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Abstract 

Background  N7-methylguanosine (m7G) modification has been reported to regulate RNA expression in multiple 
pathophysiological processes. However, little is known about its role and association with immune microenvironment 
in heart failure (HF).

Results  One hundred twenty-four HF patients and 135 nonfailing donors (NFDs) from six microarray datasets in the 
gene expression omnibus (GEO) database were included to evaluate the expression profiles of m7G regulators. Results 
revealed that 14 m7G regulators were differentially expressed in heart tissues from HF patients and NFDs. Furthermore, 
a five-gene m7G regulator diagnostic signature, NUDT16, NUDT4, CYFIP1, LARP1, and DCP2, which can easily distin-
guish HF patients and NFDs, was established by cross-combination of three machine learning methods, including 
best subset regression, regularization techniques, and random forest algorithm. The diagnostic value of five-gene 
m7G regulator signature was further validated in human samples through quantitative reverse-transcription polymer-
ase chain reaction (qRT-PCR). In addition, consensus clustering algorithms were used to categorize HF patients into 
distinct molecular subtypes. We identified two distinct m7G subtypes of HF with unique m7G modification pattern, 
functional enrichment, and immune characteristics. Additionally, two gene subgroups based on m7G subtype-related 
genes were further discovered. Single-sample gene-set enrichment analysis (ssGSEA) was utilized to assess the altera-
tions of immune microenvironment. Finally, utilizing protein–protein interaction network and weighted gene co-
expression network analysis (WGCNA), we identified UQCRC1, NDUFB6, and NDUFA13 as m7G methylation-associated 
hub genes with significant clinical relevance to cardiac functions.

Conclusions  Our study discovered for the first time that m7G RNA modification and immune microenvironment 
are closely correlated in HF development. A five-gene m7G regulator diagnostic signature for HF (NUDT16, NUDT4, 
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CYFIP1, LARP1, and DCP2) and three m7G methylation-associated hub genes (UQCRC1, NDUFB6, and NDUFA13) were 
identified, providing new insights into the underlying mechanisms and effective treatments of HF.

Keywords  Heart failure, N7-methylguanosine, Machine learning, Unsupervised clustering, Immune infiltration, 
Bioinformatic analysis

Background
Heart failure (HF), a complex clinical syndrome, is the 
terminal stage of various cardiovascular diseases includ-
ing myocardial infarction, hypertension, myocarditis, 
cardiomyopathy, and arrhythmias [1]. Despite the cur-
rent advances in medical treatment and interventional 
therapy, the prognosis of HF patients remains poor, 
which highlights the urgency for further exploration of 
the molecular and cellular mechanisms underlying HF. 
Emerging evidence indicates that inflammatory activa-
tion and immune infiltration are associated tightly with 
HF onset, progression and prognosis [2, 3]. To investigate 
the immune microenvironment alterations and key regu-
lators in the development of HF may provide new direc-
tions for its accurate diagnosis, early intervention and 
precision therapy.

RNA modifications, types of post-transcriptional regu-
lation, have emerged as key regulators for RNA structural 
stability and cell metabolism [4, 5]. N7 methylguanosine 
(m7G), one of the positively charged base modifications, 
has been recently reported to be an essential modifica-
tion at the 5’ cap of eukaryotic mRNA, regulating mRNA 
export, translation, and splicing [6]. Besides, m7G also 
occurs in position 46 of transfer RNA (tRNA) variable 
loop [7] and eukaryotic 18S ribosomal RNA (rRNA) [8]. 
Previous studies have shown that aberrant m7G RNA 
modification is associated with the progression of vari-
ous pathological processes, such as lung cancers [9], 
hepatocarcinoma [10], and ischemic disorders [11]. Chen 
et  al. reported that METTL1 could promote hepato-
carcinogenesis via m7G tRNA modification-dependent 
translation control [10]. Zhao et al. emphasized a critical 
link between mRNA m7G alteration and post-ischemic 
injury in peripheral arterial diseases [11]. However, the 
role of m7G in HF development, especially the immune 
responses against cardiac inflammation, has been poorly 
studied.

With the rapid development of microarray and high-
throughput sequencing technology [12, 13], an increasing 
volume of RNA-sequencing (RNA-seq) and microarray 
datasets of HF have been uploaded in the gene expres-
sion omnibus (GEO) database, providing opportuni-
ties for bioinformatics data mining of marker genes and 
epigenetic changes associated with HF [14]. However, 
one of the key challenges of data processing is dealing 
with the feature dimensionality and redundancy of the 

data. To resolve this issue, machine learning algorithms 
are increasingly used to ascertain classifiers for feature 
selection and establish robust diagnostic or prognos-
tic prediction models of different diseases [15, 16]. For 
example, Deng et  al. used least absolute shrinkage and 
selection operator (LASSO) regression and support vec-
tor machine-recursive feature elimination (SVM-RFE) to 
perform feature selection to screen diagnostic markers 
for osteoarthritis [17]. Based on this, the cross-combina-
tion of machine learning may help in bioinformatics data 
mining and analysis of HF-related m7G modifications.

In this study, we systematically evaluate the modi-
fication pattern of m7G regulators in HF based on six 
publicly available HF microarray datasets (GSE16499 
[18], GSE26887 [19], GSE42955 [20], GSE57338 [21], 
GSE76701 [22], and GSE79962 [23]). In addition, through 
the cross-combination of three feature selection algo-
rithms, a five-gene m7G regulator diagnostic signature 
was established that can well distinguish HF samples and 
nonfailing donors (NFDs). Moreover, we clustered HF 
samples based on the expression profiles of m7G regula-
tors and discovered two distinct m7G modification sub-
types of HF with different immune characteristics and 
biological functions. Besides, three m7G methylation hub 
genes were finally identified through clinical traits analy-
ses. These findings above indicate that m7G modification 
patterns have significant impacts on the immune micro-
environment of HF development.

Results
Landscape of m7G methylation regulators in HF
The overall research strategy is presented in Fig. 1. In this 
study, 29 m7G RNA methylation regulators were har-
vested from the MSigDB team, and Fig. 2A displays the 
location of these genes on chromosomes. To examine the 
interactivity of the m7G regulators, PPI network was cre-
ated through the STRING website. Results showed that 
the 29 regulators had a strong connection, indicating 
that they may function as a complex (Fig. 2B). Expression 
analysis then revealed that 24 of the m7G RNA methyla-
tion regulators were identified in human heart samples 
(Fig. 2C). Among them, 14 regulators were observed with 
significant differentially expression in heart tissues from 
HF patients and NFDs (p < 0.05, Fig. 2D–E). NUDT4 had 
the largest fold change and the most statistically signifi-
cant change. In the correlation analysis, we found that 



Page 3 of 21Ma et al. Clinical Epigenetics           (2023) 15:22 	

there were close correlations among the 14 differentially 
expressed m7G regulators, which laid the foundation 
for the subsequent m7G cluster analysis, the WDR4 and 
AGO2 were the most correlated regulators in expression, 
suggesting that they function together (Fig. 2F).

Determination of m7G regulator diagnostic markers for HF
To develop a m7G regulator diagnostic signature to pre-
dict HF, three machine learning techniques with feature 
selection were applied. First, best subset regression (BSR) 
analysis identified the subset of seven features (CYFIP1, 
DCP2, EIF4E, EIF4G3, LARP1, NUDT16, and NUDT4) 
with the lowest Bayesian information criterion (BIC) 
score (BIC = − 83.60938, Fig. 3A–B). Second, for regular-
ization technique, we obtained and compared the coeffi-
cient profile plots of LASSO, ridge (RIDGE), and elastic 
net (EN) regression (Fig. 3C–E). As shown in Fig. 3F, the 
optimal regularization technique model is the RIDGE 
regression model with the minimum value of root mean 
squared error (RMSE) in the internal validation dataset. 

Third, we established a RF prediction model with all m7G 
regulators, which achieved an accuracy rate of 85.8% with 
196 trees and 8 mtry (Fig. 3G–H). Feature ranking of the 
random forest (RF) algorithm was generated according 
to the mean decrease of Gini index. Figure  3I showed 
that NUDT4, CYFIP1, WDR4, NUDT16, LARP1, AGO2, 
DCP2, and EIF4E3 were the most important features for 
HF risk prediction. Taken together, intersection of results 
from BSR analysis, RIDGE regression, and RF algorithm 
revealed that NUDT16, NUDT4, CYFIP1, LARP1, and 
DCP2 were potential m7G regulator diagnostic markers 
for HF (Fig. 3J).

Development and validation of the m7G regulator 
diagnostic signature for HF
To estimate the association between the expression of 
the five m7G regulator diagnostic markers and HF, we 
constructed a logistic regression model. Multivariate 
logistic regression analysis demonstrated that all of the 
five markers expression were independently associated 

Fig. 1  Study flow diagram. HF, heart failure; NFD Nonfailing donor, GEO Gene expression omnibus, NFDs Nonfailing donors, m7G, 
N7-methylguanosine, DEG Differentially expressed gene, qRT-PCR Quantitative reverse-transcription polymerase chain reaction, GO Gene ontology, 
KEGG Kyoto Encyclopedia of Genes and Genomes, RNA-seq RNA-sequencing, WGCNA Weighted gene co-expression network analysis, PPI Protein–
protein interaction, LVEF Left ventricular ejection fraction, ROC Receiver operating characteristic
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Fig. 2  Landscape of m7G RNA methylation regulators in HF. A Circus plot of chromosome distributions of the 29 m7G regulators. B protein–protein 
interaction (PPI) network among the 29 m7G RNA methylation regulators. C Correlations among the 24 m7G regulators in heart samples from HF 
patients and NFDs. A positive correlation is indicated by red, while a negative correlation is indicated by blue. D Expression profiles of m7G RNA 
methylation regulators between HF patients and NFDs. ns = not significant, *p < 0.05, **p < 0.01, and ***p < 0.001 vs. the NFD group. E Volcano plot 
showing the differential expression of 14 m7G regulators between HF patients and NFDs. F Correlation analysis among 14 differentially expressed 
m7G regulators in HF patients. ☒ in red stands for nonsignificant at p < 0.05. The scatter plot demonstrated the m7G regulators pair with the highest 
differential correlation, WDR4 and AGO2 with the most positive correlation
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Fig. 3  Screening m7G regulator diagnostic markers by three feature selection algorithms. A Bayesian information criterion score by feature 
inclusion of best subset regression (BSR) analysis. B Model performance based on different feature subsets in BSR analysis. C Least absolute 
shrinkage and selection operator (LASSO) regression algorithm to identify diagnostic markers. D RIDGE regression algorithm to identify diagnostic 
markers. E Elastic net (EN) regression algorithm to identify diagnostic markers for HF. F Root mean squared error (RMSE) of three regularization 
technique models in the internal validation dataset. G Out-of-bag (OOB) error rate of the random forest (RF) model. H Search for the optimal value 
of mtry for RF model. I Variable importance plot for the RF model. The features are ranked by the mean decrease in classification accuracy when 
they are permuted. The more the Gini coefficient decreases on average, the more important the variable is. J Venn diagram showing the intersected 
genes of BSR analysis, RIDGE regression and RF algorithm
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with HF, as visualized by the forest plot (Fig. 4A, Addi-
tional file  1: Table  S1) and nomogram (Fig.  4B). The 
established five-gene m7G regulator diagnostic signature 
model exhibited an AUC of 0.895 (95% CI, 0.859–0.931) 
in the merged dataset, indicating that it performed well 
in classifying HF and NFD samples (Fig.  4C). In the 
independent external validation dataset (GSE46224 and 
GSE116250), the five-gene diagnostic signature model 
yielded the AUC of 0.908 (95% CI 0.786–0.999) and 0.950 
(95% CI 0.889–0.999), respectively (Additional file 1: Fig. 
S1A–B). Additionally, the 95% CI region of GiViTI cali-
bration belt did not cross the 45-degree diagonal bisec-
tor line in the merged dataset and two external validation 
datasets (p = 0.560 for the merged dataset, p = 0.810 for 
GSE46224 [24], and p = 0.523 for GSE116250 [25]), indi-
cating a good fit between the predicted and observed 
probabilities for HF (Fig.  4D, Additional file  1: Fig. 
S1C–D). Meanwhile, differential expressions of the m7G 
regulator diagnostic markers were also verified in two 
external validation datasets, which further demonstrated 
their diagnostic capacity for HF (Fig. 4E–F). In addition 
to the microarray datasets, we conducted quantitative 
reverse-transcription polymerase chain reaction (qRT-
PCR) experiments to further validate the expression of 
the m7G regulator diagnostic markers using heart tis-
sues and plasma samples from HF patients or NFDs. As 
described in Fig. 4G–H, four of the m7G regulator diag-
nostic markers (CYFIP1, LARP1, NUDT4, and NUDT16) 
were significantly downregulated in the heart tissues or 
plasma samples of HF patients compared with NFDs 
(p < 0.05), which was consistent with the bioinformatics 
analysis results, while the differential expression of DCP2 
between HF and NFDs was not statistically significant. 
Overall, the established five-gene m7G regulator diagnos-
tic signature showed excellent diagnostic performance 
for HF.

m7G regulators are associated with immune characteristics 
of HF
To further elucidate the association between m7G regu-
lators and immune characteristics, we performed corre-
lation analysis between them. The infiltrating scores of 

16 immune cells and 13 immune-related functions were 
quantified using the single-sample gene-set enrichment 
analysis (ssGSEA) algorithm. As demonstrated in Fig. 5A, 
the abundance of 12 immune infiltrating cells differed 
significantly between HF and NFDs samples, including 
aDCs, B cells, CD8 + T cells, iDCs, macrophages, mast 
cells, neutrophils, NK cells, Th1 cells, Th2 cells, TIL, and 
Treg. Furthermore, correlation analysis revealed that the 
differentially expressed m7G regulators are closely related 
to a variety of immune cell infiltrations (Fig.  5C). Of 
these, Treg-CYFIP1 is the most positively correlated pair, 
and the most negatively correlated immune cells-m7G 
regulator pair is neutrophils-LARP1, with a correlation 
coefficient of 0.63 and -0.47, respectively. In addition, 
Fig. 5B shows the eight significant expression changes of 
immune-related functions in HF, including APC co-inhi-
bition, check-point, cytolytic activity, HLA, inflammation 
promoting, T cell co-inhibition, T cell co-stimulation, 
and type I IFN response. Likewise, significant correla-
tions were observed between m7G regulator expression 
and immune-related functions (Fig.  5D). Parainflamma-
tion was most positively correlated with CYFIP1, with a 
correlation coefficient of 0.61. T cell co-inhibition was 
most negatively correlated with EIF4E3, with a corre-
lation coefficient of -0.47. Taken together, the results 
indicated that immune dysregulation exists in HF and is 
affected by altered m7G RNA methylation regulators.

Unsupervised cluster analysis of m7G modification 
patterns in HF
To investigate m7G modification patterns in HF, we con-
ducted unsupervised consensus clustering analysis for 
HF samples based on the expression of 14 differentially 
expressed m7G regulators. The clustering results showed 
that k = 2 seemed to be an adequate selection, indicating 
that HF patients were accurately dispersed into two sub-
types, subtype A (n = 45) and subtype B (n = 79) (Fig. 6A–
D). Heatmaps of the matrix of co-occurrence proportions 
for k = 3 to 9 were shown in Additional file 1: Fig. S2A–G. 
Principal component analysis (PCA) revealed promi-
nent differences in the expression portraits between 
the two subtypes (Fig. 6E). In addition, expression of 14 

(See figure on next page.)
Fig. 4  Development and validation of the m7G regulator diagnostic signature for HF. A Forest plot of the multivariate logistic regression analysis to 
investigated the relationship between the five m7G regulator diagnostic markers and HF. B Nomogram of the five-gene m7G regulator diagnostic 
signature for HF probability. C receiver operating characteristic (ROC) curve of the five-gene m7G regulator diagnostic signature in the merged 
dataset. D The GiViTi calibration belts of the five-gene m7G regulator diagnostic signature in the merged dataset. E The expression profiles of the 
five m7G regulators diagnostic markers in the external validation dataset GSE116250. **p < 0.01, and ***p < 0.001 vs. the NFD group. F The expression 
profiles of five m7G regulators diagnostic markers in the external validation dataset GSE46224. *p < 0.05, **p < 0.01, and ***p < 0.001 vs. the NFD 
group. G Validation of the 5 m7G regulators diagnostic markers expression (CYFIP1, DCP2, LARP1, NUDT4, and NUDT16) by quantitative real-time 
reverse-transcription PCR (qRT-PCR) using human heart tissues from HF patients and NFDs. Data are presented with mean ± standard deviation 
(SD), n = 8. **p < 0.01, and ***p < 0.001 vs. the NFD group. NS, no significance. H Validation of the 5 m7G regulators diagnostic markers expression by 
qRT-PCR using plasma samples from HF patients and NFDs. Data are presented with mean ± SD, n = 8. NS**p < 0.01, ***p < 0.001, and ****p < 0.0001 
vs. the NFD group. NS, no significance
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Fig. 4  (See legend on previous page.)
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m7G regulators displayed marked heterogeneity between 
two subtypes (Fig. 6F). CYFIP1 and EIF4G3 were highly 
expressed in m7G subtype A, whereas NUDT16, NUDT4, 
EIF4E3, GEMIN5, and LARP1 were highly expressed 
in m7G subtype B. In addition, the m7G modification 
expression pattern in each HF subtype was also com-
pared with that of NFDs. Results showed that all of the 
five m7G regulator diagnostic markers (CYFIP1, LARP1, 
NUDT4, NUDT16, and DCP2) were differentially 
expressed among the three groups (Additional file 1: Fig. 
S3), which further indicated that the five-gene m7G regu-
lator diagnostic signature was effective to discriminate 
HF subgroups compared to NFDs.

Immune signature and pathways of two distinct m7G 
subtypes
Gene-set variation analysis (GSVA) enrichment analysis 
showed that compared with the B subtype, m7G subtype 
A was significantly enriched in immune fully-activated 
pathways, including primary immunodeficiency, autoim-
mune thyroid disease, graft versus host disease, allograft 
rejection, intestinal immune network for IgA production, 
and asthma (Fig. 7A). To further investigate the correla-
tion between m7G subtypes and immune characteristics 
in HF, we compared their difference in the abundance of 
infiltrating immune cells and activity of immune-related 
functions using the ssGSEA algorithm. As shown in 
Fig. 7B, more infiltrating activated B cells were observed 
in m7G subtype B. For immune-related functions, m7G 
subtype A of HF exhibited significantly greater activa-
tion of CCR and T cell co-stimulation (Fig. 7C). Besides, 
the distribution of infiltrating immune cells and activity 
of immune-related functions in each HF subtype was 
also compared with that of NFDs (Additional file 1: Fig. 
S4A–B). Overall, the results indicate that two distinct 
m7G modification patterns are associated with different 
immune signatures and pathways, suggesting that m7G 
RNA methylation regulators may play an important role 
in the regulation of the HF immune microenvironment.

Determination of HF gene subgroups based on m7G 
subtype‑associated differentially expressed genes (DEGs)
To explore the underlying biological functions of each 
m7G subgroup, we obtained 243 m7G subtype-associated 
DEGs in HF using the R package “limma” and performed 

functional enrichment analysis. Gene ontology (GO) 
functional and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways analysis showed that m7G 
subtype-associated DEGs were significantly enriched in 
heart function-associated biological processes, as well 
as heart-related and metabolism-related pathways, sug-
gesting that m7G methylation may serves as a key factor 
in regulating cardiac substance and energy metabolism 
(Fig. 8A–B).

In addition, we further conducted clustering analysis 
based on the m7G subtype-related DEGs and classified 
the HF patients into two gene subgroups (subgroup A 
and B, Additional file 1: Fig. S5). For HF patients, the allu-
vial diagram showed similar grouping tendency for m7G 
subtypes and gene subgroups (Fig. 8C). The heatmap and 
PCA revealed significant heterogeneity between samples 
of the two gene subgroups (Fig. 8D–E), and the expres-
sions of m7G regulators showed substantial differences 
in two gene subgroups (Fig. 8F). Regarding the immune 
characteristics, the enrichment levels of aDCs, CD8 + T 
cells, pDCs, T helper cells, TIL, Treg were markedly 
higher in the gene subgroup A, while more B cells infil-
trations were observed in m7G subtype B (Fig.  8G). 
Moreover, gene subgroup A of HF exhibited greater acti-
vation of eight immune-related functions, including APC 
co-stimulation, CCR, check-point, HLA, inflammation 
promoting, MHC class I, parainflammation, and T cell 
co-stimulation (Fig. 8H). The above results suggested that 
HF patients in the gene subgroup A had higher levels of 
immune infiltration compared with subgroup B.

Identification of m7G‑related hub genes and clinical 
correlation with cardiac function
Figure  9A illustrated the dendrogram and traits of 124 
HF samples based on weighted gene co-expression net-
work analysis (WGCNA), and when β = 6 (a soft thresh-
old), the scale-free R2 was 0.879 to obtain a higher 
average connectivity degree (Fig.  9B). Similar modules 
with a height cutoff value of 0.2 were merged (Fig. 9C), 
and 11 modules were identified by hierarchical cluster-
ing and the dynamic branch cutting (Fig. 9D). From the 
heatmap of module-trait correlations, the MEblue mod-
ule genes were most positively correlated with m7G gene 
subgroup A of HF (R2 = 0.73), indicating that MEblue is 
a key module (Fig. 9E–F). Subsequently, 158 genes in the 

Fig. 5  m7G regulators are associated with immune characteristics of HF. A The infiltrating scores of 16 immune cells in cardiac tissues from HF 
patients and NFDs. ns = not significant, *p < 0.05, **p < 0.01, and ***p < 0.001 vs. the NFD group. B The infiltrating scores of 13 immune-related 
functions in cardiac tissues from HF patients and NFDs. ns = not significant, **p < 0.01, and ***p < 0.001 vs. the NFD group. C Correlations between 
14 differentially expressed m7G regulators and 16 immune cells infiltrations in HF, as visualized by heat map. The two scatter plots displayed the 
most positively or negatively correlated immune cells-m7G regulator pair. D Correlations between 14 differentially expressed m7G regulators and 
13 immune-related functions in HF, as visualized by heat map. The two scatter plots displayed the most positively or negatively correlated immune 
function-m7G regulator pair

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Fig. 6  Identification of two distinct m7G modification subtypes across HF samples. A Consensus clustering model with cumulative distribution 
function (CDF) for k = 2–9. k means cluster count. B Relative change in the area under the CDF curve for k = 2–9. C The consensus cluster of items 
(in column) at k = 2–9 (in row). D Consensus matrix heatmap defining two subtypes (k = 2) and their correlation area. E Principal component 
analysis (PCA) showing a remarkable difference in transcriptomes between the two subtypes of HF. F The two m7G subtypes exhibit distinct 
expression profiles of the 14 m7G RNA methylation regulators
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MEblue module were used to construct the PPI network, 
and hub genes were selected by cytoHubba in Cytoscape 
software. Finally, ten m7G RNA methylation modification 
markers (NUDFS6, UCRC1, NDUFB10, CYC1, NDUFB7, 

NDUFA8, NDUFB6, NDUFA7, NDUFA13, and ATP5IF1) 
were identified (Fig. 9G). To further illuminate the roles 
of these ten m7G markers in HF, Pearson correlation was 
applied to analysis the correlation between the mRNA 

Fig. 7  Immune signature and pathways of two distinct m7G subtypes. A Gene-set variation analysis (GSVA) of biological pathways enrichment 
between two m7G subtypes. B The infiltration scores of 16 immune cells between two m7G subtypes. ns = not significant, *p < 0.05 vs. the m7G 
subtype A. C The infiltration scores of 13 immune-related functions between two m7G subtypes. ns = not significant, *p < 0.05 vs. the m7G subtype 
A
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expression of these markers and left ventricular ejection 
fraction (LVEF) in 15 HF patients of GSE46224. As show-
cased in Fig.  10, the expression of UQCRC1, NDUFB6, 
or NDUFA13 was positively correlated with LVEF in HF 
patients, indicating that these m7G-related genes may be 
involved in improving cardiac function of HF patients.

Discussion
In recent years, the role of inflammation and immune 
activation in the development of heart failure has 
received extensive attention [26]. Emerging evidence 
confirmed that m7G methylation modification exerts 
critical functions in the development of immune-related 
diseases [27]. However, few studies have explored m7G 
methylation alterations in HF. Our study is the first to 
investigate the role of m7G regulators in HF and reveal 
the association between m7G methylation modifica-
tions and immune signatures. First, the expression of 
most m7G regulators were significantly different between 
HF patients and NFDs, and the expression levels corre-
lated with immune cell infiltration and immune-related 
functions in HF. Second, using three machine learning 
algorithms, we established a five-gene m7G regulator 
diagnostic signature with excellent diagnostic perfor-
mance for HF. Third, unsupervised cluster analysis of the 
HF samples using m7G regulators expression profiles led 
us to two m7G subtypes of HF with distinct m7G modifi-
cation pattern and immune characteristics. Fourth, based 
on m7G-related DEGs, we further discovered two gene 
subgroups with unique m7G modification patterns and 
immune signatures, and WGCNA revealed m7G-related 
hub genes (UQCRC1, NDUFB6, and NDUFA13) with 
significant clinical relevance to cardiac function.

HF is a cardiovascular clinical syndrome with high 
morbidity and poor prognosis28. The pathogenesis of 
HF is complex and diverse, and so far, the molecular 
mechanism of HF has not been fully elucidated [29]. The 
development of cardiac remodeling of HF patients is 
accompanied by a higher inflammatory status, with fibro-
sis, cardiac cellular apoptosis, and modification of cardiac 
chambers morphology, volumetry and function, leading 
to depression of cardiac pump [30]. With the in-depth 
development of epigenetic research, more and more reg-
ulators of gene transcription and translation have been 

discovered, such as non-coding RNA (microRNAs, long 
non-coding RNAs, circular RNAs) and transcription fac-
tors (TFs). Among them, microRNAs can bind mRNAs at 
their 3´-UTRs, leading to mRNA degradation or inhibi-
tion of protein translation, and their regulatory effects on 
HF-related gene expression have been widely concerned 
and studied previously [31]. In addition, a series of RNA 
modifications including m6A, 5-methylcytosine (m5C), 
N1-adenosine methylation (m1A), N4-acetylcytidine 
(ac4C), 2’-O-methylation (2’O-Me), pseudouridine, and 
m7G in different RNA types have been widely implicated 
in various pathophysiological processes [4]. Regard-
ing the development of HF, m6A methylation has been 
reported to be involved in cardiac function regulation by 
modulating calcium homeostasis [32], energy metabo-
lism [33], translation process [34], autophagy [35], and so 
on. In addition, Nagasawa et al. reviewed that snoRNA-
guided 2′O-Me can contribute to cardiac hypertrophy 
and HF through controlling mRNA transcript abundance 
and translation [36]. Therefore, RNA modifications may 
serve as new targets for the diagnosis and treatment of 
HF.

In recent years, m7G, a modification with a methyl 
group added to the 7th N-position of RNA guanine (G) in 
the 5′ cap region of tRNA, rRNA, and eukaryotic mRNA, 
has been receiving extensive attention as one of the most 
common forms of base modification in RNA post-tran-
scriptional levels. Accumulating evidence suggests that 
m7G exerts an important role in regulating gene expres-
sion, mRNA splicing, transcription, and nuclear export 
of mRNA, as well as mRNA translation [37]. Zhao et al. 
reported that m7G methyltransferase METTL1 pro-
motes post-ischemic angiogenesis via promoting VEGFA 
mRNA translation [11]. Dong et  al. identified the m7G 
modification pattern (MGCS1, MGCS2, and MGCS3) 
in clear cell renal cell carcinoma by multi-omics analysis 
and characterized the correlation between this pattern 
and tumor microenvironment infiltration [27]. How-
ever, the role of m7G in the development of HF has been 
poorly reported. Therefore, in our study, we obtained 29 
m7G RNA methylation regulators from the MSigDB team 
and systematically evaluated the modification pattern of 
m7G regulators in HF based on six microarray datasets. 
Among them, 14 regulators were differentially expressed 

(See figure on next page.)
Fig. 8  Determination of HF gene subgroups based on m7G subtype-associated DEGs. A GO enrichment analysis of DEGs between two m7G 
subtypes. BP, biological process, CC, cellular components, MF, molecular functions. B KEGG enrichment analysis of DEGs between two m7G 
subtypes. C Alluvial diagram showing the changes of m7G subtypes and m7G gene subgroups of HF. D PCA plot showing a remarkable difference 
in transcriptomes between two HF gene subgroups. E Heatmap of DEGs between two m7G gene subgroups. F The two HF gene subgroups 
exhibit distinct expression profiles of the 14 m7G RNA methylation regulators. ns = not significant, *p < 0.05, ***p < 0.010 vs. gene subgroup A. G 
The infiltration scores of 16 immune cells between two m7G gene subgroups. ns = not significant, *p < 0.05, **p < 0.01 vs. gene subgroup A. H The 
infiltration scores of 13 immune-related functions between two m7G gene subgroups. ns = not significant, *p < 0.05, **p < 0.01, and ***p < 0.001 
vs. gene subgroup A. DEGs Differentially expressed genes, GO Gene ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, PCA Principal 
component analysis
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between HF patients and NFDs, and correlation analysis 
showed strong correlations among the 14 m7G regula-
tors. Taken together, the results highlight that m7G meth-
ylation modification patterns significantly differ between 

HF and NFD samples, and that m7G regulators may func-
tion as a complex to modulate the development of HF.

Based on the above conclusions, we further uti-
lized machine learning algorithms to identify the m7G 

Fig. 8  (See legend on previous page.)
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regulator diagnostic signature of HF. Machine learning 
has recently received extensive attention and applica-
tions in the field of bioinformatics due to its powerful 
data processing capabilities [38, 39]. Feature selection is 
a machine learning algorithm that determines the mini-
mum set of relevant indicators required by a machine 
learning model. The biggest advantage of the algorithm 
is that it can remove redundant and irrelevant features, 
thereby reducing the input dimensionality, improving 
model accuracy, and reducing model complexity [40]. Of 
note, combined application of multiple feature selection 
algorithms has become an important method for disease-
related molecular screening [41]. For example, in the 
study of Deng et  al., SVM-RFE and LASSO were com-
bined used to screen diagnostic markers for osteoarthritis 
[17]. Similarly, in our study, we combined three machine 
learning algorithms including BSR analysis, regulariza-
tion techniques, and RF algorithm for feature selection. 
Regarding regularization techniques, three regression 
models (RIDGE, LASSO, and EN) were established based 
on the HF training dataset, and RIDGE regression model 
was identified as the optimal regularization model with 
the minimum value of RMSE in the internal validation 
dataset. Furthermore, intersection of the features from 
the three algorithms revealed that NUDT16, NUDT4, 
CYFIP1, LARP1, and DCP2 are potential m7G regulator 
diagnostic markers for HF. In addition, multivariate logis-
tic regression analysis showed that the five-gene m7G 
regulator diagnostic signature exhibited a high degree of 
discrimination and calibration in predicting HF, which 
was further validated in two external validation datasets. 
Especially, through qRT-PCR experiments conducted in 
heart tissues and plasma samples, NUDT16, NUDT4, 
CYFIP1, and LARP1 were significantly downregulated 
in of HF patients compared with NFDs, which further 
strengthen the relevance of their biomarker discovery.

Emerging evidence suggests that immune and inflam-
matory activation plays a vital role in the progres-
sion of HF2. Under mechanical or chemical stimuli, 
cardiomyocytes can secrete inflammatory cytokines 
and chemokines to induce the activation of immune 
cells, fibroblasts, and pro-hypertrophic and pro-fibrotic 
signaling pathways, thereby inducing cardiac hyper-
trophy and triggering cardiac fibrosis and remodeling 

[42]. Accordingly, cardiac over-stretch related biomark-
ers, especially those associated with excessive cardiac 
inflammation, can be effective in predicting worse clini-
cal outcomes and loss of therapeutic response in HF 
patients [43]. For example, Sardu et al. reported first time 
that RyR1 glycation in circulating lymphocytes repre-
sents a novel biomarker to predict CRT responsiveness 
[44]. Consistently, in the present study, we explored the 
immune characteristics in HF using the ssGSEA algo-
rithm, and observed that the abundances of 12 immune 
infiltrating cells (aDCs, B cells, CD8 + T cells, iDCs, mac-
rophages, mast cells, neutrophils, NK cells, Th1 cells, Th2 
cells, TIL, and Treg) and 8 immune-related functions 
(APC co-inhibition, check-point, cytolytic activity, HLA, 
inflammation promoting, T cell co-inhibition, T cell co-
stimulation, and type I IFN response) were significantly 
different between HF and NFDs samples. Furthermore, 
correlation analysis showed that the 14 differentially 
expressed m7G regulators were closely related to many 
immune characteristics. It is worth noting that CYFIP1-
Treg was the most positively correlated m7G immune 
cell pair, and for immune-related functions, CYFIP1 
was most positively correlated with parainflammation, 
suggesting that the CYFIP1-associated m7G regulatory 
pathway may be closely related to HF immunity. Besides, 
among the five diagnostic markers of m7G regulators, 
DCP2 was also found highly correlated with infiltration 
of various immune cells and immune-related functions, 
LARP1 was mainly associated with immune cell infiltra-
tion, and NUDT16 was mainly associated with immune-
related functions. The above results suggest that these 
genes are likely to be involved in the progression of HF 
by regulating immune-related pathways. However, due 
to the lack of clinical characteristics of HF patients in the 
included studies, such as changes in BNP values, the spe-
cific relationship between m7G regulators changes and 
excessive activation of inflammation and the degree of 
HF, needs to be explored in subsequent clinical studies.

In our study, unsupervised clustering of the HF sam-
ples using differentially expressed m7G regulators expres-
sion profiles led us to two HF subtypes with distinctive 
m7G modification pattern. As for immune characteris-
tics, m7G subtype A of HF was observed with a higher 
abundance of immune-related functions including CCR 

Fig. 9  Identification of m7G methylation-related hub genes in HF. A Sample clustering was conducted based on the expression data of all HF 
samples. The top 25% variation genes were used for WGCNA, and outlier samples were excluded. The red line indicates the cutoff threshold (60). 
B Scale-free topology index analysis and mean connectivity of soft threshold power from 1 to 20. The red line indicates the scale-free R2 (0.879). 
C Clustering dendrogram of module eigengenes. The red line indicates the cut height (0.20). D Gene dendrogram obtained by average linkage 
hierarchical clustering. The genes were clustered into different modules through hierarchical clustering and merged when the correlation of the 
modules is > 0.8. E Heatmap of the correlation between module eigengenes and HF gene subgroups. F Correlation between module membership 
(X-axis) and gene significance (Y-axis) of genes from the blue module. G Protein–protein interaction (PPI) network of genes from the blue module. 
The central nodes in PPI network are marked in red, yellow, and orange

(See figure on next page.)
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Fig. 9  (See legend on previous page.)
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and T cell co-stimulation, while m7G subtype B was char-
acterized by increased infiltration levels of B cells. B cells 
have been previously reported to play a crucial role in the 
progression of HF through direct regulation of antibody 
secretion and indirect regulation of antigen presenta-
tion and cytokine/chemokine secretion [45]. Our classi-
fication strategy can help us understand the underlying 
mechanisms of immune regulation in HF, and thereby 
apply m7G-related intervention strategies to the preci-
sion treatment of HF. Additionally, enrichment analysis 
showed that the m7G subtype-related DEGs were mainly 
enriched in cardiac function-associated biological pro-
cesses, as well as heart-related and metabolism-related 
pathways, indicating that m7G methylation may server 
as a key target in regulating cardiomyocyte material and 
energy metabolism.

Based on the m7G subtype-associated DEGs, two 
distinct gene subgroups of HF patients were identi-
fied with similar grouping trend to the m7G subtype 

clustering. In addition, using WGCNA and the cyto-
Hubba plugin, we screened ten m7G methylation-
related hub genes in HF, among which UQCRC1, 
NDUFB6, and NDUFA13 were positively correlated 
with LVEF of HF patients. UQCRC1 is a key subunit 
of complex III of the mitochondrial respiratory chain, 
which plays a critical role in electron transport and 
ATP generation [46]. High expression of UQCRC1 
leads to mitochondrial dysfunction and reduced ATP 
utilization, thereby accelerating the process of lipid 
deposition and insulin resistance in skeletal muscle, 
ultimately leading to the development of type 2 diabe-
tes and obesity [47]. NDUFA13 encodes a subunit of 
mitochondrial complex I, and its downregulation cre-
ates a leak within complex I, which significantly sup-
presses the superoxide burst and eventually dampens 
myocardial ischemia and reperfusion injury [48]. Like-
wise, NDUFB6 is an accessory subunit of mitochon-
drial complex I and has been reported to be required 

Fig. 10  Relationship between m7G markers expression levels and LVEF in HF patients. LVEF Left ventricular ejection fraction
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for electron transfer activity in cell energy metabolism 
[49]. These results suggest that these m7G methylation 
modification markers may be involved in the develop-
ment of HF through regulating the mitochondrial res-
piratory chain.

Our study has limitations that must be acknowledged. 
First, the sample size of HF patients in the GEO data-
base is relatively small. Although we have included as 
many studies that met the criteria as possible and elimi-
nated batch effects to integrate information from dif-
ferent datasets, studies with larger sample sizes are still 
needed in subsequent analysis and validation. Second, 
clinical information of HF patients such as heart failure 
grading, treatment, and prognosis cannot be obtained. 
Subsequently, the correlation between m7G patterns 
and clinical characteristics or prognosis cannot be ana-
lyzed. Third, this study is mostly based on bioinformat-
ics analysis, although experimental validation of m7G 
regulator expression has been performed in heart tis-
sues and plasma of HF and NFD subjects. Fourth, there 
is a lack of downstream evidence of the m7G modifica-
tions among HF and NFD subjects, and the in-depth 
mechanism and pathway of m7G methylation regulating 
myocardial energy metabolism and immune infiltration 
need to be further investigated in follow-up studies. 
Fifth, modifications of cardiac remodeling in HF could 
pass toward different expression of a cluster of epige-
netic regulators such as the miRNAs and TFs [31]. Due 
to the lack of relevant data in the included studies, the 
correlation analysis between m7G regulators and epi-
genetic factors was not carried out in our study, which 
should be improved and explored in subsequent molec-
ular studies of advanced HF.

Conclusions
In conclusion, to the best of our knowledge, this is the 
first study to explore the role of m7G RNA methylation 
in HF. Through cross-combination of three machine 
learning methods, we established a five-gene m7G regu-
lator diagnostic signature with excellent discrimination 
and calibration to distinguish HF and NFD samples. 
Based on the differentially expressed m7G regulators, 
two distinct m7G subtypes and gene subgroups in HF 
patients were identified with significant differences in 
m7G regulators expression, immune characteristics, 
and biological functions. Additionally, we revealed an 
association between m7G subtypes and immune signa-
tures, which can be used to guide future immunother-
apy of HF. Moreover, three m7G methylation-related 
hub genes were identified as significantly correlated 
with LVEF in HF patients, suggesting that they may 
serve as indicators of disease severity in HF.

Methods
Dataset and preprocessing
The research strategy is presented in Fig.  1. The GEO 
database (www.​ncbi.​nlm.​nih.​gov/​geo/) was searched to 
obtain the datasets based on the search terms of “heart 
failure” or/and “HF.” Eligible datasets were selected 
according to the following criteria: (i) the organism was 
filtered as “homo sapiens”; (ii) the study type was set as 
“Expression profiling by array”; (iii) array data for both 
HF and NFDs should be included in the dataset and at 
least three heart samples were investigated; (iv) the 
raw data should be provided for reanalysis. Six data-
sets were finally included: GSE16499 [18], GSE26887 
[19], GSE42955 [20], GSE57338 [21], GSE76701 [22], 
and GSE79962 [23]. In total, 124 HF patients and 135 
NFDs were included in our study to evaluate the expres-
sion levels of m7G regulators. Raw CEL files of these 
datasets and their corresponding platform files were 
downloaded to construct the gene expression profile. 
Through the limma Bioconductor package [50], the six 
raw datasets were preprocessed via background adjust-
ment and quantile normalization. Then, the “Combat” 
algorithm in the sva R package was used to correct for 
batch effects between these six datasets due to different 
platforms, different labs and different time points, and 
the results with and without the adjustment were visu-
alized as PCA plots, respectively (Additional file  1: Fig. 
S6). After applying batch correction, six datasets were 
combined into a merged dataset for further analysis. In 
addition, GSE46224 [24] (15 HF patients, 8 NFDs) and 
GSE116250 [25] (50 HF patients, 14 NFDs) were used as 
external validation RNA-seq datasets. The characteris-
tics of these eight datasets are summarized in Additional 
file 1: Table S2 and Additional file 1: Table S3.

Identification of differentially expressed m7G regulator 
genes
The m7G regulator genes were retrieved from the Molec-
ular Signatures Database (MSigDB, http://​softw​are.​broad​
insti​tute.​org/​gsea/​msigdb, Additional file  1: Table  S4). 
Based on these m7G regulator genes, the R package 
“limma” was applied to determine DEGs between HF and 
NFDs samples. Then, the regulatory relationship among 
the differentially expressed m7G regulator genes was 
evaluated by correlation analysis.

Development and validation of m7G regulator diagnostic 
signature for HF
In order to develop a m7G-related diagnostic signa-
ture, feature selection was conducted based on the dif-
ferentially expressed m7G regulator genes. First, the 
merged dataset was divided into a training dataset (70%) 
and an internal validation dataset (30%), and tenfold 

http://www.ncbi.nlm.nih.gov/geo/
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
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cross-validation was employed to prevent overfitting of 
the model. Second, BSR analysis was used from the R 
package “leaps” to identify biomarkers that best predicted 
HF. Third, using the “glmnet” package, three regularized 
linear methods, including RIDGE regression, LASSO 
regression and EN regression were applied to identify 
which variables contributed most to the estimate predic-
tion of HF. All the models were developed on the train-
ing dataset. Model performance was further evaluated by 
RMSE in the internal validation dataset, and genes from 
the best performing model were obtained. Fourth, based 
on the RF algorithm, the R package “randomForest” was 
used for feature selection and construction of the diag-
nostic signature. Eventually, we took the intersection of 
genes from BSR analysis, regularized linear regression, 
and RF algorithm for further analysis.

Diagnostic model of HF was further built by fitting the 
intersected m7G regulator genes into a binary logistic 
regression model (glm package, R). The R packages “rms” 
and “forestplot” were used to construct the nomogram 
and forest plot, respectively. The discriminatory capabil-
ity of the model was assessed using the receiver operat-
ing characteristic (ROC) curve, and the calibration was 
evaluated with a calibration plot. The evaluation was con-
ducted in the merged dataset and two external validation 
datasets.

Validation of m7G regulator expression in human samples 
using qRT‑PCR experiments
For further validation, heart tissues and plasma samples 
from HF patients and NFDs were obtained for qRT-PCR 
validation experiments. Five  mL of whole blood sample 
was collected with anticoagulant (EDTA)-treated tube. 
Blood sample was centrifuged in primary blood collec-
tion tubes for 10 min at 1500 × g and 4 °C using a swing-
ing bucket rotor. The upper (yellow) plasma phase was 
carefully transferred to a new tube without disturbing 
the intermediate buffy coat layer (containing white blood 
cells and platelets). The plasma sample was further cen-
trifuged in conical tubes for 10 min at 12,000 × g and 4 °C 
to remove additional cellular nucleic acids attached to 
cell debris. Following centrifugation, the cleared superna-
tant (plasma) should be immediately transferred to a new 
tube without disturbing the pellet. The plasma samples 
should be maintained at 2–8 °C while handling or stored 
at −  80  °C. Heart tissues from HF patients and NFDs 
were obtained from the Specimen Bank of Cardiovascu-
lar Surgery Laboratory and Department of Pathology of 
Shanghai Changhai Hospital, China. Written informed 
consents were obtained from all patients or family mem-
bers, and the study was approved by the institute ethics 
committee of Changhai Hospital.

Total RNAs from heart tissues or plasma samples were 
isolated using Trizol reagent (Trizol™ Reagent, Invitro-
gen) or miRNeasy Serum/Plasma Kit (Qiagen, Cat. No. 
217184), separately. RNAs were then reverse-transcribed 
into cDNAs using TOYOBO ReverTra Ace®qRT-PCR RT 
Kit (TOYOBO, Japan). SYBR®GREEN (TOYOBO, Japan) 
was used for qRT-PCR, and the primer sequences used 
are listed as follows: CYFIP1 forward, 5’-CAG​GTG​GTT​
CCG​CTA​TTT​GG-3’ and reverse, 5’-ATG​TTG​TAC​TGA​
GGG​CTG​CT-3’; LARP1 forward, 5’-ACG​AGG​AGA​
TGG​AGC​AGA​TG-3’ and reverse, 5’-GCG​CAT​GTA​ATG​
TGG​TGT​CT-3’; DCP2 forward, 5’-AGA​CCA​AAC​GGG​
TGG​AGA​TT-3’ and reverse, 5’-TCC​TCG​CTG​GGA​ATA​
TGC​AA-3’; NUDT4 forward, 5’-GCT​AAA​GCT​GGG​
TTG​TTC​CC-3’ and reverse, 5’-TAG​ATG​GCA​ACC​CAG​
AGG​TC-3’; NUDT16 forward, 5’-CGG​GAG​CAG​TTA​
CTT​GAA​GC-3’ and reverse, 5’-GGC​CTG​AAA​TAG​AGC​
CAG​AC-3’. The expression levels of mRNAs relative to 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
or external reference were detected using the 2–ΔΔCt 
method.

Correlation analysis between m7G regulators and immune 
characteristics
To evaluate the characteristics of the immune infiltration 
in HF, the ssGSEA method was used to explore the differ-
ent infiltration degrees of 29 immune characteristics (16 
immune cell types and 13 immune-related functions) in 
HF patients and NFDs samples. In addition, correlation 
analysis was used to determine the association between 
m7G regulators and immune characteristics in HF, which 
was visualized by correlation heatmaps.

Consensus clustering analysis of the differentially 
expressed m7G regulator genes
Based on the differentially expressed m7G regulator 
genes, consensus clustering analysis was performed 
to categorize HF patients into distinct molecular sub-
types using the R package “ConsensusClusterPlus,” and 
the model was run through a total of 1000 iterations to 
ensure the stability of these categories. In addition, GSVA 
was conducted with the KEGG gene set of “c2.cp.kegg.
v7.4.-symbols” to determine the significant pathways 
among these m7G regulator genes subtypes. Finally, 
immune-related signature of the different subtypes was 
further constructed.

Recognition of DEGs associated with the m7G subtypes
Using an empirical Bayesian method through the R pack-
age “limma,” DEGs among the m7G subtypes were cal-
culated with an absolute log fold change (logFC) > 1 and 
an adjusted p-value < 0.05. Gene enrichment analysis 
of these DEGs was performed using the Clusterprofiler 
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Bioconductor package, including biological processes 
(BP), cellular component (CC), and molecular func-
tion (MF) terms in GO functional and KEGG pathways 
enrichment.

Construction of HF gene subgroups based on DEGs
To further explore the potential biological behavior of 
each m7G pattern, consensus clustering was performed 
to divide HF patients into distinct gene subgroups based 
on the expression of m7G subtype-related DEGs. The 
algorithm was repeated for 1000 cycles to guarantee 
the robustness of the clustering. Additionally, we ana-
lyzed the difference of infiltration of immune cells and 
immune-related functions in different gene subgroups.

Identification of m7G methylation‑related hub genes in HF
To identify genes correlating with disease activity of HF, 
we performed WGCNA based on the gene profiles and 
gene subgroups of HF patients. First, the genes with 
upper 25% median absolute deviation across all samples 
in the integrated dataset were selected to guarantee data 
heterogeneity and accuracy of WGCNA. Second, sam-
ples located in the clusters and passed the cutoff thresh-
olds were included in the subsequent analysis. Third, the 
adjacency matrix was calculated and then converted into 
a topological overlap matrix (TOM) with the soft thresh-
olding power β. Fourth, according to the TOM-based dis-
similarity measure, genes were divided into different gene 
modules using the dynamic tree cut algorithm, and mod-
ules whose eigengenes were highly correlated (correlation 
greater than 0.8) were merged. Finally, the co-expressed 
genes were determined by calculating the module mem-
bership (MM) and gene significance (GS) of the genes in 
the target modules.

In addition, we used the search tool for the retrieval 
of interacting genes/proteins (STRING) online data-
base (https://​string-​db.​org/) to construct protein–pro-
tein interaction (PPI) networks of the co-expressed 
genes. A threshold weight of 0.7 was used for selecting 
the connection between two proteins. We extracted the 
largest connected component of the PPI network and 
computed the betweenness using Cytoscape. Hub genes, 
top 10 genes with the highest degree, were then identi-
fied using the plugin CytoHubba. Furthermore, correla-
tions between the expression profiles of these hub genes 
and LVEF of HF patients were determined using the 
GSE46224 dataset.

Statistical analyses
Comparisons between two groups were evaluated with 
Student’s t test (for normally distributed data with 
equal variance) or Wilcoxon’s test (for non-normally 

distributed data). All statistical tests were two-sided, 
and the significance level was set at p < 0.05. Pearson 
correlation coefficient was calculated when variables 
were normally distributed, otherwise Spearman’s rank 
correlation coefficient was calculated. Correlation coef-
ficients < 0.3 were considered negligible, and statistical 
significance was indicated by p < 0.05 [51]. All statistical 
data analyses were implemented using R (version 4.1.2) 
and R studio (version 2021.9.1).
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