized devia-
tion increase in DNAm had 75% (in the WHI) and a 5
times greater risk (in the TCGA) for the ER/PR + subtype.
Further, we compared DNAm levels between the WHI
and TCGA from the IR-CpGs associated with BC that
are shared by the 2 cohorts in terms of Chr, CpGs, CpG
context, and gene region. Whereas DNAm levels of some
CpG contexts and/or gene regions differed significantly
between the 2 cohorts among the non-BC subcohorts
(Additional file 1: Figure S4), no significant difference in
DNAm levels between the cohorts was observed within
the BC subcohorts (Fig. 3), suggesting DNAm parallel-
isms between PBLs and tissues in IR and BC.

GSEA by IR phenotypes and by BC subtypes.

Using GSEA strategies, we conducted multiple analy-
ses of gene ontology (GO) with biologic process, cellu-
lar component, and molecular functions; pathways with
KEGG and Reactome; and diseases by using DisGeNET
and GLAD4U databases. In regard to IR phenotypes
(Additional file 1: Tables S5.1-S4.7), GO with biologic
process identified a beta-catenin/T cell factors (TCF)
complex assembly; its dysregulation is associated with
cancer [61]. Gene-enrichment pathways were involved
in glucose intolerance, transcriptional mis-regulation
in cancer, IR signaling (AKT2, RSK/RAS/MAPK), and
lipid metabolism. Diseases involved in the IR pathways
included nutritional and metabolic diseases, DM, and
obesity. For BC subtypes, GO with a cellular component
included a histone acetyltransferase and other transcrip-
tion factors in the ER/PR + subtype. Genes were enriched
in the pathways involving adipocytokine signaling and
lipid metabolism in the HER2/neu— subtype and in
those involving immune and insulin signaling (MAPK1/
MAPK3, Rap 1) in both ER/PR+and HER2/neu- sub-
types (Additional file 1: Tables S5.8-S4.11).
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Discussion

This is the first large population-level EWAS conducted
in postmenopausal women for detecting differentially
methylated CpGs in the PBLs that are associated with
individual IR phenotypes and that are further prospec-
tively evaluated for an association with BC development,
both overall and in BC molecular subtypes. The meth-
ylation levels of the detected CpGs in IR and BC risk
between the PBLs and the BC tissues were comparable,
consistent with the findings of a gene-methylation paral-
lelism study in glucose metabolism between peripheral
blood cells and tissues [41]. This suggests that PBLs may
serve as the best source of surrogate DNAm markers in
non-invasive tissues, reflecting multiple interconnected
glucometabolic carcinogenesis pathways.

Several EWA-CpGs in IR phenotypes detected in our
study were also reported in previous studies, support-
ing our study’s replication and robustness. For example,
¢g19693031 in TXNIP, inversely associated with FG, FI,
and IR in our study, was observed in previous studies
with the same direction of association [62—66]. Thiore-
doxin-interacting protein (TXNIP) plays a key role in
pancreatic beta cell biology involving oxidative stress
and endothelial cell inflammation and its vascular com-
plications [67], and it regulates glucose homeostasis by
promoting fructose absorption in the small intestine
[68]. The TXNIP gene is activated in both hyperglyce-
mic animals and human adipose tissues [69], and it regu-
lates glucometabolic pathways in human skeletal muscle
[70]. Thus, our finding of hypermethylated DNA probe
in TXNIP (i.e., a negative effect on the gene expression)
associated with decreased IR has been supported.

Also, cg00574957 in CPT1A was negatively associated
with FI and IR in both our and previous studies [63, 64,
71], showing the biological plausibility of its association
with IR, including its role in obesity, metabolic syndrome,
and fatty acid metabolism [72]. As this CpG is independ-
ent of nearby single-polymorphism nucleotides (SNPs)
located within 1 Mb upstream or downstream of this
locus, representing rs1369 index, the decreased CPT1A
expression can be caused solely by increased methyla-
tion at this CpG site [73]. CPT1A, 1 of the 3 isoforms of
CPT-1, was found mostly in the liver, where it is involved
in the regulation of mitochondrial fatty acid oxidation
(FAO). CPT1A deficiency causes the metabolic disorder
of FAO [74, 75]. A decrease in mitochondrial fatty acid

(See figure on next page.)
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uptake results in elevated intramuscular lipid levels, but
upregulates glucose oxidation and improves whole-body
insulin sensitivity in a mouse model [74]; this is sup-
portive of our finding of an inverse association between
increased DNAm of the CpG (i.e., reduced gene expres-
sion) and FI/IR. However, most human gene studies have
reported that this gene’s function is connected to fatty
acid metabolism, not to clinical glucometabolic pheno-
types, warranting a future functional study.

Similarly, cg14476101 in PHGDH was inversely asso-
ciated with FI and IR in our study. Previous EWASs and
Mendelian Randomization studies confirmed the associ-
ation between hypermethylation at that locus and lower
fatty-liver risk, T2DM, and adiposity [76, 77]. Also, the
role of this CpG in regulating the blood concentration
of steroid hormones was upregulated by obesity [78].
Together, these findings propose a plausible link between
the PHGDH gene and lipid and adipocytokine metabolic
pathways that can be altered by the methylation level of
cgl14476101.

In contrast, we found that cg06500161 in ABCGI
was positively associated with FI and IR. This CpG site
is a well-known DNAm probe associated with gluco-
metabolic phenotypes [30, 62, 63, 79, 80], and the gene’s
expression was inversely associated with the methylation
level at this CpG [30, 62]. ABCGL is a crucial regulator
of cholesterol efflux from macrophages to high density
lipoprotein (HDL); thus, suppressed gene activity by
increased DNAm at this site can contribute to lower-
ing the HDL level [81], which is a known independent
risk factor for glucometabolic disorders. Also, the link
between ABCGI and T2DM/glucose traits has been
reported previously in both human and animal studies
[82-84], supporting our finding of increased DNAm of
this site’s being associated with IR phenotypes.

Of those validated IR-genes, 3 genes (CPT1A, PHGDH,
and ABCGI) were further correlated with BC risk. In
particular, the ABC transporter gene (ABCGI) expres-
sion associated with cholesterol efflux in the liver results
in inhibition of cell proliferation and stimulation of cell
apoptosis in BC cells [85]. This highlights a potential epi-
genetic link between lipid—glucometabolic alteration and
BC tumorigenesis and progression that deserves further
study. In our study, the detected CpGs in those 3 genes
were EWA-based IR-DNAm probes, which are novel
with respect to their association with BC risk.

Fig. 3 Box plots for DNAm levels from EWA IR-CpGs in association with BC, shared by BC datasets according to Chr, CpG context, and gene
region. (BC Breast cancer, Chr Chromosome, CpG CpG dinucleotide, DNAm DNA methylation, ER pos Estrogen receptor/progesterone receptor—
positive, EWA Epigenome-wide association, IR Insulin resistance, TCGA The Cancer Genomic Atlas, UTR Untranslated region, WHI Women'’s Health
Initiative. * Statistical significance after multiple-comparison correction). A By Chr; B By gene region; C By CpG context; D By enhancer; EBy 1 CpG

(cg01676795); F ER pos: By 1 CpG (cg01676795)
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Although the methylation levels of the CpGs in rela-
tion to IR and BC that are common across Chr, CpG
contexts, and the gene regions were comparable between
the WHI and TCGA cohorts, only 1 individual IR-CpG
(cg01676795 in POR) was common in its relationship to
BC risk in both cohorts. P450 oxidoreductase (POR) gene
expression has been studied in few cancer types, present-
ing significant overall suppression of POR expression in
muscle-invasive bladder cancer [86] and differentially
expressed gene proteins enriched in neutrophil and T cell
activation in hepatocellular carcinoma [87]; those find-
ings support the important role of POR in carcinogenesis
via alteration of the immune tumor microenvironment.
Our finding of this CpG in POR in association with BC
risk is novel, which calls for a future study on the meth-
ylation in this gene linked to BC by taking into account
the effects of nearby SNPs.

Our analysis for BC risk in the TCGA included BC tis-
sues and adjacent normal tissues. Different findings could
result from the analysis between BC tissues and normal
tissues (obtained from patients without BC), although we
adjusted for tumor purity in the analysis. A few DNAm
probes from the TCGA presented an extreme risk mag-
nitude, warranting a further replication study with a
larger independent dataset. To increase the comparabil-
ity of analyses between the 2 cohorts, our study did not
account for lifestyle factors in a comprehensive fashion
and did not consider interactions with DNAm, which
may affect the relationships between DNAm, IR, and BC.
The validation data reflect a small fraction of the 2 ASs
(BAA23; AS311) owing to the limited availability of IR
phenotypes, resulting in less strong statistical power. In
addition, given that each AS had its own study purpose,
samples selected for our study may not fully represent the
source population. Finally, our study population was con-
fined to white postmenopausal women, so the generaliz-
ability of our results to other populations is limited.

Conclusions

In conclusion, we found several differentially methyl-
ated CpGs, which are both well-established and novel,
at the epigenome-wide level in relation to IR that were
further correlated with BC development. Our findings
warrant further validation in larger, independent epige-
netic and mechanistic studies. Our study contributes to
better understanding of the interconnected molecular
pathways on the methylome between glucose intoler-
ance and BC carcinogenesis and suggests the potential
use of DNAm markers in PBLs as preventive targets for
detecting an at-risk group for IR and BC among post-
menopausal women.
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