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Abstract 

Background  The incidence of zoonotic Plasmodium knowlesi infections in humans is rising in Southeast Asia, leading 
to clinical studies to monitor the efficacy of anti-malarial treatments for knowlesi malaria. One of the key outcomes of 
anti-malarial drug efficacy is parasite clearance. For Plasmodium falciparum, parasite clearance is typically estimated 
using a two-stage method, that involves estimating parasite clearance for individual patients followed by pooling of 
individual estimates to derive population estimates. An alternative approach is Bayesian hierarchical modelling which 
simultaneously analyses all parasite-time patient profiles to determine parasite clearance. This study compared these 
methods for estimating parasite clearance in P. knowlesi treatment efficacy studies, with typically fewer parasite meas-
urements per patient due to high susceptibility to anti-malarials.

Methods  Using parasite clearance data from 714 patients with knowlesi malaria and enrolled in three trials, the 
Worldwide Antimalarial Resistance Network (WWARN) Parasite Clearance Estimator (PCE) standard two-stage 
approach and Bayesian hierarchical modelling were compared. Both methods estimate the parasite clearance rate 
from a model that incorporates a lag phase, slope, and tail phase for the parasitaemia profiles.

Results  The standard two-stage approach successfully estimated the parasite clearance rate for 678 patients, with 36 
(5%) patients excluded due to an insufficient number of available parasitaemia measurements. The Bayesian hier-
archical estimation method was applied to the parasitaemia data of all 714 patients. Overall, the Bayesian method 
estimated a faster population mean parasite clearance (0.36/h, 95% credible interval [0.18, 0.65]) compared to the 
standard two-stage method (0.26/h, 95% confidence interval [0.11, 0.46]), with better model fits (compared visually). 
Artemisinin-based combination therapy (ACT) is more effective in treating P. knowlesi than chloroquine, as confirmed 
by both methods, with a mean estimated parasite clearance half-life of 2.5 and 3.6 h, respectively using the standard 
two-stage method, and 1.8 and 2.9 h using the Bayesian method.

Conclusion  For clinical studies of P. knowlesi with frequent parasite measurements, the standard two-stage approach 
(WWARN’s PCE) is recommended as this method is straightforward to implement. For studies with fewer parasite 
measurements per patient, the Bayesian approach should be considered. Regardless of method used, ACT is more 
efficacious than chloroquine, confirming the findings of the original trials.
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Background
In recent years, there has been a rise in reported Plasmo-
dium knowlesi malaria cases in Southeast Asia with 435 
cases reported in Philippines, Thailand and Indonesia [1]. 
In Malaysia, where P. knowlesi is the predominant cause 
of human malaria, there were 3575 known cases in 2021 
with 13 deaths reported [1, 2]. Plasmodium knowlesi is 
a zoonotic malaria with natural macaque hosts [3–7]. 
Unlike Plasmodium species that are transmitted from 
human-to-human, such as Plasmodium falciparum and 
Plasmodium vivax, transmission of P. knowlesi parasites 
occurs from macaques to mosquitoes to humans and 
there is no clear evidence of natural human-mosquito-
human transmission [8, 9].

Plasmodium knowlesi has a 24-h asexual life cycle 
within the red blood cell of an infected human, which 
is shorter than that of human-only Plasmodium species, 
which typically range between 48- and 72-h cycles [10]. 
Human red blood cell invasion by P. knowlesi is medi-
ated by binding to Duffy antigen/chemokine receptors 
present on young reticulocytes [11]. However, alterna-
tive pathways involving normocyte binding proteins 
along with the short life cycle may play a role in the rapid 
development of high parasite levels seen in a minority of 
P. knowlesi infections [12, 13]. Age-dependent effects on 
parasite biomass, endothelial activation and inflamma-
tion contribute to the higher risk of severe disease seen 
in P. knowlesi infections [14] at lower parasitaemia lev-
els compared to P. falciparum (median 42,000 parasites/
μL versus > 100,000 parasites/μL of blood) [15, 16]. The 
high case fatality rate (2.45/1000 notifications in Sabah, 
Malaysia) [17] highlights the importance of prompt 
diagnosis and efficacious anti-malarial treatment for P. 
knowlesi infections.

Although the World Health Organization (WHO) 
suggests either artemisinin-based combination therapy 
(ACT) or chloroquine for the treatment of uncompli-
cated P. knowlesi infections [18], ACT is recommended 
[19] because of greater efficacy and the potential for 
microscopic misdiagnosis of P. falciparum or P. vivax as 
P. knowlesi, as the former two species are chloroquine-
resistant in knowlesi-endemic areas [20, 21]. For severe 
knowlesi malaria, the recommended treatment is par-
enteral artesunate, followed by a full course of oral ACT 
[18]. Clinical trials have shown that ACT, whether using 
artemether–lumefantrine or artesunate–mefloquine, is 
more efficacious in treating uncomplicated P. knowlesi 
infections compared to chloroquine, including a lower 
risk of anaemia [22, 23]. While there is no evidence of 
anti-malarial drug resistance for P. knowlesi [24, 25], con-
tinual monitoring of the efficacy of anti-malarials, includ-
ing initial clearance of parasites, is crucial to ensure that 
the best treatment regimen is used.

For the quantification of parasite clearance following 
treatment of P. falciparum infections, the Worldwide 
Antimalarial Resistance Network’s (WWARN) Parasite 
Clearance Estimator (PCE) [26, 27] is widely used. This 
method involves two stages, the first of which requires 
estimating parasite clearance for each patient parasite 
profile separately, therefore requiring frequent parasite 
measurements above the level of detection in the para-
site clearance phase. For P. knowlesi infections, patients 
may initially present with a high parasite load which 
rapidly decreases and reaches below the detection limit 
sooner than for human only species like P. falciparum, 
resulting in fewer data points per patient for parasite 
clearance estimation. This poses a challenge as many 
patients may be excluded from the analysis, potentially 
leading to selection bias when calculating the popula-
tion mean parasite clearance rate in the second stage of 
the analysis.

Alternatively, all patient parasite measurement pro-
files could be analysed simultaneously using a Bayesian 
hierarchical framework [28, 29]. This method is flex-
ible in that it allows for unbalanced or sparse sampling 
designs, which means all patient profiles will contrib-
ute to estimating the population mean parasite clear-
ance rate, thereby, reducing bias [29, 30]. However, the 
implementation is computationally complex and there 
may be convergence issues if there is too much varia-
tion between patients in parasite clearance profiles.

In previous studies, these two methods have been 
compared and used for the estimation of parasite clear-
ance rate by considering lag, decay and tail phases in 
patient parasite clearance profiles to enable the detec-
tion of artemisinin resistance in patients with P. 
falciparum [27–29, 31–34]. Despite the Bayesian hier-
archical approach showing improved statistical proper-
ties (bias, precision and coverage) in a simulation study, 
the standard two-stage method is widely used in prac-
tice for clinical efficacy studies of falciparum malaria 
because it is simpler and computationally faster [29, 
30]. Also, the availability of datasets with rich sampling 
(> 5 parasitaemia measurements above the detection 
limit) for patients with P. falciparum (due to anti-
malarial drug resistance and a longer 48-h erythrocytic 
life-cycle) ensures that the potential selection bias asso-
ciated with the two-stage approach is minimal. On the 
contrary, P. knowlesi is still highly susceptible to current 
anti-malarials, resulting in rapidly decreasing parasi-
taemia post-drug administration, potentially limiting 
the richness of available data. This study aimed to com-
pare the two-stage WWARN PCE with the Bayesian 
hierarchical method for estimating parasite clearance 
rate in anti-malarial efficacy studies of P. knowlesi.
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Methods
Data source
Parasitaemia data from 714 patients enrolled in three 
clinical trials, ACT KNOW [22, 37], CAN KNOW [23], 
and PACKNOW [35, 36] were analysed in this study. 
The patients enrolled in the ACT KNOW (compar-
ing anti-malarial treatments, artesunate–mefloquine 
and chloroquine) and CAN KNOW (comparing treat-
ments, artemether–lumefantrine and chloroquine) tri-
als were predominantly adults, although also included 
children (aged ≥ 3 years) with uncomplicated P. knowlesi 
malaria. The PACKNOW (determining the effects of 
regularly dosed paracetamol on renal function in P. 
knowlesi malaria) trial included adults and children 
aged ≥ 12  years with P. knowlesi malaria of any severity. 
A total of 16 patients enrolled in the PACKNOW trial 
were initially given one dose of artemether–lumefantrine, 
before the diagnosis of severe malaria with subsequent 
administration of intravenous artesunate.

The malaria diagnosis for patients was confirmed using 
a validated polymerase chain reaction (PCR). Patients 
who were pregnant, lactating, had non-P. knowlesi 
malaria infections or serious underlying health condi-
tions were excluded. The parasite counts were meas-
ured using microscopy at time 0 and every 6 h following 
anti-malarial drug administration until the parasitaemia 
fell below the microscopic detection limit (where possi-
ble). The thick and thin blood films were obtained from 
patients via the finger prick method [37]. The micro-
scopic slides were read by an independent microscopist 

to determine the parasite count, without knowing the 
antimalarial treatments used. The slides were checked 
by an ‘expert microscopist’ and the counts obtained 
were used [37]. Any disagreements in the counts were 
examined by a third microscopist and the results were 
obtained by taking an average of the two closest parasite 
counts [37]. The clinical trials were conducted between 
2012 and 2018 in Sabah, Malaysia (see Table 1 for further 
details).

Statistical approaches
The two-stage approach adopted by the WWARN PCE 
was compared with the Bayesian hierarchical framework. 
Both methods are described in more detail below.

Method 1: Two‑stage WWARN PCE
This method is frequently used to estimate parasite clear-
ance to determine anti-malarial drug resistance for P. 
falciparum malaria [31–34, 38]. The first stage involves 
fitting a log-linear, log-quadratic, or log-cubic regression 
model depending on the parasitaemia profile, to parasi-
taemia data of each individual patient separately [27]. 
This method works best when 6-hourly measurements 
of parasitaemia are taken [27, 39], and there are at least 
three data points in the parasite clearance phase. Parasi-
taemia measurements selected for the lag or tail phases 
of the parasitaemia profile are excluded (Fig.  1) to pre-
vent inaccurate estimations of parasite clearance half-
lives [27].

Table 1  Clinical trials data analysed in this study

Trial details Data used in this study (714 patients)

Trial name (reference) ACT KNOW [22] CAN KNOW [23] PACKNOW [35, 36]

Trial duration October 2012 – December 2014 January 2014 – March 2015 October 2016 – February 2018

Number of patients 226 123 365

Location Sabah, Malaysia
Kota Marudu District Hospital
Kudat District Hospital
Pitas District Hospital

Sabah, Malaysia
Kota Marudu District Hospital
Kudat District Hospital
Pitas District Hospital

Sabah, Malaysia
Keningau District Hospital
Queen Elizabeth Hospital
Kota Marudu District Hospital
Ranau District Hospital

Study population Children (age ≥ 3 years and weight > 10 kg) 
and adults with uncomplicated P. knowlesi 
malaria

Children (age ≥ 4 years and 
weight > 10 kg) and adults 
with uncomplicated P. knowlesi 
malaria

Children (age ≥ 12 years) and adults 
with uncomplicated and severe P. 
knowlesi malaria

Anti-malarial treatment Artesunate–mefloquine
Chloroquine

Artemether–lumefantrine
Chloroquine

Artemether–lumefantrine
Intravenous artesunate followed by 
artemether–lumefantrine
Artemether–lumefantrine followed by 
intravenous artesunate

Parasitaemia sampling 
times

Initial sample (time = 0) and every 6 h post anti-malarial drug administration until the parasitaemia fell below the micro-
scopic detection limit for two consecutive samples, where possible
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The occurrence and duration of lag phase depends on 
different factors, including the rate of drug absorption 
and the distribution of parasites across the erythrocytic 
life cycle at the time of treatment [29]. The tail phase gen-
erally occurs when the parasite density tapers out above 
the detection limit before falling below the detection 
limit. The half-life of parasite clearance (hours) is calcu-
lated from the negative slope of the predicted regression 
line for log-parasitaemia over time [27]. The first stage 
can be performed using the WWARN PCE R code [27] or 
the WWARN PCE online tool [26].

The second stage involves estimation of the median 
and/or mean parasite clearance rate for the population 
using the individual parasite clearance rate estimates 
obtained in the first stage. The effects of anti-malarial 
treatment administered and patient/parasite factors such 
as age, sex, and biological markers on the parasite clear-
ance rate are determined using second-level regression 
where the outcome variable is the individual estimates of 
parasite clearance rate derived in the first stage. Further 
details regarding this method are available in Flegg et al. 
[27].

Method 2: Bayesian hierarchical modelling
The Bayesian hierarchical modelling approach accommo-
dates individual- and population-level parameters in the 
model. Patient and parasite features can also be included 

as covariates to investigate the effect of these factors on 
parasite clearance. This method incorporates the two-
stages described for Method 1 concurrently and uses a 
changepoint model (Eq. 1) within the hierarchical model 
to determine the occurrence of lag and tail phases.

Figure  2 depicts a typical multilevel Bayesian struc-
ture. The distribution for the parasite density,yij , for 
each patient i = 1, …,714 at time points, j = 1, …, t is 
determined by the individual level parameters, i.e. the 
parasite clearance rate, model intercept and time of 
changepoint for the lag and tail phases, which is unique 
for each patient. Similarly, the population level param-
eters describe the distribution for the individual level 
parameters. These parameters also have a set of prior 
distributions.

The model (Eq. 1) used for parasite density ( yij ) is:

The indicator variables 1{tij < δ
�
i  } and 1{tij > δτi  } are 

used to determine the existence of lag and/or tail phases, 
i.e. δ�i  , the changepoint time between the lag and clear-
ance phase, and δτi  , the changepoint time between the 
clearance and decay phase. The parameter αi denotes the 
model intercept, and βi is the parasite clearance rate for 

(1)

log
(

yij
)

=αi − βi(δ
ℓ
i 1{tij < δℓi }

+ tij1
{

δℓi ≤ tij ≤ δτi

}

+ δτi 1{tij > δτi })+ εij ,

Fig. 1  An example of a patient profile for P. knowlesi (a) and P. falciparum (b) [28, 33]
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patients, while εij is the error term at the individual level 
[29]. For more detailed information regarding this model, 
please refer to Fogarty et  al.[29] and Sharifi-Malvajerdi 
et al. [28].

The model was fit to the data using Markov chain 
Monte Carlo (MCMC) sampling of the posterior distri-
butions with the Metropolis–Hastings-within-Gibbs 
sampler [28, 29]. Bayesian hierarchical modelling pro-
vides a more accurate estimation of the between- and 
within-patient variability, since parasitaemia data from 
all patients are analysed simultaneously. The patient 
profiles with more parasitaemia measurements contrib-
ute information to profiles with fewer sample measure-
ments for the parasite clearance rate estimation, instead 
of omitting those profiles from the analysis.

Data analysis
Data cleaning and all statistical analyses were performed 
using the open-source R software, version 4.1.0 (via RStu-
dio software version 1.4.1717). Data from the three clini-
cal studies were pooled for the purposes of this analysis, 
giving a total of 714 patients.

Method 1: The online tool for parasite clearance esti-
mation by Flegg et al. [27] was used to obtain the para-
site clearance rate constants and plots for patient profiles. 

The lower detection limit was set at 14 parasites/μL of 
blood and three parasitaemia measurements above the 
detection limit after the lag phase were required within 
the first 24  h [27]. The method also stipulates that the 
last parasitaemia measurement above the detection limit 
should not be more than 10,000 parasites/μL of blood, 
which is the upper limit for low-density parasitaemia. 
Following the analysis, visual checks were performed 
for the observed and predicted parasitaemia versus time 
plots obtained for each patient. The summary statistics 
of demographic and clinical characteristics for patients 
with successful and unsuccessful estimation of parasite 
clearance rate was presented to determine if there was 
any selection bias. For those patients with successful 
estimation of parasite clearance rate in stage 1, the mean 
parasite clearance rate constant (95% confidence interval 
(CI)) overall and by treatment arm was calculated.

Method 2: The R code from the ‘bhrcr’ package by 
Sharifi-Malvajerdi et al. [28] was used to obtain the popu-
lation posterior median and corresponding 95% cred-
ible interval (CrI) for the parasite clearance rate. The 
normal distribution was chosen as the prior distribution 
for the log parasite clearance rate and model intercept, 
while Jeffrey’s prior was used for the error term [29]. The 
probability of existence of lag and tail phases followed a 

Fig. 2  The hierarchical structure used in the Bayesian hierarchical model (Method 2)
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Beta(1,1) prior distribution [29]. 15,000 posterior sam-
ples were generated. The first 5000 samples were dis-
carded as burn-in and only one of every 50 samples were 
kept, resulting in 200 samples per parameter for calcula-
tion of posterior summaries. The posterior summaries 
calculated were the median of the 200 samples for each 
parameter (posterior median) and 95% CrI, which is cal-
culated from the 2.5th and 97.5th percentiles of the 200 
samples. As for Method 1, a detection limit of 14 para-
sites/μL of blood was used. Trace plots were examined to 
assess the convergence of the 10,000 parameter draws to 
a common distribution for each parameter. Visual checks 
of the predicted and observed parasitaemia profiles per 
patient are also presented. To estimate the effect of treat-
ment on parasite clearance, the anti-malarial treatment 
administered was included as a covariate on the param-
eter parasite clearance rate.

Results
The 714 patients had a mean age of 37  years (9.2% 
aged ≤ 15  years), 579 (81%) were male, and the median 
parasitaemia prior to treatment was 1898 parasites/μL of 
blood (inter-quartile range (IQR): 463 to 6276 parasites/
µL).

Figure  3 shows the measured parasite count profiles 
following treatment for all patients, grouped by disease 
severity, clinical trial and anti-malarial drug treatment 
administered. About 20% of the patient profiles had 
an initial increase in parasitaemia before decreasing 
below the detection limit. The parasite counts for most 
patients fell below the detection limit within 60 h post 
anti-malarial drug treatment.

For the 714 individual patient parasitaemia profiles 
analysed using the two-stage WWARN PCE (Method 
1), the parasite clearance rate constant was estimated 

Fig. 3  Patient parasitaemia profiles split by ACT KNOW, CAN KNOW and PACKNOW clinical trials, treatment arm and disease severity (AL 
- artemether-lumefantrine, ASMQ - artesunate-mefloquine, AS - artesunate, CQ - chloroquine, IV - intravenous) 
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for 678 (95%) patients’ individual parasitaemia profiles. 
The main reason for the exclusion of 36 patient parasi-
taemia profiles was the low number of parasite meas-
urements available, with a median of 3 measurements 
(including measurements below the detection limit 

of 14/μL) per patient compared with 6 measurements 
per patient for the other 678 patients. Most of the 
excluded profiles only had one positive parasitaemia 
reading before parasitaemia fell below the microscopic 
detection limit, meaning that no slope for the parasite 

Table 2  Characteristics for patient profiles analysed in stage 1 of the WWARN PCEa

a Worldwide Antimalarial Resistance Network’s Parasite Clearance Estimator

IQR: inter-quartile range; kg: kilograms; μL: microlitre
b 18 patients did not have data for days of preceding fever
c 2 patients did not have data for days of preceding fever
d 16 patients did not have data for days of preceding fever

Characteristics All patients
(n = 714 patients)

Successful analysis
(n = 678 patients)

Unsuccessful analysis
(n = 36 patients)

Number of parasite measurements

 Median, IQR 5, 5–6 6, 5–7 3, 3–3

 Range 3–14 3–14 3–5

 < 3 0 0 0

 3 37 (5.2%) 2 (0.3%) 35 (97.2%)

 4 107 (15%) 107 (15.8%) 0

 5 217 (30.4%) 216 (31.9%) 1 (2.8%)

 6 182 (25.5%) 182 (26.8%) 0

 7 110 (15.4%) 110 (16.2%) 0

 ≥ 8 61 (8.5%) 61 (9%) 0

Sex

 Female 135 (18.9%) 128 (18.9%) 7 (19.4%)

 Male 579 (81.1%) 550 (81.1%) 29 (80.6%)

Age (years)

 Median, IQR 35, 24–49 34, 23–48 37, 23–44.5

 Range 3–96 3–96 14–68

Weight (kg)

 Median, IQR 58, 50–67 58, 50.4–67 59, 51.5–68

 Range 11–118 11–118 35–80.5

Previous malaria

 No 511 (71.6%) 489 (72.1%) 22 (61.1%)

 Yes 203 (28.4%) 189 (27.9%) 14 (38.9%)

Days of preceding fever

 Median, IQR 4, 3–7 4, 3–7 4, 3–7

 Range 0–44b 0–44c 2–14d

Initial parasitaemia (/μL of blood)

 Median, IQR 1898, 463–6276 2056, 533–6398 127, 56–555

 Range 28–325,294 28–325,294 28–16,748

Treatment

Uncomplicated malaria

 Artemether–lumefantrine 320 (44.8%) 301 (44.3%) 19 (52.8%)

 Artesunate–mefloquine 115 (16.1%) 111 (16.4%) 4 (11%)

 Chloroquine 176 (24.7%) 174 (25.7%) 2 (5.6%)

Severe malaria

 Artemether–lumefantrine followed by 
artesunate (intravenous)

16 (2.2%) 15 (2.2%) 1 (2.8%)

 Artesunate (intravenous) followed by 
artemether–lumefantrine

87 (12.2%) 77 (11.4%) 10 (27.8%)
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clearance phase was attainable. Table 2 provides patient 
characteristics for profiles where parasite clearance rate 
was successfully estimated and for those excluded.

The distribution of age, sex and weight was similar for 
those patients with successful parasite clearance rate 
estimation and for those excluded. Only 28.4% of the 
patients included in the analysis had a self-reported pre-
vious malaria infection while there was a higher preva-
lence (39%) of patients with previous malaria infections 
in those excluded. Most patients (52.8%) excluded from 
the analysis were treated with artemether–lumefantrine 
(AL), compared with 44.3% for those with a successful 
parasite clearance estimation. Patients with successful 
estimation of parasite clearance rate had a higher median 
initial parasitaemia of 2056 parasites/μL compared to the 
excluded patients, who had a much lower median count 
of 127 parasites/μL.

For Method 2, the data from all 714 patients were 
included in the analysis, pooled across the population 
regardless of treatment type. The diagnostic plots for 
Method 2 indicate that stationarity of the Markov chain 
for each parameter was obtained (Additional file  1: 
Figs. S1 and S2). Based on visual checks, both methods 
had good and poor fits to the individual parasitaemia 
profiles, which varied depending on the number of par-
asitaemia measurements above the limit of detection. 
The plots for patient profiles that were successfully 
analysed in stage 1 of Method 1 generally had poorer 
model fits to the observed parasitaemia data compared 
to the plots obtained for Method 2 (Fig. 4). There could 
be several reasons for this, including that the WWARN 
PCE method has been optimized for P. falciparum data, 
which generally tend to have a greater number of para-
site measurements during the clearance phase than 
were available in the dataset. In the current pooled P. 

Fig. 4  Plots of profiles analysed using WorldWide Antimalarial Resistance Network Parasite Clearance Estimator (WWARN PCE) and Bayesian 
hierarchical models (BHM). The top (a) and bottom (b) panels present two distinct patient profiles with ≤ 5 parasitaemia measurements per patient 
and > 7 parasitaemia measurements per patient, respectively
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knowlesi dataset, only 75% of patients had between 4 
to 6 parasite measurements. Another contributing fac-
tor could be the use of a changepoint model in Method 
2, which allows for a more accurate lag, decay, and 
tail phase determination. A small number of model 
fits for Method 2 were also poor, possibly due to large 
between-patient variation. Figures  4a and 4b show 
examples of individual parasitaemia profiles and model 
fits from Methods 1 and 2.

In this study, lag phases were detected in 16% of patient 
profiles, while only 3% had tail phases. The mean popula-
tion parasite clearance rate constant was 0.26/h (95% CI 
0.11, 0.46) for Method 1 and 0.36/h (95% CrI 0.18, 0.65) 

for Method 2, corresponding to mean parasite clearance 
half-lives of 2.6 and 1.9 h, respectively. Further details are 
provided in Additional file 1: Table S1.

A further analysis was performed where the data 
were grouped by the five anti-malarial treatments. To 
enable a fair comparison using boxplots (Fig.  5), the 
patient groups were limited to only those that were ana-
lysed by both methods successfully (n = 678). Patients 
with uncomplicated P. knowlesi malaria were treated 
with artemether–lumefantrine (n = 301), artesunate–
mefloquine (n = 111) and chloroquine (n = 174), and 
for severe P. knowlesi malaria patients, the treatments 
were artemether–lumefantrine (single dose) followed by 

Fig. 5  Box and whiskers plot for parasite clearance rate estimates, grouped by disease severity and treatment type (AL - artemether-lumefantrine, 
ASMQ - artesunate-mefloquine, AS - artesunate, CQ - chloroquine, IV - intravenous) 
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intravenous artesunate (n = 15), and intravenous artesu-
nate followed by artemether–lumefantrine (n = 77). The 
distribution of the individual-level estimated parasite 
clearance rate constants are presented by estimation 
method, disease severity, and treatment administered 
(Fig. 5).

The estimated parasite clearance rates using Method 
2 are higher than Method 1 for all patient treatment 
groups (Fig.  5). Distribution of the parasite clearance 
rates for patients with uncomplicated malaria indi-
cated that patients treated with artesunate–meflo-
quine and artemether–lumefantrine had faster parasite 
clearance rates compared to those treated with chlo-
roquine, regardless of analysis method. Patients with 
severe malaria treated with intravenous artesunate fol-
lowed by artemether–lumefantrine had similar distri-
butions of parasite clearance rate to those receiving 

artemether–lumefantrine followed by intravenous 
artesunate, however, only 15 patients were administered 
the latter treatment sequence.

The mean, median and interquartile ranges for the 
parasite clearance half-lives (and parasite clearance rates) 
grouped by method used, disease severity and treatment 
type are given in Table  3 (Additional file  1: Table  S2). 
The tables include the respective number of patients that 
were successfully analysed using each method to pre-
sent results of the analysis in its entirety. This means that 
patients excluded following analysis using Method 1 were 
not removed from the results for Method 2. Consistent 
with the estimated parasite clearance rates presented in 
Fig. 5 (restricted to 678 patients analysed by both meth-
ods), the longest parasite clearance half-life for uncom-
plicated malaria estimated using Method 2 (analysis of 
all 714 patient data) was for patients receiving chloro-
quine (median of 2.9 h), compared with 1.9 h for patients 
receiving artesunate–mefloquine and artemether–lume-
fantrine. For patients with severe malaria, using Method 
2, those treated with artemether–lumefantrine followed 
by intravenous artesunate had a similar distribution of 
parasite clearance half-life (median of 2.0 h and a 95% CrI 
[1.6, 2.4] hours) to those treated with intravenous artesu-
nate followed by artemether–lumefantrine (median 1.8 h, 
95% CrI [1.6, 2.0] hours).

Discussion
The quantification of parasite clearance is widely used 
to determine anti-malarial drug efficacy and to monitor 
the emergence of drug resistance. This study aimed to 
ascertain the most useful approach, considering the com-
plexity and resources required, to determine the parasite 
clearance rate or half-lives of anti-malarials used to treat 
P. knowlesi malaria, using currently available tools. The 
data used were obtained from three clinical trials con-
ducted in Sabah, Malaysia involving a total of 714 chil-
dren and adults with knowlesi malaria.

Given the lack of drug pressure and high sensitivity to 
anti-malarial drugs, patients in P. knowlesi efficacy stud-
ies typically have a low number of parasitaemia measure-
ments above the detection level using standard sampling 
schemes, suggesting Bayesian hierarchical modelling 
as an attractive alternative to the widely used WWARN 
PCE method. However, in this study, only 5% of patients 
were excluded in stage 1 of the WWARN PCE method. 
As expected, these 36 patients had three or fewer para-
site measurements and a lower parasitaemia before 
treatment.

The data used in this analysis were derived from 
patients with uncomplicated and severe P. knowlesi 
malaria. The oral monotherapies artesunate–meflo-
quine and artemether–lumefantrine that were used to 

Table 3  Estimated parasite clearance half-lives (hours) by 
anti-malarial treatment administered using WWARN PCEa and 
Bayesian hierarchical modelling

a Worldwide Antimalarial Resistance Network Parasite Clearance Estimator

CI: Confidence interval; CrI: Credible interval

Treatment WWARN PCEa Bayesian 
hierarchical 
modelling

Uncomplicated malaria

Artemether–lumefantrine (n) 301 320

 Mean (hours) 2.845 1.940

 Median (hours) 2.634 1.940

 95% CI & CrI (hours) [1.568, 5.254] [1.808, 2.116]

Artesunate–mefloquine (n) 111 115

 Mean (hours) 3.029 1.929

 Median (hours) 2.529 1.932

 95% CI & CrI (hours) [1.466, 7.683] [1.741, 2.137]

Chloroquine (n) 174 176

 Mean (hours) 3.599 2.861

 Median (hours) 3.265 2.865

 95% CI & CrI (hours) [1.867, 7.324] [2.689, 3.044]

Severe malaria

Artemether–lumefantrine fol-
lowed by artesunate (intrave-
nous) (n)

15 16

 Mean (hours) 2.485 1.970

 Median (hours) 2.118 1.961

 95% CI & CrI (hours) [1.513, 4.867] [1.622, 2.429]

Artesunate (intravenous) fol-
lowed by artemether–lumefan-
trine (n)

77 87

 Mean (hours) 2.532 1.792

 Median (hours) 2.275 1.793

 95% CI & CrI (hours) [1.252, 4.181] [1.584, 2.009]
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treat uncomplicated malaria had similar shorter median 
parasite clearance half-life estimates using method 1 
(~ 2.6 h) while the anti-malarial drug chloroquine had a 
longer half-life of 3.2 h. Patients suspected or confirmed 
to have severe knowlesi malaria received a combination 
of intravenous artesunate and oral artemether–lumefan-
trine, and as expected, had a much higher initial parasite 
count per microlitre of blood compared to patients with 
uncomplicated malaria. However, these patients had a 
shorter median parasite clearance half-life estimate com-
pared to patients with uncomplicated knowlesi malaria, 
who only received oral therapies, at 2.3  h versus 2.7  h. 
This finding is not surprising given P. knowlesi is highly 
sensitive to artesunate and with intravenous administra-
tion, there is no delay in absorption as may occur with 
the administration of oral medication.

There are advantages and disadvantages in using 
WWARN PCE (Method 1) and Bayesian hierarchical 
modelling (Method 2) to obtain estimates of parasite 
clearance rate (Table 4). While both methods have ben-
efits, there are some drawbacks that need careful consid-
eration prior to implementation.

Given the advantages and disadvantages, it is essential 
to determine which method is more suited to the tar-
geted end user. For drug efficacy studies, the end user is 
most often researchers without the expertise on Bayesian 
hierarchical modelling to implement Method 2. As such, 
it is recommended that the standard two-stage approach 
(Method 1) be used to estimate parasite clearance half-
lives or rates, especially when most of the patients have 
three or more positive and distinct blood sample meas-
ures. The standard two-stage method is computation-
ally simple, reliable, and quick. While there were patient 
omissions when Method 1 was used in the study, it was a 

small proportion of the study population (36/714 (5%)). 
It is recommended that a table detailing the patient char-
acteristics, the number of parasite count measurements 
per patient available and initial parasitaemia for those 
patient parasite profiles successfully analysed and for 
those excluded in stage 1 of Method 1 should be provided 
by researchers or clinicians to ensure the transparency of 
any selection bias.

Both methods for parasite clearance quantification 
were compared in an analysis using pooled data from 
three clinical trials conducted for knowlesi malaria. As 
such, a direct comparison of the degree of bias from each 
of the two methods could not be assessed, as this would 
require a simulation study. However, Fogarty et  al. [29] 
have performed a simulation study comparing the two 
methods for P. falciparum malaria and concluded that the 
Bayesian estimator generally performed better, specifi-
cally in instances where patient profiles had lags and/or 
tail phases. Knowlesi malaria is not known to have drug 
selection pressure given its zoonotic nature, which means 
drug resistance is not a current concern here. While it 
could be worthwhile to identify the factors that contrib-
ute to the existence of lag and tail phases in P. knowlesi 
infections, in this study, there was only a very small per-
centage (3%) of patients with tail phases.

Lastly, there has been some debate as to whether para-
site clearance half-lives or rates are the best measures for 
evaluating drug efficacy, given that dead parasites (i.e. 
killed by the anti-malarial drug) remain in blood circula-
tion for some time before removal by the spleen, leading 
to an overestimation of live parasites counted via micros-
copy [40]. Instead, Khoury et al. suggest treating parasite 
removal and anti-malarial drug activity as two distinct 
activities to obtain more accurate results [40].

Table 4  A list of pros and cons for Method 1 and Method 2

Characteristics WWARN PCE (Method 1) Bayesian ‘bhrcr’ package (Method 2)

Advantages Simple and straightforward method that is user friendly
Computationally fast

All patient data (including patients with ≤ 3 blood sam-
ples) are included in the analysis
Has a robust sampling method that uses a changepoint 
model to determine the lag and tail phases accurately

Disadvantages Requires frequent sampling for best results (e.g., recommends 
blood samples taken every 6-h)
Omits patients from the second stage (calculation of population 
mean) if the parasite clearance rate cannot be calculated in stage 1 
(due to fewer samples), potentially leading to selection bias
Requires at least three consecutive and distinct positive blood 
sample measures above the microscopic detection limit per patient 
to successfully estimate parasite clearance rates

Complex method of calculation which requires in-depth 
statistical knowledge for execution, including understand-
ing the hierarchical structure and prior distributions for 
each parameter included in the model
Computational time for sampling from posterior distribu-
tions (e.g., about 10–36 h, depending on the number of 
samples and processing system used)
Integral convergence issues may occur if there is too 
much variation between patients’ parasite clearance 
profiles
Patients with frequent parasitaemia measurements 
contribute more information to the model parameter 
estimation leading to potential bias
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Conclusions
Continual determination of anti-malarial drug efficacy is 
important to ensure optimal treatment regimens are being 
recommended and to monitor the emergence of drug 
resistance. One of the widely accepted ways to determine 
treatment efficacy is the use of parasite clearance curves 
that show the initial decrease in parasitaemia post-drug 
administration.

Based on this analysis of parasitaemia data from 714 
patients enrolled in three separate clinical trials, it is recom-
mended that the standard two-stage method (WWARN 
PCE) be used to quantify parasite clearance for patients 
infected with P. knowlesi. This recommendation is based 
on the user-friendliness of the software to implement this 
method. However, in the instance that most patient pro-
files have fewer than three blood samples with parasitaemia 
above the detection limit, the Bayesian hierarchical model-
ling method for analysis should be considered to obtain use-
ful information about the parasite clearance from the scarce 
data available.
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