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ABSTRACT Microbial communities play key roles both for humans and the environ-
ment. They are involved in ecosystem functions, maintaining their stability, and provide
important services, such as carbon cycle and nitrogen cycle. Acting both as symbionts
and as pathogens, description of the structure and composition of these communities is
important. Metabarcoding uses ribosomal DNA (rDNA) (eukaryotic) or rRNA gene (pro-
karyotic) sequences for identification of species present in a site and measuring their
abundance. This procedure requires several technical steps that could be source of bias
producing a distorted view of the real community composition. In this work, we took
advantage of an innovative “long-read” next-generation sequencing (NGS) technology
(MinION) amplifying the DNA spanning from the internal transcribed spacer (ITS) to
large subunit (LSU) that can be read simultaneously in this platform, providing more in-
formation than “short-read” systems. The experimental system consisted of six fungal
mock communities composed of species present at various relative amounts to mimic
natural situations characterized by predominant and low-frequency species. The influ-
ence of the sequencing platform (MinION and Illumina MiSeq) and the effect of differ-
ent reference databases and marker sequences on metagenomic identification of spe-
cies were evaluated. The results showed that the ITS-based database provided more
accurate species identification than LSU. Furthermore, a procedure based on a prelimi-
nary identification with standard reference databases followed by the production of cus-
tom databases, including only the best outputs of the first step, is proposed. This addi-
tional step improved the estimate of species proportion of the mock communities and
reduced the number of ghost species not really present in the simulated communities.

IMPORTANCE Metagenomic analyses are fundamental in many research areas; there-
fore, improvement of methods and protocols for the description of microbial com-
munities becomes more and more necessary. Long-read sequencing could be used for
reducing biases due to the multicopy nature of rDNA sequences and short-read limita-
tions. However, these novel technologies need to be assessed and standardized with
controlled experiments, such as mock communities. The interest behind this work
was to evaluate how long reads performed identification and quantification of species
mixed in precise proportions and how the choice of database affects such analyses.
Development of a pipeline that mitigates the effect of the barcoding sequences and
the impact of the reference database on metagenomic analyses can help microbiome
studies go one step further.
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Metagenomics is defined as the direct molecular analysis of genomes, or parts of
them, contained within environmental, agricultural, and clinical samples (1). It consti-

tutes the most noteworthy event in the field of microbial ecology, because among other
beneficial effects, it solves the problem of the viable noncultivable (VNC) microorganism
(1, 2). Given the absence of full genomes of most organisms, metagenomics resorts to
metabarcoding or amplicon-based metagenomics, which are the most widely used
approaches for determining the microbial composition of a site (3, 4). Metabarcoding is
based on next-generation sequencing (NGS) of marker genes: this usually involves regions
of the rRNA gene (i.e., the 16S rRNA gene) for bacteria and the internal transcribed spacer
(ITS), a sequence located between 18S and 26S rRNA in the rRNA precursor transcript, or
large subunit (LSU), corresponding to the 26S rRNA gene, for fungi because these markers
are ubiquitous and have hypervariable regions that differentiate species while being
flanked by conserved regions that can be used to anchor “universal” primers (5). While the
small subunit (SSU) marker is extremely useful at higher taxonomic levels, it has been pro-
ven to have insufficient resolution at the genus or species level (6).

The procedure for profiling microbial communities requires a number of technical
steps that could produce a distorted view of the real community composition. Biases,
in fact, can arise from sample collection and storage methods, DNA extraction, PCR
amplification, DNA sequencing, bioinformatics, and statistical analyses. For this reason,
mock communities have been used to evaluate the performance of a process (7, 8). For
instance, Hallmaier-Wacker and colleagues examined a mock community composed of
22 bacterial strains and found that the choice of storage buffer and extraction kit
affects the detected bacterial composition (9). Likewise, O’Sullivan et al. explored the
impact of the bioinformatic approaches on microbiome assessment using 16S rRNA
gene sequencing results generated from two mock microbial communities (10). In
order to achieve accurate sequencing results, many factors have to be considered
when designing a sequencing study. Among the processing steps that affects metage-
nomic analyses, PCR-based strategies are source of biases because of differential ampli-
fication efficiency among templates in terms of target length, primer binding sites and
GC content (11–13). Many studies demonstrate potential amplification biases that are
introduced with the use of various commonly utilized primers. Fouhy et al. demon-
strated that the use of different primer sequences for the 16S rRNA gene (V4-V5, V1-V2,
and V1-V2 degenerate primers) produces variable community profiles that differ both
from the expected results and when comparing results obtained with the three primer
sets. All of the primer sets detected false hits, which were present at low relative abun-
dances and were closely related to the actual species present in the mock commun-
ities, suggesting misassignment at the species level due to similarities in the 16S rRNA
gene sequence (14). Similarly, Bellemain and colleagues documented how the most
commonly used fungal ITS primers were hampered by different types of biases: length
bias, taxonomic bias, and primer mismatch bias (15).

To minimize the effect of such biases, various authors have suggested the use of dif-
ferent primer combinations so that different ITS regions would be analyzed in parallel.
Various primers are used to amplify parts of the ITS region because the entire ITS region
is too long for 454 sequencing or other high-throughput sequencing methods. The
regions ITS1 and ITS2 provide greater taxonomic and functional resolution and richness
of operational taxonomic units (OTUs) at the 97% similarity threshold compared to barc-
odes located within the ribosomal small subunit (SSU) and large subunit (LSU) genes
(16) and were therefore chosen as the universal fungal markers (6). On the contrary,
Mota-Gutierrez and colleagues registered cases of both underestimations and overesti-
mation of species considering marker sequences of ITS2, due to the uneven length of
such fragments. Furthermore, they demonstrated that the LSU region provided a higher
a diversity index and greater fungal rRNA taxonomic depth and robustness results than
ITS2 (17). Third-generation sequencers, and in particular Nanopore technologies, were
built to produce long reads to overcome length limitations and provide a full-length
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sequence of ribosomal DNA (rDNA) cistron for improving identifications at the species
level (18, 19).

Despite all these limitations, amplicon-based metabarcoding remains pivotal for envi-
ronmental microbiology. The question is whether to consider the relative presence of a
species as a sort of semiqualitative piece of information or if it can be considered quanti-
tatively too. In general, the abundance of rDNA sequences from different microbes is
used as an indirect measure of the abundance of the microbial taxa in the community,
considering that the proportion of reads assigned to each group reflects the relative
abundance of putative taxa within the sample. However, this assumption does not take
into account intrinsic limitations of these markers, such as their multicopy nature, which
is estimated to vary from 14 to 1,442 copies in fungi (20). Variation in genomic rDNA
copy number could affect the measure of the relative abundance, because species with
relatively low copies of the rRNA operon would be underestimated, whereas those with
more copies would be overestimated. Lavrinienko pointed out the limits of using NGS-
based methods to accurately quantify the taxonomic composition of eukaryotic micro-
bial communities due to interspecific and intraspecific variations in the rRNA locus,
emphasizing that copy number variation may confound analyses of microbial commu-
nity composition. Thus, they suggested the need to adjust the counts of reads assigned
to a particular taxon with taxon-specific values of rDNA copy number per genome (21).
Whether for eukaryotes, this would be challenging, Kembel and colleagues presented a
method that allows estimation of organismal 16S rRNA gene copy number and abun-
dance by using ancestral state reconstruction via phylogenetically independent contrasts
(22). In contrast, Starke et al. provided empirical evidence that gene copy normalization
does not improve the 16S rRNA gene target sequencing analyses in real scenarios (23).
Another fundamental step in metagenomic analysis is the choice of reference databases.
It has been demonstrated that curated and smaller databases performed more precise
predictions. In fact, the presence of more sequences in a given database increases the
probability of genera being identified as a different taxon. In a previous paper, we pro-
posed a pipeline to optimize the mapping against a reference with a two-step procedure
based on the determination of the most likely species that were introduced in a dedi-
cated smaller reference database for the final precise identification (24).

The aim of the present work is the evaluation of both the impact of different data-
bases (the UNITE General Reference [GR] database and CBS reference database) and
barcoding markers on metabarcoding studies carried out with long reads. For this pur-
pose, we compared the relative abundances obtained with the analysis of Oxford
Nanopore sequences and those sequenced with Illumina MiSeq. Six fungal mock com-
munities were created in order to compare the expected and observed results.
Furthermore, a two-step procedure, consisting of a preliminary identification followed
by the definition of custom reference databases to carry out the second step, was pro-
posed to increase the accuracy of metabarcoding analysis.

RESULTS
Assessment of species abundance using MinION sequences. Long-read metabar-

coding is a novel technique that could increase the possibility of accurate identification
of both single species and environmental samples. Whereas Illumina sequences for tax-
onomic metabarcoding normally cover only the ITS2 sequence, MinION can span the
entire DNA region, including ITS and LSU D1/D2, thus increasing the amount of infor-
mation (ca. 1,200 bp versus 400 bp) and therefore the taxonomic resolution (25). Mock
communities were generated to assess the applicability of third-generation sequences
for a comprehensive description of simulated microbiomes composed by uneven pro-
portions of the different species, as happens in real situations.

Each mock community mixture was obtained by mixing amounts of genomic DNA
proportional to the chosen proportion of species abundance. This strategy was chosen
rather than that of mixing known amounts of cell of the different species to avoid the
bias derived from differential extraction efficiency. Two independent replicas of every
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mock community were carried out to assess the differences due to the whole series of
molecular and bioinformatic operations before the species attribution step. The effects
of different reference databases and molecular markers were evaluated.

(i) Effect of the full reference database. The influence of the reference database on
defining the relative abundance of the single species or taxa is a methodologically relevant
question in amplicon-based metagenomics. In a previous paper (26), it was already demon-
strated that Illumina NGS outputs from single-strain sequencing of the ITS-LSU marker
region produced lower homology values than expected from analogous Sanger sequencing,
when using large databases. Subsequent reidentification with a smaller reference database,
containing only the putative taxa obtained from the first alignment, produced homology
percentages like those obtained with Sanger sequencing. This observation raised the ques-
tion of the effect of reference database composition and richness on attributing NGS reads
to known species, especially in the very complex context of amplicon-based metagenomics.
In this work, three reference databases were tested, with six different mock community mix-
tures, for the taxonomical identification of long reads obtained with the MinIon sequencing
platform. One is the “General Reference database” (herein referred to as UNITE, GR, or full ref-
erence database), obtained from the UNITE database and composed of 58,440 ITS sequen-
ces. The other two (CBS-ITS and CBS-LSU) were derived from the CBS database, containing
34,683 ITSs and LSU D1/D2 obtained from the Westerdijk Fungal Biodiversity Institute. The
relative abundances obtained with the three databases in each of the six mock communities
were compared with the expected species abundances of each mock community (Fig. 1).

From a general overview of the abundances, all three databases were found to have
introduced many nonpresent species (hereinafter referred to as “ghost species”) in the
original mock communities. When ghosts were members of the same genus, the errone-
ous identification could be ascribed to a lack of the necessary taxonomic resolution.

It could be noted that the species of the genus Metschnikowia were overestimated by all
three reference databases in all of the mock communities where such species were present
(Fig. 1a, c, and e). The CBS database had higher proportions of Metschnikowia, while UNITE
found a relevant percentage of the ghost Glaciozyma species (Fig. 1a). Rhodotorula mucilagi-
nosa was identified by all three databases, but it was underestimated by the UNITE (Fig. 1a
and d) and CBS-LSU databases, while it was overrepresented in the CBS-ITS database
(Fig. 1a). On the contrary, Rhodotorula glutinis was never detected but there was an
excess of the ghost species Rhodotorula diobovata (Fig. 1a and d), leading to the con-
clusion that there was a misidentification due to the phylogenetic similarity of the
two species (similarity of 0.979). Species of the genus Dipodascus were overestimated
by the UNITE and CBS-LSU databases (Fig. 1b). The CBS-ITS database identified 75%
of Debaryomyces spp. in mock community B (Fig. 1b), composed of four different spe-
cies of Debaryomyces (80%) and one species of Dipodascus (20%), implying that the
estimate at the genus level was almost correct without indications at the species
level. Debaromyces robertsiae was the only species correctly identified by all three
databases but with a strong underestimation. In general, Debaryomyces species were
misclassified by both the UNITE and CBS databases (Fig. 1b and d), similarly to
Hanseniaspora uvarum, which was strongly underestimated in all mock communities
in which it was included, even in high abundance, as, e.g., in mock community E, where
it represented 40% of the species (Fig. 1e). Mock communities, including some phyloge-
netically close species of the Saccharomyces genus, showed a strong underestimation of
Saccharomyces pastorianus and Saccharomyces uvarum by the UNITE database and a
high overestimation of S. bayanus (Fig. 1f) or of Nakaseomyces sp. (Fig. 1e). A similar trend
was found when considering CBS-LSU in the same mock communitiess, indicating a scarce
difference of efficacy of the two markers. On the other hand, CBS-ITS detected a lower per-
centage of S. bayanus, while it tended to classify both S. cerevisiae and S. paradoxus as
“Saccharomyces cerevisiae/Saccharomyces paradoxus” hybrids. While S. cerevisiae was well
estimated by UNITE, S. paradoxus was estimated at 22% versus the expected 15%.

(ii) Difference in performance of ITS- versus LSU-based reference databases.
From the analysis of the relative abundances, carried out considering both CBS-ITS and
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FIG 1 Fungal diversity of mock communities considering full databases (GR). Each panel shows the abundance (y axis) of species found
within a mock community, obtained considering three different databases (x axis) using MinIon sequences. GR is the database composed

(Continued on next page)
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CBS-LSU databases, different performance of the two markers was shown, with cases
of oppositely erroneous estimates: i.e., one would overestimate and the other underes-
timate the expected relative abundance of the species. This suggests that the simulta-
neous use of both markers could produce a better estimate of the real proportion of
the species. For example, Dipodascus australianensis and Candida haemulonii were
identified at the species level, but LSU overestimated and ITS underestimated the
expected abundances (Fig. 2a and b).

On the contrary, both ITS and LSU did not identify Metschnikowia pulcherrima cor-
rectly at the species level, but detected it as Metschnikowia sp., missing the species-spe-
cific level (Fig. 2a and e). The two species Rhodotorula glutinis and R. mucilaginosa were
misclassified as four species of this genus with CBS-LSU in all mock communities (Fig. 2a
and d). Conversely, the mapping with CBS-ITS returned a quite good estimation of R.
mucillaginosa (Fig. 2a). The genus Debaryomyces showed a trend like Metschnikowia; in
fact, it was not correctly classified at species level, but the abundance of Debaromyces
sp. can be compared the expected abundance of the species of this genus in the mock
communities. As in Rodhotorula, CBS-LSU distributed the species abundances among
other species of the same genus, leading to the presence of some ghosts (Fig. 2b and d).
Hanseniaspora uvarum was always severely underestimated with all reference databases
in all mock communities. Saccharomyces cerevisiae and Saccharomyces paradoxus were
relatively well quantified by CBS-ITS database, with some uncertainty, which was mostly
due to the phylogenetic similarity between these species and the presence in the data-
base of the hybrid species “S. cerevisiae/paradoxus” (Fig. 2c, d, and f). Saccharomyces
bayanus was always overrepresented by CBS-LSU in the mock communities, where it
was included and was detected as a ghost species in mock communities C and D, in
which it was not included (Fig. 2c and d). Saccharomyces pastorianus and Saccharomyces
uvarum were almost never identified by CBS-LSU, while CBS-ITS gave a relatively faithful
representation of S. uvarum abundances in the various mock communities in which it
was present.

Comparison of MinION and Illumina. Given the short length of the reads gener-
ated with the Illumina platform, ITS2 is largely used in fungal amplicon-based metabar-
coding, rather than the whole ITS that was designed as a universal marker. For this rea-
son, we compared ITS sequencing data obtained from MinION sequences with the
corresponding sequencing data from the ITS2 region obtained with Illumina MiSeq. In
both cases, UNITE was used as reference database for sequence mapping. The data
shown in the two paragraphs below describe the behavior of the ITS from MinION and
ITS2 from Illumina at the genus and species levels, respectively.

(i) Performance of full reference databases at the genus level. The first evidence
that emerged from the analysis at the genus level of all mock communities is the
decrease in ghost species with Illumina compared to the corresponding results obtained
with MinION (see Fig. S1 in the supplemental material).

As a trade-off, species of the genera Metschnikowia and Dipodascus were never
detected by Illumina (Fig. S1a, b, c, and e), while they were overestimated by MinION,
suggesting that the former platform is less sensitive than the latter. On the contrary,
the Rhodotorula genus was overrepresented by Illumina and underrepresented by
MinION in mock communities A and D (Fig. S1d). The genus Saccharomyces was well esti-
mated by both platforms, although mock community E showed little overrepresentation

FIG 1 Legend (Continued)
of ITS sequences taken from UNITE, while ITS and LSU comprise sequences from CBS database. For each reference database, there are two
columns that represent the two biological replicates (labeled R1 and R2). The right-most column of each panel represents the supposed
abundance. Species present in the mock community are written in red, while the species in black are those identified by the mapping
without being added initially. Mock community A contains 30% R. glutinis, 30% R. mucilaginosa, 20% C. haemulonii, and 20% M.
pulcherrima. Mock community B contains 40% D. hansenii, 20% D. robertsiae, 20% D. udenii, and 20% D. australiensis. Mock community C
contains 30% H. uvarum, 30% S. cerevisiae, 30% S. paradoxus, 5% C. haemulonii, and 5% M. pulcherrima. Mock community D contains 25%
R. mucilaginosa, 20% R. glutinis, 20% S. cerevisiae, 10% S. paradoxus, 15% D. hansenii, and 10% D. udenii. Mock community E contains 40%
H. uvarum, 30% M. pulcherrima, 10% S. bayanus, 10% S. pastorianus, and 10% S. uvarum. Mock community F contains 30% S. cerevisiae,
15% S. bayanus, 15% S. pastorianus, 15% S. uvarum, 15% S. paradoxus, and 10% H. uvarum.
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FIG 2 Different abundances obtained from different markers. The bar plots depict the relative abundance (y axis) of each species
within the simulated communities, calculated considering separately ITS and LSU. The x axis shows all of the species identified in a

(Continued on next page)
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of this genus when Illumina was used. On the other hand, MinION did not recognize the
Saccharomyces genus in mock community E, but it detected several ghost species.
Hanseniaspora was always severely underestimated by MinION but well identified by
Illumina. In order to compare the performance of the two platforms in the different mocks,
two scores were developed to evaluate the matching of estimated and observed values
from both qualitative (matching index 1 [MI-1]) and quantitative (MI-2) viewpoints. In the
former score, the factors refer to the presence/absence of the expected versus observed
pairs, irrespective of the actual value of the estimate. All of the three possible cases, true
positives (TPs), false negatives (FNs), and false positives (FPs), are given a score of 1 and
introduced in equation 1. The quantitative MI-2 index accounts for the mismatch between
the estimated and observed percentages as described in Materials and Methods.

According to both MI-1 and MI-2, Illumina outperformed MinION at the genus level;
in fact, the average MI-1 scores were 0.4 and 0.36, whereas the MI-2 scores were 0.63
and 0.39, respectively, for Illumina and MinION, indicating that the there was a strong
quantitative difference, whereas the discrepancy at the qualitative level was not partic-
ularly high (Fig. S2).

(ii) Performance of the full reference databases at the species level. According
to the results at the species level, Illumina did not precisely identify the species present
but identifications tended to be distributed among different species within the same
genus, even if they were not all present (Fig. 3).

For example, in mock community A, Illumina detected five different species of
Rhodotorula instead of the only two present; on the contrary, MinION recognized one
of the two and wrongly identified the second, underestimating the expected abundance
(Fig. 3a). In general, Illumina underestimated and MinION overestimated the number of
species present, introducing ghost species. Evidence of this phenomenon is shown in
mock communities A and C, where M. pulcherrima and C. haemulonii were not identified
by Illumina. Conversely, MinION detected 4 species absent in the original mixture (Fig. 3a
and c). Illumina precisely estimated the percentage of H. uvarum and correctly classified
Debaryomyces species, while MinION severely underestimated both of them (Fig. 3b to d
and f). A critical issue that arose with Illumina sequencing is that species of the
Saccharomyces sensu stricto group could not be distinguished (Fig. 3c, e, and f) due to the
close phylogenetic relationship. Only S. bayanus and S. paradoxus were identified, while
MinION could differentiate the latter from S. cerevisiae. Using the matching indices
described above, the MI-1 averages for Illumina and MinION were 0.26 and 0.27, respec-
tively, while the MI-2 outputs were 0.28 and 0.26, respectively, indicating that using full ref-
erence databases, both platforms had similar and poor outcomes (Fig. 4).

With a mean of 1,200 bp, MinION sequences were longer than the query sequences
of UNITE, averaging around 506 bp (Fig. S3 and Table S4), implying a possible bias due
to the different sequence lengths. In fact, the ghost sequences introduced by MinION
were mostly Orbiliales sp., Glaciozyma sp., and Nakaseomyces sp., whose respective
lengths are 1,390, 1,193, and 1,360 bp, confirming that the mapping procedure tends
to identify species with longer sequences in the reference database.

Furthermore, a phylogenetic analysis of the species involved in the study demonstrated
the presence of a relationship between the aforementioned ghost species and the species
used for the mock communities (Fig. S4), indicating that these problems arise from a com-
bination of the different lengths of this marker and the phylogenetic similarity.

Use of specific databases to mitigate the species abundance problems. Since
full databases with many species may result in abundance estimations far from the pro-
portion of each mock community, a simple two-step pipeline was conceived consisting

FIG 2 Legend (Continued)
mock community, grouped by genera. For each species, there are four bars representing the two replicas for each marker. The light
blue bars indicate the relative abundance calculated with the ITS, while orange bars represent the abundances of species
considering the LSU marker. Red horizontal lines show the expected value of abundance for each species, which were combined to
create the simulated community: thus, species in the x axis that do not display the red line are considered ghost species (detected
but not actually included).
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of a preliminary identification followed by the definition of a “dedicated database” to
carry out the second step. The “dedicated database” is restricted only to the strains (and
maybe only to the type strains) of all the species found in the first identifications, and it
is used to carry out the second identification. The analysis at the genus level carried out
with this approach did not produce significantly great improvements according to the
MI-1 and MI-2 scores (Fig. S5) and led us to concentrate on the species level, which is the
preferential target of many studies on fungal communities.

FIG 3 Comparison of fungal diversity of mock communities at the species level obtained with MinION and Illumina MiSeq, considering the full reference
databases (ITS). Each panel shows the abundance of species found within a mock community, expressed with circles of different magnitudes that increase
proportionally with the increase of relative abundance from 0 to 1. The database used for the mapping is composed only of ITS sequences in order to
compare the two different sequencing methods. For each mock community, the results are summarized in five columns. The left-most column of each
panel represents the supposed abundance present in the mock community, and the following two columns represent the two biological replicates (labeled
R1 and R2) obtained by MinION, while the last two are those obtained by MiSeq.
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(i) Performance of dedicated reference databases at the species level. The MinION
dedicated database was composed of ITS and LSU sequences of the species identified by
the three full databases. Similarly, the Illumina dedicated database was generated only
with the ITS2 sequences, obtained from UNITE, of the species identified in the first round
of mapping against the full databases. The results showed that the use of dedicated data-
bases mitigates the insurgence of ghost species, leading to better outcomes both taxo-
nomically (i.e., the matching of species present and observed) and quantitively. MinION
identified all of the organisms present in the mixture at the species level, while Illumina
never detected R. glutinis, D. australiensis,M. pulcherrima, C. haemulonii, and the differences
among the species of the Saccharomyces sensu stricto group (Fig. 5).

On the contrary, long sequences mapped against restricted databases allowed the
clear separation of closely related species like those of the genus Saccharomyces (Fig. 5c to
f). MinION combined with the dedicated database tended to overestimate the abundance
of M. pulcherrima (Fig. 5a, c, and e) but did not introduce the ghost Metschnikowia species,
as with the full reference database (Fig. 3). Furthermore, dedicated libraries did not amelio-
rate the estimation of H. uvarum and the species of the genus Debaryomyces, which
remained below the expected values. Similarly, Rhodotorula species were underestimated
by MinION (Fig. 5a) due to two misclassifications that lowered the abundances of the two
expected species. On the contrary, Illumina overestimated Rhodotorula species, while intro-
ducing ghosts of the same genus. S. paradoxus and S. bayanus were strongly overestimated
with Illumina, because they were the only species of Saccharomyces to be identified. To sum-
marize, MinION strongly outscored Illumina with both matching indices; in fact, the former
obtained an MI-1 score of 0.63 and MI-2 score of 0.28, while the latter had scores of 0.26 and
0.28, respectively. These figures indicate that the introduction of dedicated reference data-
base improved mostly the qualitative aspects of the identifications, whereas the quantifica-
tion still needs further improvements (Fig. 6).

(ii) Similar performance of ITS- versus LSU-based libraries with dedicated libra-
ries with MinION. The analysis of the abundances obtained from different markers

FIG 4 Comparison of the performance of MinION and MiSeq at the species level by a qualitative and a
quantitative approach, considering a full ITS reference database. In order to compare the performance
of the two sequencing platforms, two scores were developed to evaluate the matching of estimated
and observed values from both a qualitative (MI-1 [pink squares]) and quantitative (MI-2 [dark blue-
green circles]) viewpoint. Each mock community (labeled A, B, C, D, E, or F) is characterized by the two
scores calculated at the species level for both MinION (x axis) and MiSeq (y axis), considering a full ITS
database. The average value for each score, obtained considering all mock communities, is characterized
by a bigger marker.
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was carried out considering only MinION sequences mapped against the dedicated
database with both ITS and LSU sequences. The two barcodes returned similar propor-
tions of the prevalent yeasts present in the mock communities, while differing in the
taxonomic placement of some of them (Fig. S6).

Both ITS and LSU strongly overestimated M. pulcherrima and underestimated D.
hansenii and H. uvarum. Species of Saccharomyces sensu stricto were clearly distin-
guished by the two markers, with a little overestimation of S. cerevisiae (Fig. S6d and f).
Although the use of dedicated databases mitigated the identification of ghost species,

FIG 5 Comparison of mock communities’ fungal diversity at the species level, obtained by MinION and Illumina MiSeq, considering a dedicated reference
database. Each panel shows the abundance of species found within a mock community, expressed with circles of different magnitudes that increase
proportionally with the increase of relative abundance from 0 to 1. The database used for the mapping is composed only of ITS sequences belonging to
the species that were identified with the first mapping against the full ITS database. For each mock community, the results are summarized in five
columns. The left-most column of each panel represents the supposed abundance present in the mock community, and the following two columns
represent the two biological replicates (labeled R1 and R2) obtained by MinION, while the last two are those obtained by MiSeq.
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ITS sequences were more prone than LSU to misclassification of some organisms. In
fact, a considerable percentage of the ghost Orbiliales species was detected with ITS in
almost every mock community. On the contrary, the conservative nature of LSU com-
plicated the differentiation among closely related species like Debaryomyces, which are
phylogenetically close (27) (Fig. S6b and d).

It is important to highlight that some level of biased estimation can be probably due
to PCR amplification. Mock communities A, C, and E, showed a massive increase of M. pul-
cherrima abundance, which was linked to large underestimation of other species com-
bined with it in the mixture (i.e., species of Rhodotorula [Fig. S6a] or Saccharomyces [Fig.
S6e]), which in other mock communities were well estimated. This result could be
explained considering that the M. pulcherrima ITS, with its ca. 250 bp, is one of the short-
est ITSs among yeasts and could have outperformed longer sequences of the mock com-
munity in the amplification step as suggested from the known phenomenon that amplifi-
cation of shorter DNA fragments is favored during PCR (28).

DISCUSSION

Mock mixtures are a simulation-based approach to check the quality of the species
abundance generated by amplicon-based metagenomics. The mixture can be generated
by mixing the cells, the genomic DNA, or the amplicons in the correct percentages. We
decided to mix purified genomic DNA in order to exclude all issues derived from differ-
ential DNA extraction of the various species, but to include the PCR amplification step in
order to maintain a situation mimicking real-world procedures. Moreover, it was decided
to amplify together the ITS and the LSU regions to avoid unbalanced amplification of
the two marker regions. However, this choice could not prevent DNA of different species
from being amplified at different rates due to scarce similarity of the primer to the target
(15) or to the different lengths of the amplicons producing a competition favoring the
shorter sequences (29). It must be considered, however, that this is an unavoidable prob-
lem inherent in metabarcoding, especially when using markers of different lengths (29–31).

FIG 6 Comparison of the performance of MinION and MiSeq at the species level with a qualitative
and a quantitative approach, considering a dedicated database. In order to compare the performance
of the two sequencing platforms, two scores were developed to evaluate the matching of estimated
and observed values from both a qualitative (MI-1 [pink squares]) and quantitative (MI-2 [dark blue-
green circles]) viewpoint. Each mock community (labeled A, B, C, D, E, and F) is characterized by the
two scores calculated at the species level for both MinION (x axis) and MiSeq (y axis), after the
second step of mapping against a dedicated reference database. The average value for each score,
obtained considering all mock communities, is characterized by a bigger marker.
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Another problem linked to the current situation in fungal taxonomy, and therefore in meta-
barcoding, is the multigene nature of the rRNA markers and the intragenomic variability of
the repeats (32–35). All of these factors can unbalance the relative amounts of amplicons,
leading to a number of sequences not proportional to the cell densities (36, 37), are some-
how intrinsic to the biochemical procedures and to the specific nature of multigene
markers of rDNA, and are hard to change as long as ITS and LSU are the most important
markers in fungal taxonomy (6, 38). The settings used aimed at reducing these problems,
without pretending to eliminate them, and the results showed that a careful manipulation
can produce very high reproducibility among the replicates (Fig. 1). In order to make the
simulations as close as possible to real environmental conditions, species compositions
were varied to have the presence of prevalent species and low concentrations of species.

The specific aim of this work was to analyze the effects of the type and size of the
database used in a bioinformatic pipeline on attributing reads to various species.
Given the scarce taxonomic resolution of the available barcoding markers, we postu-
lated that the presence of many related species is likely to decrease the accuracy of
the identifications and therefore the abundance estimations. This concept was success-
fully tested in a previous paper by using a full reference database for a primary identifi-
cation to produce the candidate taxa that then populated a dedicated reference data-
base for the final, more accurate identification (24). The results of this paper showed
that the dedicated databases were able to correctly identify single strains and to give
an estimate of the similarity very close to the expected abundances of the mock com-
munities and that the use of dedicated databases was able to produce abundances rel-
atively close to those expected in the various mock communities.

The importance of highly curated and somehow focused reference databases has al-
ready been investigated at the level of all fungi and of pathogenic fungi in particular (39),
showing that many sequences in public databases are too short or inaccurate or are
derived from strains far away from the center of distribution of the species or from its type
strain to be really good representatives (40). In addition to these problems, currently used
markers in fungal taxonomy and barcoding cannot guarantee a full taxonomic resolution
(25, 41) as single gene protein-encoding markers (42, 43), for which, however, universal
anchoring positions are difficult to find, producing different levels of amplification in
diverse taxa (44). Within these two rDNA markers, in this paper we showed that, in general,
ITS-based reference databases work better than LSU ones. However, some taxonomic
complexes with closely related species, such as Saccharomyces sensu stricto and the spe-
cies of the genus Debaryomyces, yielded problems due to the lack of resolution of the ITS.
Furthermore, there are classification problems due to the presence of hybrids or to unre-
solved taxa leading to spurious identifications, such as S. cerevisiae/S. paradoxus present in
the CBS database. In general, ITS was more accurate than LSU, but ITS was also more
prone to produce ghost species. On the other hand, LSU had the opposite behavior, lead-
ing to less accuracy but also to lower production of ghost species, implying that the for-
mer has the sensitivity for which it has been elected as a universal marker (6) but not nec-
essarily the accuracy for species-specific identification when species are phylogenetically
close. The simultaneous use of both markers showed only slight general improvements
but was advantageous when close species (as those of Saccharomyces and Debaryomyces)
have to be dissected. These observations suggest that, as long as better markers will be
available, the use of ITS alone is justified (45), although it is important to be aware of its
limitations, especially when the sole ITS2 portion is used, as normally happens with the
Illumina platform (46). The fact that the databases available contain often partial and too
short sequences is a further aspect hampering correct identification and calls for the build-
ing of reference databases with full sequences, possibly including the whole region span-
ning the ITS and LSU to increase taxonomic resolution at the species level, which is prob-
ably the preferential choice in many studies regarding the mycobiome. A coordinated
effort by researchers working in the field could convoy high-quality ITS-LSU sequences in
public focused databases to hasten the attainment of this goal.
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Conclusions.Metagenomic analysis mostly employs short fragments of rDNA sequen-
ces for the identification of microbial communities. The choice of the region to amplify to-
gether with the use of different databases could cause discrepancies among results. Long-
read technologies can mitigate biases due to length, primer choices, and copy number
variation, which constitute relevant limitations in this type of analysis. Moreover, the two-
step procedure proposed in this paper avoided “ghost” species in most cases and could
guarantee that their abundance is normally low. This opens the question of the minimum
level of abundance for a taxon to be considered really present in a community, but at the
current state of the art, this is probably beyond the possibilities of the markers available.
More and better-performing markers will be a key aspect for future metagenomics, but
their use will not be possible as long as convenient procedures and large data sets will be
prepared. Even considering using a “shotgun” NGS procedure, these markers will be indis-
pensable, making their development more urgent.

In general, it is clear that for the efficient use of next-generation sequencing in
metabarcoding, next-generation reference databases have to be generated by a com-
munity effort.

MATERIALS ANDMETHODS
Species and growth conditions. The strains used in the study were initially cultivated in plate with

YPDA medium (1% yeast extract, 1% peptone, 2% dextrose, 1.8% agar). A colony for each sample was
inoculated in YPD medium and grown in shaking mode at 25°C for 24 h. The strains used are listed in
Table 1. Strains were cultivated in duplicate to have statistically significant biological replicates.

DNA extraction, mock community preparation, and PCR amplification. Liquid cultures were col-
lected and transferred into extraction tubes, which were centrifuged at 4,500 rpm for 3 min to pellet the
cells. The supernatant was removed, and cells were washed with 5 mL of nuclease-free water (Sigma-
Aldrich). The procedure was repeated twice. A 0.5-mL concentration of nuclease-free water was added to
the dried pellet, together with glass beads, and cells were resuspended by vortexing. The same volume of
lysis buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 1 mM EDTA) was pipetted into the suspension.
Mechanical lysis was carried out by shaking the suspension on FastPrep homogenizers (MP Biomedicals) at
6.0 m/s for 30 s. Lysates were centrifuged at 4,500 rpm for 3 min. Subsequently, 0.7 mL of supernatant was
collected and transferred into clean microcentrifuge tubes. DNA purification was completed according to
the procedure suggested by FastDNA spin kit for Soil (MP Biomedicals) from point 6 on. The DNA extracted
was quantified by measuring absorbance at 260 nm with a NanoDrop spectrophotometer (Thermo
Scientific). For each sample, three measures were picked and the average value was taken into

TABLE 1 List of strains used for the mock communitiesa

Species Strain
Debaryomyces hansenii CBS 5637

CBS 767

Debaryomyces robertsiae CBS 4288
Debaryomyces udenii CBS 7056
Dipodascus australiensis LCF 1641

Hanseniaspora uvarum CBS 314
LCF 1073

Candida haemulonii CBS 5149
Metschnikowia pulcherrima CBS 5833
Rhodotorula glutinis CBS 20

Rhodotorula mucilaginosa CBS 316
CBS 326

Saccharomyces bayanus CBS 380

Saccharomyces cerevisiae CBS 1171
LCF 520

Saccharomyces paradoxus CBS 432
Saccharomyces pastorianus CBS 1538
Saccharomyces uvarum CBS 395
aAll of the strains used in the mock communities are listed by species name and strain collection ID. All LCF
strains are part of the laboratory internal strain collection.
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consideration for the further step. Six different mock communities were built by mixing precise amounts
of DNA as reported in Table 2.

This step was performed twice to have duplicated mock communities to ensure two biological repli-
cates. Mock communities were prepared considering both quantitative and qualitative two levels of evalu-
ation. From a quantitative point of view, different abundance values were considered to assess whether
they would be maintained through the process. Furthermore, species and strains were assembled consid-
ering different phylogenetic distances (see Table S1 in the supplemental material) to test the resolution
power of MinION sequencing technology in discriminating closer species. Yeast species were chosen for
simulation of natural interactions in real environments (e.g., fermentation, food, or soil).

The marker genes, including ITS1, 5.8S, ITS2 rDNA genes, and the D1/D2 domain of the LSU of each of
the mock communities, were amplified in triplicate. The master mix used was TaKaRa Taq DNA polymerase
(TaKaRa Bio, Inc.), with the primers ITS1 (59-TCCGTAGGTGAACCTGCGG) and NL4 (59-GGTCCGTGTTTCAAG
ACGG) (47). Here, the amplicons obtained after this first PCR will be called round 1 products.

The amplification protocol was carried out as follows: initial denaturation at 94°C for 3 min, followed
by 30 amplification cycles of 94°C for 1 min, 54°C for 1 min, and 72°C for 1 min, and then a final exten-
sion at 72°C for 5 min. Finally, we had 48 ITS-D1/D2 amplicons (3 technical replicates for each mock com-
munity for the two biological replicates), which were checked on 1% agarose gel.

Library preparation and MinION sequencing. Round 1 products were subjected to a tagging step
that consisted of 3 min of denaturation at 95°C followed by 25 cycles of 95°C for 30 s, 68°C for 30 s, and
72°C for 1 min. The primers used were ITS1 and NL4 tailed with the following universal sequences: ITS1,
59-TTTCTGTTGGTGCTGATATTGC[TCCGTAGGTGAACCTGCGG]-39; NL4, 59-ACTTGCCTGTCGCTCTATCTTC

TABLE 2 Compositions of the six mock communitiesa

Mock Species Strain
Expected
abundance (%)

A Candida haemulonii CBS 5149 20
Metschnikowia pulcherrima CBS 5833 20
Rhodotorula glutinis CBS 20 15

CBS 2366 15
Rhodotorula mucilaginosa CBS 316 15

CBS 326 15

B Debaryomyces hansenii CBS 5637 20
CBS 767 20

Debaryomyces robertsiae CBS 4288 20
Debaryomyces udenii CBS 7056 20
Dipodascus australiensis LCF 1640 20

C Saccharomyces cerevisiae LCF 520 30
Saccharomyces paradoxus CBS 432 30
Hanseniaspora uvarum CBS 314 15

LCF 1073 15
Metschnikowia pulcherrima CBS 5833 10

D Rhodotorula mucilaginosa CBS 316 25
Rhodotorula glutinis CBS 20 20
Saccharomyces cerevisiae CBS 1171 20
Saccharomyces paradoxus CBS 432 10
Debaryomyces hansenii CBS 767 15
Debaryomyces udenii CBS 7056 10

E Hanseniaspora uvarum CBS 314 40
Metschnikowia pulcherrima CBS 5833 30
Saccharomyces bayanus CBS 380 10
Saccharomyces pastorianus CBS 1538 10
Saccharomyces uvarum CBS 395 10

F Saccharomyces bayanus CBS 380 15
Saccharomyces cerevisiae CBS 1171 15

LCF 520 15
Saccharomyces paradoxus CBS 432 15
Saccharomyces pastorianus CBS 1538 15
Saccharomyces uvarum CBS 395 15
Hanseniaspora uvarum CBS 314 10

aFor each mock community, the table reports the strains used with their abundance in the final mixture.
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[GGTCCGTGTTTCAAGACGG]-39. Universal primers (sequence in lightface between brackets) were fused
with the specific tags reported in boldface.

PCR products were size selected by being cleaned up with 0.7� volume of Ampure XP (Beckman
Coulter, Brea, CA, USA). A 200-fmol concentration of each sample was used for barcoding step, according
to the ligation sequencing kit 1D (SQK-LSK109) and the PCR barcoding expansion pack 1-96 (EXP-PBC096)
protocol (Oxford Nanopore Technologies, Oxford, United Kingdom). After a purification step with 0.7�
Ampure XP, a pooled barcoded library was prepared by mixing 10.46 ng of DNA per sample to reach a
final concentration of 1 mg of DNA in 47 mL of nuclease-free water. The library was end repaired and
adapted for Nanopore sequencing by using the NEBNext Ultra DNA library preparation kit. A 50-fmol con-
centration of product was loaded onto an R9.4.1 flow cell. The quantification steps were carried out with a
NanoDrop 1000 (Thermo Scientific). Reads were base called on-instrument using the Guppy v.4.2.2 GPU
base caller (Oxford Nanopore Technologies). MinION sequences are stored in the SRA (Table S2).

Library preparation for Illumina MiSeq sequencing. Round 1 products were also amplified using pri-
mers specific for the Illumina platform. Universal primers ITS3f and ITS4r were tailored with the following tags:
ITS3f, 59-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG[GCATCGATGAAGAACGCAGC]-39; ITS4r, 59-GTCTC
GTGGGCTCGGAGATGTGTATAAGAGACAG[TCCTCCGCTTATTGATATGC]-39. Universal primers (sequence in
lightface between brackets) were fused with the specific tags reported in boldface.

The amplification protocol was carried out as follows: initial denaturation at 94°C for 1 min, followed
by 25 amplification cycles of 94°C for 30 s, 55°C for 30 s, and 68°C for 45 s, and a final extension at 68°C
for 7 min.

The amplificons tagged for MiSeq sequencing were sent to BMRGenomics (Padua, Italy) for further
processing. MiSeq sequences are stored in the SRA archive (Table S3).

Sequence analysis pipeline and reference databases. (i) MinION. The sequence analysis pipeline
worked in a conda environment built in Ubuntu. Filtering processes of raw reads was carried out by
using the function seqtk, which removed sequences below 400 bp and greater than 1,500 bp. Filtered
reads were merged in one file that was used as input for the alignment program minimap2 (48). Such a
tool allows the alignment of sequences against a large reference database.

The algorithm was tuned to support the alignment of long noisy reads by using the option map-ont,
which uses ordinary minimizers as seeds. Two different classes of databases were used: full and dedicated
databases. The former databases are those commonly used in metabarcoding studies and include a compre-
hensive panel of sequences for the identification of ideally the entire spectrum of Fungi. The full databases
used in this study are the General Release reference database from UNITE (49) and the CBS reference data-
base from Westerdijk Fungal Biodiversity Institute. General Release was downloaded from the UNITE data-
base, and it comprises 58,440 ITS sequences among the RepS/RefS of all species hypotheses (SHs). The sec-
ond full database was built with 34,683 ITS and LSU D1/D2 separated sequences taken from CBS collection.
The other class of databases is the dedicated database, which is a restricted form that comprises ITS and LSU
sequences of all of the species that were identified from all of the mock communities with a first round of
mapping against the full database. SAM files that resulted from the alignment step were further processed
with programs of the SAMtools package (50) up to a tab-delimited table.

The relative abundances that resulted from the mapping are provided as supplemental data.
(ii) MiSeq. The bioinformatic processing of raw sequences was done following the procedure devel-

oped by Callahan et al. (51) to obtain amplicon sequence variants (ASVs) from the raw reads (R package
version 1.16.0, with the trunLen parameter set to 260 bp for forward reads and 190 bp for reverse reads).
ASVs that originated from ITS2 sequences were first classified using only the full database UNITE. After
the first round of classification, the sequences of the species identified were selected and used for the
construction of the dedicated database, which was used for a second round of classification of the raw
reads. The relative abundances that resulted from the mapping are provided as supplemental data.

Data analysis. (i) General. Macros written in MS Excel were used to prepare tables, which were sub-
jected to analyses in R (52).

A first step consisted in finding the number of unique reads mapped to a reference. The function sam-
tools flagstats counts the number of alignments for each FLAG type giving the values of primary, second-
ary, and supplementary reads mapped on a specific reference. By subtracting those values in the reported
order, we obtained the number of reads uniquely mapped to a reference in the database. Relative abun-
dances were calculated as the ratio of unique reads mapped to a reference on the total reads mapped to
the database (calculated as the sum of unique reads of all the references in the database). Microbiome
data were stored, analyzed, and graphically displayed with the R package microeco. Similarly, correlation
coefficients were computed in the R environment, using the function cor(). Coefficients were calculated by
both the Spearman and Pearson methods.

(ii) Matching indices. To compare the accuracies of the two sequencing methods, two different
indices were calculated: one qualitative (matching index 1 [MI-1]) and one quantitative (MI-2). The calcu-
lation of the two indices was achieved with the same formula (equation 1), although the factors are
qualitative for MI-1 and quantitative for MI-2 as detailed below:

MI ¼

Xn

i¼0
TPiXn

i¼0
½TPi þ FPi þ FNi�

(1)

MI-1 was calculated by dividing the total number of true-positive (TP) identifications by the number
of false-positive (FP), false-negative (FN), and true-positive (TP) identifications (equation 1) for each
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mock community, where each term was calculated as follows. (i) TPi indicates that when a species pres-
ent in the mock community is correctly identified (regardless of its relative abundance), it is considered
a true positive and is given the value 1. (ii) FPi indicates that when a species absent in the mock commu-
nity is present in the final identification (regardless of its relative abundance), it is considered a false pos-
itive and is given the value 1. (iii) FNi indicates that when a species present in the mock community is
not found to be present in the final identification, it is considered false negative and is given the value 1.

Matching index 2 (MI-2) was obtained by the same formula, but its factors are defined as follows. (i) TPi
is the lower value between the observed and expected relative abundances of the ith species. (ii) FPi is the
difference between the observed and the expected relative abundances of the ith species if the value is
greater than 0, calculated as jobserved 2 expectedj. (iii) FNi is the difference between the observed and
the expected relative abundances of the ith species if the value is less than 0, calculated as jobserved 2
expectedj.

True-negative (TN) results could not be considered in the context of these experiments because
they would correspond to the true absence of all known species not included in the mock communities,
leading to a seriously biased index.

Data availability. The data that support the findings of this study are openly available in the SRA
archive under BioProject accession no. PRJNA862129 (MinION data) and PRJNA862334 (MiSeq data).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.04 MB.
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