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Abstract 

Background  The correlation between the physical performance of athletes and their gut microbiota has become of 
growing interest in the past years, since new evidences have emerged regarding the importance of the gut micro-
biota as a main driver of the health status of athletes. In addition, it has been postulated that the metabolic activity 
of the microbial population harbored by the large intestine of athletes might influence their physical performances. 
Here, we analyzed 418 publicly available shotgun metagenomics datasets obtained from fecal samples of healthy 
athletes and healthy sedentary adults.

Results  This study evidenced how agonistic physical activity and related lifestyle can be associated with the modu-
lation of the gut microbiota composition, inducing modifications of the taxonomic profiles with an enhancement 
of gut microbes able to produce short-fatty acid (SCFAs). In addition, our analyses revealed a correlation between 
specific bacterial species and high impact biological synthases (HIBSs) responsible for the generation of a range of 
microbially driven compounds such vitamin B12, amino acidic derivatives, and other molecules linked to cardiovascu-
lar and age-related health-risk reduction.

Conclusions  Notably, our findings show how subsist an association between competitive athletes, and modulation 
of the gut microbiota, and how this modulation is reflected in the potential production of microbial metabolites that 
can lead to beneficial effects on human physical performance and health conditions.
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Introduction
In recent years, the increasing interest on the gut micro-
biota revealed how its relationship with the host is not 
limited to the intestinal environment but affects the 

entire human body across all the life stages, from birth 
to elderly [1, 2]. Stress and unbalanced diets are just two 
of the key drivers modulating the gut microbiota compo-
sition, shifting it towards a dysbiosis state, with poten-
tial negative impacts on systemic health [3–9]. On the 
contrary, a gut microbiota in homeostatic equilibrium 
is considered stable and able to maximize the beneficial 
interactions of the various members of the microbiota 
with the host, showing the capability of resisting external 
and internal influences [10].

While diet is one of the most impactful factors shaping 
the gut microbiota composition, physical activity can also 
modulate the gut microbiota through many mechanisms, 
such as the increased release of hormones and the redi-
rection of blood from the gut to the skeletal muscles [11, 
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12]. In detail, the type of training, intensity, and dura-
tion of the physical activities impact the gut microbial 
population, ultimately altering its enzymatic potential 
responsible for systemic effects on the human host [12]. 
For example, studies concerning athletes have shown that 
they may be more susceptible to developing Inflamma-
tory Bowel Diseases (IBD) [11, 13–16]. However, healthy 
athletes showed an increase in the production of short-
fatty acid (SCFAs) for a greater energy intake, thereby 
contributing to host global metabolic efficiency [11, 
17–19].

Remarkably, microbial SCFAs producers have been 
reported to generally possess a vast repertoire of meta-
bolic pathways, not limited only to energy-related metab-
olism (i.e., short-chain fatty acid synthesis) but also 
including enzymes for amino acid and vitamin metabo-
lism as well as for the synthesis of other by-products [20, 
21].

However, despite the great scientific interest of this 
topic, the available scientific literature mainly focus on 
a limited range of well-known microbial taxa involved 
in the production of few metabolites, such as lactic acid 
and short-chain fatty acids. This is in contrast with the 
vast number of the microbial metabolic pathways encom-
passed by the gut microbiomes and therefore the high 
number of the potentially microbial produced health-
active metabolites [3]. Thus, little is still known regard-
ing the physiological mechanisms involving resident 
bacteria modulated by physical activity and their impacts 
on the host in terms of physical performances and sys-
temic health. For this reason, it is becoming pivotal to 
gain insights into this intricate network of metabolic 
host-microbes’ interactions by analyzing in detail the gut 
microbiota composition in correlation with its genetic 
potential.

To delve into this intriguing area, in this study, we cor-
related physical activity metadata with taxonomical and 
microbial metabolic profiles of the gut microbiomes 
involving 185 athletes, 69 moderate athlete, and 166 con-
trols (sedentary), using an in silico approach based on 
statistical analysis and correlations as well as hierarchical 
clustering and an optimized pipeline for metagenomic 
analysis.

Results and discussion
Metagenomic data selection and meta‑analysis
In order to determine how physical activity can be asso-
ciated to the modification in the composition of the gut 
microbiota and vice versa, the NCBI repository was 
screened for shotgun metagenomic samples related to the 
gut microbiota of professional athletes. Specifically, we 
used athletes’ metagenomics samples from multiple Bio-
projects obtained from the same sequencing technology 

to avoid sampling-related bias. This screening resulted 
in the selection of a total of 185 metagenomic samples 
from a range of different sports fields, thus including 
sports with both high anaerobic and aerobic loads, such 
as marathon athletes as well as cyclists and rugby play-
ers [19, 22]. In addition, 164 metagenomic samples from 
healthy sedentary adults [23] were included in the study 
as a control group as well as 69 metagenomic samples of 
individuals identified as moderate athletes [24, 25].

Selected data led to a total of 418 shotgun metagen-
omic samples of athletes, sedentary and moderate ath-
letes, supported with categorical (qualitative) physical 
activity-related metadata derived from their original 
studies (Table S1). To avoid data analysis biases, such 
data were re-analyzed following a common bioinformatic 
pipeline, i.e., METAnnotatorX2 [20]. All the metagen-
omic datasets showed an average of 3,100,774 reads per 
sample after Quality and Homo Sapiens filtering steps 
(Table S1).

Taxonomic features associated with agonistic physical 
activity
The first step in the meta-analysis focused on perform-
ing descriptive analyses to correlate athletes, moderate 
athletes, and sedentary category (related to high, average 
and low physical activity) with the microbial taxonomic 
profiles, aiming to trace potential key microbial mark-
ers related to agonistic sport activity. Processing of all 
SRA samples through METAnnotatorX2 software (see 
the “Materials and methods” section for more details) 
allowed to retrieve of the taxonomic profiles of each ana-
lyzed metagenomic dataset with species-level accuracy 
[26] (Table S2). Furthermore, a hierarchical clustering 
analysis (HCL) was performed with an ideal number of 
centroids for the identification of the cluster that was 
extracted through a Silhouette analysis [27] (Figure S1).

The HCL analyses identified a total of eight taxonomic 
clusters, named formally Physical activity level Commu-
nity State Type (PCST) from PCST_1 to PCST_8, each 
characterized by a unique and recurring average bacte-
rial composition profile (Table S3) (Figure S2). Notably, 
PCST_3, PCST_7, and PCST_8 represent clusters iden-
tified prevalently in the gut microbiomes of athletes and 
moderate athletes, and their sum represents 77.8%, 100%, 
and 91.5% of the predicted samples, respectively. In con-
trast, PCST_1, PCST_4, and PCST_5 were mainly found 
in the gut microbiomes of sedentary samples (144 out of 
166) (Fig. 1a) (Table 1).

Notably, PCST_2 and PCST_6 contain less than 15 
metagenomic samples, so they were excluded from our 
analysis because they are outliers, representing uncom-
mon gut microbiota populations with limited statistical 
relevance (Fig. 1a, b) (Table 1).
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Subsequently, we obtained the eigenvalues from the 
Bray–Curtis dissimilarity matrix, running a principal 
coordinate analysis (PCoA) to analyze the beta-diversity 
between the samples (Fig. 2).

Through the PCoA analysis, we found that the eight 
Physical activity Community State Type (PCST) sub-divide 
samples confirming the marked differences between the 
taxonomical composition of the different PCSTs (Fig.  2). 
Furthermore, these data revealed a substantial separation 
between athletes and sedentary individuals based on their 
gut microbiota taxonomical composition.

Remarkably, athlete-representative clusters identified 
based on the distribution of athlete’s samples (Fig.  1a) 
(Table 1), i.e., PCST_3, PCST_7 and PCST_8, shared a high 
occurrence of short fatty acid-producing microbial spe-
cies (SCFAs producers), which distinguish them from the 
other taxonomic clusters analyzed (Mann–Whitney U adj. 
P-value < 0.05) (Table S3) (Table S4), thus confirming previ-
ous observations [19].

Bacterial SCFAs producers statistically associated to ath-
letes’ samples (Mann–Whitney U adj. P-value < 0.05) (Table 
S4) include Eubacterium rectale (3.5 to 11.4% in average 
relative abundance), Faecalibacterium prausnitzi (4.5 to 
8.2% in average relative abundance), and other unclassi-
fied Faecalibacterium species (4.5 to 9.5% in average rela-
tive abundance) (Figure S2) (Table S3). Additionally, it has 
been identified also other microbial species that are poten-
tially involved in the synthesis of SCFAs, i.e., Ruminococcus 
bromii (0.4 to 3.4% in average relative abundance) but also 
putatively novel unclassified species of Eubacterium (1.3 
to 2.4% in average relative abundance) and Ruminococcus 
species (1.5 to 3.4% in average relative abundance) (Mann–
Whitney U adj. P-value < 0.05) (Table S4) (Figure S2) (Table 
S3). Altogether, the above-described bacterial taxa make up 
the “core” of SCFAs producers relating to athletes. Notably, 
PCST_3 also showed the presence of another SCFAs bac-
terial producer in addition to the above-mentioned “core,” 
i.e., Prevotella, and more specifically the dominant specie 
Prevotella copri (21.7%). Nevertheless, Prevotella is present 
also in the Sedentary-related PCST_1 (Kruskal–Wallis adj. 
P-value < 0.05) (Table S4) (Figure S2) (Table S3). Prevotella 
genus can act as an important microbial producer and con-
sumer of SCFAs, but it has also been associated with vari-
ous human inflammatory states [28, 29].

Intriguingly, all the PCST clusters containing the most 
prevalent SCFAs producers related to the genera Fae-
calibacterium, Eubacterium, and Ruminococcus were 

primarily identified in the gut microbiomes of athletes, 
thus reinforcing the previous notion that correlate SCFAs 
production to physical activity and the diet related to 
agonistic sports regimes.

Intriguingly, all PCST clusters containing the most 
prevalent SCFA producers of Faecalibacterium, Eubacte-
rium, and Ruminococcus genera were identified primarily 
in the gut microbiomes of athletes, thus reinforcing the 
previous notion that SCFA production is higher in ath-
letes compared to the other individuals (Fig.  1g) (Table 
S3).

Functional analysis of potential‑encoding enzymatic 
profiles
While SCFAs production has been extensively inves-
tigated for its impact on human health with a range of 
benefits [30–32], our current scientific understandings 
of the microbial metabolism leading to the production of 
secondary compounds involves thousands of enzymatic 
reactions encompassing catabolic and anabolic pathways, 
which may be responsible of the athletes’ performance 
and wellbeing. Hence, we performed a functional analysis 
of the 418 gut microbiomes aimed to identify the enzy-
matic pathways related to the production of chemical 
compounds that the scientific literature indicated as able 
to contribute to the human health by improving physi-
cal performances and quality of life. In this framework, 
METAnnotatorX2 was exploited to retrieve microbially 
based enzymatic profiles based on the MetaCyc database. 
Subsequently, a Bray–Curtis distance matrix was gener-
ated based on the enzymatic potential of each sample, in 
order to normalize the results and finally obtain a beta-
diversity score (Table S2) (Table S5) that was employed 
for a hierarchical clustering (HCL) analysis.

We obtained a total of four enzymatic functional clus-
ters (EFC) present in the pool of the analyzed samples, 
named EFC_1, EFC_2, EFC_3, and EFC_4 (Fig. 1) (Table 
S3). EFC_1 and EFC_4 represented the most populated 
clusters, comprising 38.8% and 42.1% of the total pool of 
samples. On the other hand, clusters EFC_2 and EFC_3 
encompassed less frequent enzymatic profiles, including 
only 14.6 and 4.5% of the metagenomic samples, respec-
tively (Fig.  1) (Figure S2). So, the latter clusters were 
excluded from further analysis, and we focused only on 
the most representative functional profiles.

Notably, EFC_4 was composed of 72% of athlete and 
18% of moderate athlete, while EFC_1 included 63% 

(See figure on next page.)
Fig. 1  Samples subdivision between PCST and EFC clusters. In a, the PCST compositions in sample type (athlete, sedentary and moderate athlete) 
is reported, while in b, the total sample subdivision between the PCSTs is reported. Following the same logic, in c, the EFC compositions in samples 
type (athlete, sedentary, and moderate athlete) are reported, while in d, the total sample subdivision between the EFCs is reported. e The PCST 
distribution inside the EFC clusters. f The EFC correlation percentage with EC-Numbers. Finally, in g, the correlation score between EFCs and PCST 
clusters is reported
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Fig. 1  (See legend on previous page.)
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of sedentary and 23.7% of moderate athlete (Table  2) 
(Fig. 1).

Intriguingly, metagenomic samples belonging to mod-
erate athletes were evenly distributed between EFC_1 
and EFC_4, highlighting how non-intense or non-pro-
longed physical activity leads the samples to have in-
between enzymatic profiles, an assumption validated by 
PERMANOVA analysis (adj. P-value < 0.001) (Table S6) 
(Fig.  1). Therefore, it can be extrapolated how EFC_4 is 
the most frequent enzymatic profile in the gut microbi-
ome of athletes while EFC_1 is the most common in the 
gut microbiome of sedentary individuals. Thus, these 
findings support the strong association between athletes 
and the gut microbiota composition previously described 
(Fig. 1a) and highlight another association between ath-
letes and the microbial-based enzymatic profiles (Fig. 1c) 
(Table 2).

Furthermore, we correlated the categorical data deriv-
ing from microbial enzymatic clusters (EFCs) with the 
taxonomic data (PCSTs) to obtain a complete overview 
of the taxonomic-enzymatic relationships. Such analyses 
highlighted that EFC_4 correlates with PCST_3, PCST_7, 
and PCST_8 (Spearman asymptotic adj. P-value < 0.005) 
(Fig. 1g), i.e., the clusters containing the SCFAs-produc-
ing bacteria “core” previously defined (Figure S2).

Intriguingly, 60.8% of EFC_4 is composed of metagen-
omic samples belonging to PCST_8, which is the taxo-
nomical cluster with the highest presence of Eubacterium 
rectale as well as Faecalibacterium prausnitzii and other 
Faecalibacterium spp. (Figure S2) (Fig. 1).

Instead, the EFC_1 cluster correlates with PCST_1 
and PCST_5 clusters (Spearman asymptotic adj. 
P-value < 0.005), mainly dominated by the genera Prevo-
tella, Bacteroidetes, and Alistipes, with species such as 
Prevotella copri, Bacteroides uniformis, Bacteroides ster-
coris, and Alistipes uniformis (Figure S2) (Fig. 1g).

In addition, we further detailed each EFC-cluster’s asso-
ciation with each enzymatic reaction profiled, following 
the Enzyme Commission nomenclature (EC-Numbers) 
[33]. For this purpose, only those ECs displaying a preva-
lence > 10% were considered, for a total of 1604 EC num-
bers (Table S3) (Table S7). Unexpectedly, EFC_4 displays 

725 of positive correlations (80% of its total statisti-
cally significative correlation, Spearman asymptotic adj. 
P-value < 0.05) with the retained ECs, showing a large gap 
compared to the EFC_1, which on average showed a total 
of only 79 positive correlations (25% of its total statisti-
cally significative correlation) (Table S7) (Fig. 1f ). These 
findings, clearly corroborate what preliminary observed 
in a previous study [34] encompassing a small cohort of 
individuals analyzed with a less accurate metagenomic 
approach such as the 16S rRNA gene microbial profiling. 
Remarkably, the shotgun metagenomic approach allowed 
us also to explore in detail the metabolic relevance of 
enzymatic reactions positively correlated with physical 
activity.

Characterization of microbial biosynthetic metabolisms 
associated with physical activity
The two main enzymatic clusters, i.e., EFC_1 and EFC_4, 
were also exploited to investigate those enzymes involved 
in the anabolism of key metabolites known to impact on 
host’s health by the recent scientific literature [35, 36]. 
In this context, a selection of EC numbers was manually 
investigated for their possible relevance and were named 
high biological impact synthases (HBIS) (Table S8). 
Notably, these ECs were selected based on information 
reported in the MetaCyc database and cited literature 
data [35, 36] (Table S8).

A comparison of the enzymatic profiles of HBIS 
between the two groups revealed 66 HBIS positively 
correlated with cluster EFC_4 (representing the most 
common enzymatic profile of athletes) and only 10 with 
cluster EFC_1 (representing the most common func-
tional profile of sedentary individuals) (Table S8). There-
fore, the EFC_1 enzyme cluster displays a lower HBIS 
production potential than EFC_4, highlighting how the 
microbiota of athletes can potentially encode for a much 
wider range of microbial metabolites with an important 
impact on health and physical performance.

In detail, between the 14 HBIS positively related to 
EFC_1 there are EC related mainly to vitamin biosynthe-
sis, but also related to flavodoxin precursor, a well-known 

Table 1  PCSTs detailed samples subdivision

PCST_1 PCST_2 PCST_3 PCST_4 PCST_5 PCST_6 PCST_7 PCST_8
Athlete 18 7 28 21 17 1 17 76

Control 31 3 8 49 64 1 0 10

Moderate 11 1 0 15 10 0 1 31

PCST_1 PCST_2 PCST_3 PCST_4 PCST_5 PCST_6 PCST_7 PCST_8
Athlete 30.0% 63.6% 77.8% 24.7% 18.7% 50.0% 94.4% 65.0%

Control 51.7% 27.3% 22.2% 57.6% 70.3% 50.0% 0.0% 8.5%

Moderate 18.3% 9.1% 0.0% 17.6% 11.0% 0.0% 5.6% 26.5%
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Fig. 2  Beta diversity separations of samples based on their compositions and metadata. a The principal coordinate subdivision of the 
metagenomic samples, based on Bray–Curtis’s dissimilarity matrix of taxonomical composition, and subdivided for PCST clusters, with color scheme 
reported in legend. b The principal coordinate subdivision of samples, based on Bray–Curtis’s dissimilarity matrix of taxonomical composition, and 
subdivided for EFC clusters, with color reported in legend
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phosphoantigen also required by many pathogens to sur-
vive [37, 38] (Table 3).

In contrast, among the 73 positive correlations between 
EFC_4 and HBIS, we extracted and focused on eight 
enzymes related to the enhancement of sports perfor-
mance and the increase of life span through the reduc-
tion of the onset of cardiovascular diseases and tumors. 
Among the enzymes selected, there is also an enzyme 
involved in the production of the heme group and there-
fore in the regeneration and production of new blood 
cells (Table S8) (Table 4).

Additionally, EC numbers related to the production 
of sulfur amino acids and molecules like glutathione 
(GSH) and taurine were correlated positively with EFC_4, 
potentially enhancing the reduction of oxidative-cellular 

damage and boosting muscular performance (Table S8) 
(Table 4).

Altogether, these results evidenced that the microbi-
omes of the samples belonging to athlete’s category are 
characterized by a higher abundance of biosynthetic 
enzymes involved in the production of a wide range of 
compounds (Fig. 3).

Associations between HBIS and core microbial taxa
We performed a taxonomic EC back-tracking analysis to 
investigate further the main bacterial taxa responsible for 
the above-reported enzymatic reactions associated with 
physical activity. This approach aims to identify the bac-
terial species that can potentially produce the nine HBIS 
positively correlated to the EFC_4 above-discussed.

As expected, the “core” of SCFAs producers found 
in athlete metagenomic samples, such as Faecalibac-
terium prausnitzii, Eubacterium rectale, and Blautia 
wexlerae and a set of minor representative species of 
Faecalibacterium, Eubacterium, Ruminococcus, and 
Blautia genera act as major microbial producers of 
the nine enzymatic reactions previously highlighted 
as possessing a high putative health interest in the 
EFC_4 cluster (Table S9). In detail, six EC classes (EC 
6.3.5.9, 6.3.5.7, 4.2.1.24, 2.5.1.16, 6.3.5.4, and 2.3.1.189) 
resulted to be produced primarily by the above-
identified “core” of SCFAs producers. Moreover, EC 

Table 2  EFCs detailed samples subdivision

EFC_1 EFC_2 EFC_3 EFC_4
Athlete 22 18 18 127

Moderate 38 0 0 31

Control 102 43 1 18

EFC_1 EFC_2 EFC_3 EFC_4
Athlete 13.58% 29.51% 94.74% 72.16%

Moderate 23.46% 0.00% 0.00% 17.61%

Control 62.96% 70.49% 5.26% 10.23%

Table 3  HBIS positively correlated to EFC_1 and manually identified with MetaCyc database

Spearman correlation (adj. P-value < 0.05)

EC name EC number EFC_4 EFC_1 Related product effects Ref

Isochorismate synthase 5.4.4.2  − 0.541970 0.311153 Production of the precursor of vitamin K2 [39]

1,4-dihydroxy-2-naphthoyl-CoA synthase 4.1.3.36  − 0.543416 0.316668 Production of the precursor of vitamin K2 [40]

Quinolinate synthase 2.5.1.72 - 0.266977 Precursor of niacin and indirectly of vitamin B3 [41]

(E)-4-hydroxy-3-methylbut-2-enyl-diphos-
phate synthase

1.17.7.3  − 0.598568 0.333534 Production of phosphoantigen [37]

Table 4  HBIS positively correlated to EFC_4 and manually identified with MetaCyc database

Spearman correlation (adj. P-value < 0.05)

EC name EC number EFC_4 EFC_1 Related products effects Ref

Spermidine synthase 2.5.1.16 0.764993  − 0.340411 Reduction in mortality due to cardiovascular disease [42, 43]

Porphobilinogen synthase 4.2.1.24 0.590898 - Heme biosynthesis [44]

Mycothiol synthase 2.3.1.189 0.771842  − 0.319983 Antibacterial and antitumoral properties [45, 46]

Hydrogenobyrinic acid a,c-diamide synthase 6.3.5.9 0.642982  − 0.284009 Coenzyme B12 (cobalamin) biosynthesis [47, 48]

Cystathionine gamma-synthase 2.5.1.48 0.712590  − 0.256458 Energy metabolism, muscle performance, antioxidant [49–54]

Glutamate synthase (NADPH) 1.4.1.13 0.623222 - Excitatory neurotransmitter, homocysteine balance [55–58]

Asparagine synthase 6.3.5.4 0.645870 - Excitatory neurotransmitter, homocysteine balance [55–58]

Glutaminyl-tRNA synthase 6.3.5.7 0.768508  − 0.284009 Excitatory neurotransmitter, homocysteine balance [55–58]
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1.4.1.13, a glutamate synthase (NADPH), was found 
to be produced more specifically by Faecalibacterium 
prausnitzii, Eubacterium rectale, and other Faecali-
bacterium species (Table S9). In contrast, EC 2.5.1.48, 
which encompasses a cystathionine gamma-synthase, 
was predicted to be produced by a more variegated 
number of species, including Anaerostipes, Ruminooc-
cus, and Coprococcus species, along with Bifidobacte-
rium adolescentis (Table S9).

Intriguingly, these data revealed clear associa-
tions between specific functional features and micro-
bial taxa harbored by the intestinal environment of 
athletes.

Conclusion
With the purpose of analyzing the intricate relation-
ships between the gut microbiome and athletes’ related 
lifestyle (multifactorial metadata including training, diet, 
and stress), we statistically analyzed 418 metagenomic 
samples divided into athlete, sedentary, and moderate 
athletes. As a result of taxonomical profiling, we iden-
tified a correlation between gut microbial profiles and 
athlete’s category, as evidenced by a recurrent microbial 
pattern defined primarily by SCFAs microbial producers 
including Faecalibacterium, Eubacterium, Blautia, and 
Ruminococcus species, which are statistically associated 
to athletes’ samples (Table S4).

Fig. 3  Schematic representation of the project aims and key points. The modulation effect that physical activity can exert on gut microbiota 
and vice versa the effect that gut microbiota can exert on human health and performance. Some of the main compounds produced by SCFAs 
producers are reported with name and structural formula



Page 9 of 12Fontana et al. Microbiome           (2023) 11:27 	

In addition, subsequent functional analysis showed 
the presence of two major enzymatic functional clus-
ters (EFCs), one strongly associated with the presence 
of sedentary individuals and one with athletes, thus cor-
roborating the differences previously seen at species-tax-
onomical level between the two types of samples (athletic 
and sedentary subjects). Intriguing, the EFC related to 
athletes was positively linked to 752 enzymes (EC num-
bers) and 73 high biological impact synthases (HIBS), a 
subset of manually identified biosynthetic reactions. In 
contrast, the EFC related to sedentary resulted in being 
positively linked only to 105 EC numbers and 14 HBIS, 
highlighting the reduced ability of sedentary’ gut micro-
biota to affect the host health through the production 
of secondary metabolites. Furthermore, the correlation 
of the enzymatic potential with species-level microbial 
profiles evidenced how additional microbial taxa may be 
implicated in the biosynthesis of compounds of high bio-
logical interest.

Remarkably, these data highlighted how the athletes’ 
related lifestyle represent a multifactorial ecological 
pressure that modulate the gut microbiota, reshaping 
it in favor of bacterial species with a higher enzymatic 
potential impacting the host’s health and muscular per-
formances. Additionally, all these results pointed out 
how the bacterial species commonly considered core 
SCFAs producers are also implicated in the production 
of a much wider and variegated range of potentially high 
functional impact molecules, which will require a precise 
characterization in future population studies.

Materials and methods
Metagenomic sample collection
A set of 418 shotgun metagenomic data were retrieved 
from the National Center of Biotechnology Information 
(NCBI) Sequence Read Archive (SRA) database. The 
terms used to inspect the scientific literature include 
athlete, gut microbiota, IBD, SCFA, sedentary, perfor-
mance, and physical activity. For the selection of the opti-
mal Bioprojects for this study, we used various criteria, 
such as the selection of healthy samples, the sequencing 
technology, the minimum number of reads available, 
and finally the completeness of the metadata regard-
ing athlete and sedentary categories. All Bioprojects 
have been manually checked to ensure that minimum 
criteria were met. In detail, each metagenomic dataset 
possess a minimum of 10,000 reads, according to the 
minimum sequencing depth required to METAnnota-
torX2 for obtaining high-quality taxonomical profiles 
[26]. Accordingly, we collected shotgun metagenom-
ics sequences and associated metadata from six differ-
ent studies (PRJEB15388, PRJEB28338, PRJEB32794, 
PRJNA472785, PRJNA305507, PRJEB20054). The 

selection of six different sources (Bioprojects) of raw data 
sequenced through Illumina technology allowed reduced 
selection bias. Additionally, this selection was performed 
to obtain a comparable number of samples between ath-
letes and controls. In detail, 185 samples corresponded 
to athlete gut microbiomes, 69 to moderate athlete, and 
164 were from healthy sedentary individuals (Table S1). 
The athletes and the sedentary categories were defined by 
metadata originating from their original scientific articles 
and Bioprojects. Moderate athletes instead refer to ath-
letes who have performed competitive activity only for 
a short time window (high school athletes) or without 
reaching the higher categories [therefore CAT 1 (semi-
professional) vs. PRO athletes]. Specifically, between the 
69 moderate athletes’ samples were included time-longi-
tudinal samples belonging to Bioprojects PRJNA472785 
and PRJNA305507 to increase the robustness of the anal-
ysis regarding the group composed by moderate athletes. 
Thus, the small group of moderate athletes was used to 
compare and validate the distribution of the two main 
analysis groups (athletes and controls). Additional meta-
data regarding physical status, type of sport performed, 
and other miscellaneous are reported along with the 
SRA name in Table S1. All available metadata regarding 
the metagenomic samples (mainly athletic and sedentary 
designation) were retrieved from the Bioprojects related 
to the samples.

Metagenomics data processing, taxonomic profiling, 
and functional analysis
Each metagenomic datasets were filtered to remove reads 
with a base sequence quality of < 25 (score obtained from 
FastQC software for Illumina sequencing) and to retain 
reads with a length of > 149 bp. Taxonomic and functional 
profiling of reads resulting from quality and Homo sapi-
ens filtering was performed with the METAnnotatorX2 
bioinformatics platform [26, 59]. Within the METAn-
notatorX2 pipeline, MegaBLAST [60] was employed 
for taxonomic classification of each metagenomic read, 
using a curated non-redundant sequence database of 
genomes retrieved from NCBI servers and manually 
selected. The generation of the taxonomical database was 
reported in detail by Milani et  al. [26] and periodically 
updated (every 6 months). Reads with a nucleotide iden-
tity of > 94% to reference genomes are classified at the 
species level, while reads with a lower percentage identity 
are classified at the genus level as undefined species. The 
functional enzymatic classification of each metagenomic 
read was performed through DIAMOND [61], employ-
ing a curated non-redundant sequence database of EC 
number sequence created employing the MetaCyc data-
base [62]. DIAMOND parameters used for this analysis 
were as default chosen by the METAnnotatorX2 pipeline 
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using up to 5,000,000 reads (–query-cover 80, –evalue 
0.00000001, and –max-target-seqs 1). Taxonomic EC 
back-tracking analysis was performed using METAnno-
tatorX2 -x ec_taxonomy function. This function allowed 
to retrieve the bacterial species related to the production 
of a selected list of enzymatic codes.

For the analyses that required the use of R soft-
ware, version R-4.1.2 was used, along the version RStu-
dio-2021.09.2–382 of R Studios and rtools40v2-x86_64 of 
rtools.

Similarities between samples (beta-diversity) were cal-
culated using the Bray–Curtis distance matrix based on 
species relative abundance, using the vegdist function 
(from vegan_2.5–7) on R-Studios (RStudio Team (2020). 
RStudio: Integrated Development for R. RStudio, PBC, 
Boston, MA URL.). The range of similarities is calculated 
between values 0 and 1. PCoA representation of beta-
diversity was performed using ORIGIN 2021b (https://​
www.​origi​nlab.​com/​2021).

In the PCoA, each dot represented a sample, distrib-
uted in tridimensional space according to its bacterial 
composition, i.e., eigenvalues scores. The hierarchical 
clustering analysis (HCA) of samples, performed on ORI-
GIN 2021b, was achieved employing Bray–Curtis matrix 
using Pearson correlation as a distance metric and the 
sum square of distances and furthest neighbor for clus-
tering methods. The optimal number of clusters was 
defined through a Silhouette analysis [27] performed on 
ORIGIN 2021b. The data obtained was represented by a 
vertical dendrogram.

Statistical analysis
ORIGIN 2021b (https://​www.​origi​nlab.​com/​2021), IBM 
SPSS statistics software (version 25) (www.​ibm.​com/​
softw​are/​it/​analy​tics/​spss/) and R-Studios were used 
to compute statistical analyses. PERMANOVA analy-
ses were performed on R-studios using 999 permuta-
tions to assess p-values for population differences in 
PCoA analyses. In detail, input data was preprocessed 
and transformed in a Bray Curtis dissimilarity matrix 
with vegdist function (from vegan_2.5–7), and the 
PERMANOVA analysis was performed with adonis2 
package (from vegan_2.5–7). Non-parametric Kruskal–
Wallis’s test was performed on SPSS software using 
PCSTs subdivision as group criteria. In addition, a pair-
wise post hoc analysis was performed for the Kruskal–
Wallis’s analysis, using Bonferroni correction for the 
FDR adj. p value. Non-parametric Mann–Whitney U 
test was performed on SPSS software using PCST_1, 
PCST_4, and PCST_5 as group 1 and PCA_3, PCST_7, 
and PCST_8 as group 2. Spearman correlation was 
performed with rcorr function (from Hmisc_4.6–0), 

and only statistical significative results with correla-
tion score greater than 0.25 or minor of − 0.25 were 
retained. The eigenvalues were retrieved from the Bray 
Curtis dissimilarity matrix with the use of prcomp 
function (from base package stats) and the get_pca 
function (from factoextra_1.0.7). All the raw p-value 
with the exclusion of Kruskal–Wallis’s pairwise post 
hoc were subjected to FDR correction using Benjamini-
Hochberg [63] approach on R-studios through p.adjust 
function (from base package stats).
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