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ABSTRACT Cholera caused by pathogenic Vibrio cholerae is still considered one of the
major health problems in developing countries including those in Asia and Africa. Australia
is known to have unique V. cholerae strains in Queensland waterways, resulting in sporadic
cholera-like disease being reported in Queensland each year. We conducted virulence and
antimicrobial genetic characterization of O1 and non-O1, non-O139 V. cholerae (NOVC)
strains (1983 to 2020) from Queensland with clinical significance and compared these to
environmental strains that were collected as part of a V. cholerae monitoring project in 2012
of Queensland waterways. In this study, 87 V. cholerae strains were analyzed where O1
(n = 5) and NOVC (n = 54) strains from Queensland and international travel-associated
NOVC (n = 2) (61 in total) strains were sequenced, characterized, and compared with seven
previously sequenced O1 strains and 18 other publicly available NOVC strains from Australia
and overseas to visualize the genetic context among them. Of the 61 strains, three clinical
and environmental NOVC serogroup strains had cholera toxin-producing genes, namely, the
CTX phage (identified in previous outbreaks) and the complete Vibrio pathogenicity island 1.
Phylogenetic analysis based on core genome analysis showed more than 10 distinct clusters
and interrelatedness between clinical and environmental V. cholerae strains from Australia.
Moreover, 30 (55%) NOVC strains had the cholix toxin gene (chxA) while only 11 (20%)
strains had the mshA gene. In addition, 18 (34%) NOVC strains from Australia had the
type three secretion system and discrete expression of type six secretion system genes.
Interestingly, four NOVC strains from Australia and one NOVC strain from Indonesia had
intSXT, a mobile genetic element. Several strains were found to have beta-lactamase
(blaCARB-9) and chloramphenicol acetyltransferase (catB9) genes. Our study suggests that
Queensland waterways can harbor highly divergent V. cholerae strains and serve as a res-
ervoir for various V. cholerae-associated virulence genes which could be shared among O1
and NOVC V. cholerae strains via mobile genetic elements or horizontal gene transfer.

IMPORTANCE Australia has its own V. cholerae strains, both toxigenic and nontoxigenic,
that are associated with cholera disease. This study aimed to characterize a collection of
clinical and environmental NOVC strains from Australia to understand their virulence and
antimicrobial resistance profile and to place strains from Australia in the genetic context of
international strains. The findings from this study suggest the toxigenic V. cholerae strains in
the Queensland River water system are of public health concern. Therefore, ongoing
monitoring and genomic characterization of V. cholerae strains from the Queensland
environment are important and would assist public health departments to track the
source of cholera infection early and implement prevention strategies for future out-
breaks. Understanding the genomics of V. cholerae could also inform the natural ecology
and evolution of this bacterium in natural environments.
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V ibrio cholerae is a Gram-negative bacterium that can survive in aquatic ecosystems
and can cause the life-threatening diarrheal disease cholera when transmitted to the

host. To date, seven cholera pandemics have been recorded and are ongoing due to toxi-
genic O1 V. cholerae (1). The O1 and O139 serogroups are responsible for millions of death
each year in underdeveloped and developing countries (2, 3). During evolution, V. cholerae
acquired virulence genes, genomic islands, and mobile genetic elements that enabled this
bacterium to become more virulent and resistant to antibiotics (4, 5). The cholera toxin
(CTX) and the toxin-coregulated pilus (TCP) are the major virulence factors of the toxigenic
O1 and O139 strains and are encoded on mobile genomic regions as filamentous phage
CTXU (6, 7) and Vibrio pathogenicity island VPI-I, respectively (8, 9).

To date, based on the expression of the surface-expressed O antigen in V. cholerae
strains, more than 200 serogroups have been classified. V. cholerae strains that are not
expressing O1 and O139 antigens are broadly classified as NOVC strains (10). Globally,
these NOVC strains are associated with moderate to severe gastroenteritis and extraintestinal
infections such as wound and soft tissue infections, ear infections, or bacteremia (11–14).
Initially, most of the NOVC strains were reported as nontoxigenic due to the lack of toxigenic
CTX- and TCP-encoding genes and have been poorly studied worldwide (15).

However, in recent years several studies reported NOVC strains with toxigenic
genes and additional mobile genetic elements that confer resistance to multiple antibi-
otics (16–19). In addition in NOVC strains, accessory virulence factors such as a tran-
scriptional activator for toxin-related genes including ctxAB (toxR), mannose-sensitive
hemagglutinin pilus (mshA), different hemolysins (hlyA), repeats in toxin (RTX) toxin
clusters, outer membrane proteins (ompU), cholix toxin (chxA), heat-stable enterotoxin
(stn), flagellum-associated cytotoxin (makA), and glucose metabolism (als), may con-
tribute directly or in a synergistic way to the infection process leading to diarrheal ill-
ness (20–24). In in vivo studies, the type three and six secretion systems (TTSS and
T6SS, respectively) play a crucial role in colonization and cause diarrheal disease
caused by V. cholerae in animal models (25–27). Among NOVC strains, the distribution
and the broad diversity of accessory virulence factors are common globally compared
to toxigenic O1 and O139 strains (28).

Climate change and genetic epidemiology of V. cholerae are a topic of concern at
present (1, 29). Of the different adaptational strategies that bacterial species including
V. cholerae employ to survive in the changing environment, one of them is genetic var-
iation by horizontal gene transfer or positional mutations. Serogroup switching and
transfer of mobile genetic elements among different serogroups of V. cholerae strains
via horizontal gene transfer and disease occurrence are of keen interest currently.
Clinical NOVC strains that contain genes pathogenic to humans despite not being O1/
O139 V. cholerae strains are of public health concern. Recently, NOVC clinical V. chol-
erae strains exhibited genotypic profiles similar to the O1 El Tor Haiti (CT) variant in a
5-month-old baby in India (19). Furthermore, several NOVC clinical and environmental
isolates carrying mobile genetic elements and thereby acquiring resistance to multiple
antibiotics are of global concern because, in general, SXT genetic elements play a role
in the evolution of the isolate (19, 30, 31).

Whole-genome sequencing (WGS) is a powerful tool and a widely used approach for
comprehensive evaluation of phylogenetic relations based on single nucleotide polymor-
phisms (SNPs) to track the epidemiology of V. cholerae globally. In recent years, WGS is
becoming the method of choice in research settings for monitoring pathogens, including
V. cholerae, for diagnostic purposes where sequence data can be utilized for (i) develop-
ment of novel antibiotics, (ii) detection of the emergence of antibiotic resistance, (iii) out-
break identification, (iv) pathogen surveillance, (v) development of novel diagnostic tests,
(vi) implementation of direct infection control measures, and (vii) evolutionary studies (1).

In some regions of Australia, sporadic clinical cases related to NOVC infections have
been reported from 1983 to the present time with or without travel history (14, 32, 33).
In addition, the NOVC bacterium arises in marine, estuarine, and even freshwater loca-
tions under favorable environmental conditions (temperature, chitin availability, etc.),
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which makes studying Queensland (QLD) waterways particularly important. All clinical
and environmental NOVC strains isolated in Queensland from human and animal infec-
tions are collected and stored at the public health microbiology (PHM) laboratory,
Queensland Health Department. However, until now, no molecular or genomic studies
of Queensland NOVC strains have been reported, particularly with a focus on virulence
and antimicrobial resistance traits. This study has extensively investigated the geno-
typic features of clinical and environmental NOVC strains from Australia as having simi-
lar virulence potential. Interestingly, in this study we confirmed the presence of ctxB
genotype 2, CTX phage region, among environmental NOVC strains from Australia sim-
ilar to toxigenic Queensland outbreak-related O1 El Tor V. cholerae clinical and environ-
mental strains from our previous study (34). Thus, based on our characterization of
these strains QLD waterways harbor genetically diverse V. cholerae strains, which may
be due to the mechanism of horizontal gene transfer and the bipartite architecture of
V. cholerae’s genome.

RESULTS
SNP-based phylogenetic analysis. Among the 87 V. cholerae clinical and environmen-

tal strains used in this study (Fig. 1; see also Data Set S1 in the supplemental material), sero-
type O1 strains (n = 5), NOVC strains (clinical = 39, environmental = 15) from Australia, and
international travel-associated NOVC strains (n = 2) (61 in total) were sequenced, character-
ized, and compared to seven previously sequenced strains representing a different disease
cluster (34), reference (N16961) O1 strains, and 18 additional publicly available Australian and
international NOVC strains. As shown in the maximum likelihood phylogenetic tree (Fig. 1),

FIG 1 Maximum likelihood tree showing phylogenetic relationships between 87 clinical (human and animal infections) and environmental V. cholerae strains: O1
(n = 13), NOVC (n = 56), and publicly available (n = 18) V. cholerae strains with origin of isolates, source, year of collection (YI), serogroup and virulence genes,
Vibrio pathogenicity islands 1 and 2 (VPI-1 and -2), and Vibrio seventh-pandemic islands I and II (VSP-I and -II). Gene profiles were generated using iTOL (https://
itol.embl.de/) and represented as a colored box for presence and a white box for absence. Strains sequenced in this study were noted with an asterisk (*).
Description of origin, source, and year of isolation in red represents clinical samples, and that in green represents environmental samples.
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the strains clustered into several distinct groups and subgroups. Based on this SNP analysis,
overall SNP differences among NOVC strains were ;30,000 SNP differences except for four
outgrouped clinical strains (M08759, M023811, M101525, and M156848) with ;80,000 SNP
differences. Interestingly, several clinical non-O1 and non-O139 strains are closely related to
environmental strains, and notably, clinical strains from different Queensland regions from
the same or different isolation times clustered closely (Fig. 1). Clinical NOVC strains (M138351
and M12590) isolated in 2013 and 2012 from the Gympie and Georgetown regions showed
only nine and 16 SNP differences compared to the Albert River, Logan region, water isolate
(243712) (Fig. 1), respectively. Some of our local strains (M20227, M071021, and 1124511)
belonged to a monophyletic clade that includes a water strain from Bangladesh and clinical
strains from Mexico and India. All the O1 V. cholerae strains from this study and selected O1
strains from previous studies clustered into the same monophyletic clade with low SNP dif-
ferences and distinct distance from other NOVC strains except strain M147540 (Fig. 1).
Overall, despite the divergence of strains in the cluster, most of the local environmental non-
O1 and non-O139 isolates were interrelated to clinical cases even though there is a difference
in the year of isolation.

Genotypic characterization of NOVC strains. Of the 56 sequenced strains from
Australia and travel-associated NOVC strains, only three strains harbored the CT-producing
ctxAB genes and are hence classified as toxigenic strains. For the first time in Queensland
cholera history, ctxB genotype 2 was determined to be present in one environmental and
two clinical NOVC serogroup strains as shown in Fig. 2 and Table 1. Moreover, only a few
NOVC strains from Australia had mixed genotypes with respect to repetitive sequence tran-
scriptional repressor (rstR) of classical type and/or El Tor type: one with toxin-coregulated
pilus tcpA of classical type and 48 (90%) lacking biotype-specific genotypes. It is interesting
to note the presence of classical and El Tor rstR and ctxB gene sequences together in one
of the environmental NOVC strains from Australia that was isolated in 2012 from Logan’s
Albert River, while other toxigenic or nontoxigenic strains were either/or (classical or El Tor)
positive for the rstR gene as shown in Table 1. Surprisingly, while extracting ctxB genes to
translate for multiple sequence alignment and genotyping of toxigenic NOVC strains, two
ctxB gene regions in one of the strains (M138351) were detected, and translated protein
sequences are compared as shown in Fig. 2.

As shown in Fig. 1, all the sequenced NOVC strains showed diverse virulence pro-
files. In this study, 53 (95%) NOVC strains sequenced were nontoxigenic and three toxi-
genic strains notably had other virulence genes such as chxA, stn, rtxA, ompU, ompT,
toxR, mshA, makA, and als and type three secretion system and type six secretion sys-
tem genes as well. All 54 clinical and environmental NOVC strains from Australia

FIG 2 Multiple-sequence alignment of CtxB amino acid sequences from three NOVC strains (243712, M12590, and M138351) compared to two previously
sequenced O1 serogroup strains from Australia (101_1 and 4287_St). Black-edge rectangles represent the position of ctxB genotype 2-distinguishing amino
acid sequences.

TABLE 1 Diverse genotypes of NOVC strains investigated in this study

Country of origin

Biotype-specific genotypea

ctxB-Aus ctxB-CC ctxB-ET rstR-ET rstR-CC tcpA-CC tcpA-ET ctxB genotype
Australia (n = 1) (243712) 1 1 1 2
Australia (n = 2) (M027753 and M03309) 1
Australia (n = 2) (M12590 and M138351) 1 1 2
Australia (n = 2) (M01563 and M147540) 1 NAb

India (n = 1) (981-75) 1 1
a1, presence; Aus, Australia; ET, El Tor; CC, classical.
bNA, not applicable.
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contained hemolysin and multifunctional autoprocessing repeats-in-toxin genes (hlyA
and rtxA), whereas the cholera toxin transcriptional activator toxR gene was absent in
only five clinical NOVC strains (Fig. 1). This means 100% of environmental strains con-
tained either separate or a combination of rtxA, hlyA, and toxR genes, signifying the
pathogenic potential of these environmental NOVC strains.

Three toxigenic NOVC strains and four NOVC strains with a truncated CTX phage
region and zot and ace genes also contained an entire VPI-1 and a partial VPI-2 region.
None of the V. cholerae O1 and NOVC strains harbored complete versions of both VSP-I
and VSP-II. However, it was interesting that three clinical NOVC strains (M01563, M027753,
and M03309) isolated from the Townsville and Mount Isa regions had the VC2346 gene
sequence that differentiates seventh-pandemic strains from classical strains. Among the
55 V. cholerae NOVC strains, 30 (55%) had the cholix toxin gene (chxA) while only 11
strains had the mshA gene. In addition, 18 NOVC strains had the type three secretion
system, whereas the presence of type six secretion system genes vasX and vgrG was ran-
domly distributed. V. cholerae O1 strains sequenced in this study were nontoxigenic, lack-
ing the CTX phage sequence while containing accessory virulence genes and secretion
systems as shown in Fig. 1. Overall, it was interesting that there were no distinct virulence
profiles for clinical isolates only, but similar virulence gene profiles were detected in clini-
cal and environmental NOVC strains in Queensland.

Presence of antimicrobial resistance gene profiles, class 1 integrons, and mo-
bile genetic SXT element. In silico analysis of all 87 sequences was performed to extract
antimicrobial resistance gene profiles, class 1 integrons, and mobile genetic elements using
the CholeraFinder tool. All the local aquatic and clinical isolates from Australia exhibited the
same profile with no SNP differences among antimicrobial resistance-associated genes DNA
gyrase subunit A, DNA topoisomerase IV subunit A, and DNA topoisomerase IV subunit B
(gyrA, parC, and parE). Of the 56 NOVC strains, 17 (30%) had the chloramphenicol acetyltrans-
ferase gene catB9, whereas 13 (23%) had the blaCARB-9 gene. Surprisingly, four NOVC strains
from Australia and one NOVC strain from Indonesia (clinical and environmental strains) had
the intSXT mobile genetic element. Also, one of the strains from Logan Hospital (clinical
strain M20227 isolated in 2019) carried genes that encode resistance to chloramphenicol
(encoded by the VC1786ICE9_floR gene), sulfamethoxazole (sul2), and streptomycin (strA and
strB) gene sequences as shown in Fig. 3.

CTX phage analysis of NOVC and O1 V. cholerae strains from Australia. The pres-
ence of cholera toxin genes in some NOVC strains from Australia was novel and is of public
health concern. Thus, to elucidate the composition of the cholera toxin-producing CTX
phage of NOVC strains and to compare their genetic similarity with other toxigenic CTX
phages of the O1 El Tor strain from Australia and seventh-pandemic reference strain
N16961, CTX phage sequences were extracted using PHASTER (https://phaster.ca/), and
Easyfig was used for visualization of genomic regions. As a result, interestingly, two very
similar CTX phage regions were identified in one of the clinical strains (M138351) as shown
in Fig. 4. A similar genetic composition was found for the CTX phage regions in NOVC and
reference O1 strains from Australia and Bangladesh, except for some variations in the ctxA
gene of O1 and NOVC strains from Australia compared to N16961 (indicated by gaps in
Fig. 4).

Table 2 provides the diversity in the locations of CTX prophage in the chromosome
and the copy number and source among O1 El Tor strains from Australia and interna-
tional V. cholerae O1 and NOVC strains.

DISCUSSION

V. cholerae is a dynamic habitant of the environment that can survive under unfavora-
ble environmental conditions in a dormant state for some time, being viable but not cul-
turable, and can revert to its pathogenic potential upon favorable conditions (35, 36).
Globally, V. cholerae is an extensively studied pathogen mainly isolated in underdeveloped
and developing countries, with little understanding of the evolution and pathogenesis of
NOVC strains from developed countries like Australia. Genetic diversity among NOVC
strains increases the complexity in understanding their origin and phylogenetic relationships.
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FIG 3 Presence or absence display annotation on iTOL for the clinical and environmental O1 and NOVC
strains from Australia and other countries, their antimicrobial resistance genes, and mobile genetic element
profile. The source of clinical V. cholerae strains is highlighted in red and that of environmental strains in
green. Blue stars represent the strains sequenced in this study.
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In this study, core genome phylogenetic analysis was used to understand the possible
source of human and animal infections caused by V. cholerae NOVC strains. Several clinical
NOVC strains showed close relationships to environmental strains from different regions and
isolated at different times. However, it is challenging to differentiate and correlate their rela-
tionship without associated metadata. One of the clinical nontoxigenic V. cholerae non-O1,
non-O39 strains (M20227), isolated in 2019 from Australia, had a similar antimicrobial resist-
ance gene profile with 18,107 SNP differences and is closely related to an environmental
nontoxigenic NOVC strain (VcN1), isolated in 2017 from Bangladesh. Bangladesh is
renowned for many cholera outbreaks, and its environment also acts as a reservoir for
V. cholerae strains (37). It would be interesting to know if the genotypic and antimicrobial
resistance (AMR) similarities between VcN1 and M20227 strains have evolved independ-
ently or whether these traits are linked to transmission, which is likely due to the highly
accessible nature of travel across countries.

Evolution of V. cholerae is a complex and interesting process, and over time, it has been
proposed that V. cholerae has acquired several toxins and virulence and antimicrobial re-
sistance genes via several genomic islands and bacteriophages through horizontal gene
transfer, subsequently sharing its genes with other strains (1). Interestingly, in this study it

TABLE 2 V. cholerae strains with chromosomal location of CTX phage region and copy number

Strain Serotype (biotype) Source Origin
Chromosomal location of CTX
prophage (copy no.) Reference(s)

O395 O1 (classical) Clinical India Large (1), small (1) 61
N16961 O1 (El Tor) Clinical Bangladesh Large (1) 62
VC44 O1 (El Tor) Clinical India Small (2) 63
Si_F O1 (El Tor) Clinical Australia 1 34
v1 O1 (El Tor) Environment Australia 1 34
VCE232 Non-O1, non-O139 Environment India Large (2),a small (2) 64, 65
M12590 Non-O1, non-O139 Clinical Australia 1 This study
M138351 Non-O1, non-O139 Clinical Australia 2 This study
243712 Non-O1, non-O139 Environment Australia 1 This study
aCTX prophages lack ctxAB genes.

FIG 4 Sequence comparison of CTX phage regions integrated into the chromosome of O1 and NOVC strains. M138351 and M12590 CTX
phage sequences are from NOVC strains sequenced in this study and compared to the CTX phage sequence of O1 El Tor strain Si_F
from Australia and strain N16961 from Bangladesh. The intensity of color represents the level of identity as shown in parentheses.
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was found that an environmental NOVC strain isolated in 2012 with the classical rstR and El
Tor rstR genes was different from other strains that have either the classical rstR or the El
Tor rstR gene, indicating the possible fitness requirement of the bacterium to survive in the
environment. This might also play a role in the evolution process of NOVC by transferring
necessary elements among serogroups.

In a similar way, genotype 2 ctxB-containing CTX prophage was previously reported in
outbreak-related V. cholerae O1 El Tor strains from Australia (34) and is also observed
in clinical NOVC strains in this study. Notably, three of the toxigenic NOVC clinical and
environmental strains, M12590, M138351, and 243712, had single or double copies of
the genotype 2-containing CTX phage region as shown in Table 2. It is surprising and
interesting to see that these three NOVC strains harbor CTX prophage genes (ctxA,
ctxB, zot, and ace) without the tcpA gene. As tcpA serves as a receptor for CTX pro-
phage, it is thus rare to acquire those virulence genes without the receptor genes.
Similar to our study, environmental NOVC strains SCE188, SCE200, SCE201, and SCE223
from India isolated in 1997/1998 lacked tcpA genes while ctxAB genes were present
(38). In a previous in vitro study, the possibility of CTX gene transfer from a toxigenic
O1 strain to an environmental NOVC strain was confirmed with uncertainty on whether
the entire genome was transferred or whether the phage genome was integrated with
the recipient chromosome upon transfer (39). According to our analysis, the entire CTX
phage region is transferred from a toxigenic O1 El Tor strain from Australia to environ-
mental NOVC strains. It would be interesting to explore its pathogenic potential using
in vitro/in vivo studies in the future.

The expression of multiple virulence factors in NOVC strains has been reported
globally (14, 28, 40, 41, 42). In this study, 80% of NOVC strains carried accessory viru-
lence toxin genes, colonization-aiding factors, and secretion systems that play a role in
pathogenesis, such as chxA, rtxA, hlyA, stn, mshA, and the TTSS. Notably, two clinical
and one environmental toxigenic NOVC strain also contained the cholix toxin gene in
addition to CT-encoding genes. These virulence factors relate to human infection even
in the absence of CT and tcpA genes. Moreover, in a recent study, TTSS conferred
enhanced virulence in clinical NOVC strains (26). However, immunogenic response and
loss of toxigenic genes after infection cannot be ruled out. Similar to this study,
Schwartz et al. (2019) reported environmental and clinical V. cholerae non-O1 and non-
O139 strains with similar virulence gene profiles, thereby providing evidence that envi-
ronmental strains can be as virulent as clinical strains (43).

Initially, antibiotic resistance genes and mobile genetic elements conferring antibiotic
resistance among epidemic and endemic V. cholerae O1 and O139 strains were reported
globally with limited investigations of NOVC strains. Early studies on beta-lactam resistance
acquisition that confers ampicillin resistance due to a plasmid-located beta-lactamase in V.
cholerae from Asia were reported in 1977 (44). Several studies from the 1990s describe the
prevalence of ampicillin resistance among environmental NOVC serogroup strains around
the world (45–48). In our study, an interesting finding was that the blaCARB-9 gene, which con-
fers resistance to beta-lactams, was found in 23% of environmental and clinical NOVC strains
from Australia. Four beta-lactamases have been characterized in NOVC strains, namely,
CARB-2 (PSE-1), CARB-6, CARB-7, and CARB-9. The blaCARB genes have been reported broadly
among different bacteria, possibly acquired through mobile genetic elements (49, 50).
Recently, blaCARB-9 was detected in environmental NOVC strains from Argentina and Austria
(17, 47). In this study, the chloramphenicol acetyltransferase gene catB9 was found in envi-
ronmental and clinical strains (30% and 25%, respectively), which has also been described in
a recent study (17).

Initially, the SXT element was described in a V. cholerae O139 serogroup strain in
India, thought to be sourced from Vibrio parahaemolyticus, and subsequently dissemi-
nated among O1 and NOVC serogroups very rapidly (16, 31, 51, 52). In this study, some
of the Queensland clinical and environmental NOVC strains have the integrase gene of
the SXT element, intSXT. Of note, of the four strains with the intSXT gene, one of the
clinical NOVC strains also has sul2, strA, strB, and VC1786ICE9_floR genes and is closely
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related to an environmental strain from Bangladesh. Similar to our study, the presence
of the intSXT SXT element, without any other resistance genes, has also been reported
in studies from Bangladesh, India, Mexico, and Thailand (40, 41, 53).

Taken together, it is important to understand that the aquatic ecosystem provides a
suitable platform under favorable environmental conditions for spreading antimicro-
bial resistance and virulence traits, particularly via bacteriophages through horizontal
gene transfer between bacterial populations. Previously, a recA-mediated conversion
of a nontoxigenic V. cholerae O1 strain into a toxigenic O1 strain was observed using
the chitin-induced transformation pathway (39). Noting that chitin is a freely abundant
natural carbon source in aquatic environments, these ecosystems potentially serve as
reservoirs for the emergence of new pathogenic V. cholerae strains by transferring
pathogenic gene clusters among V. cholerae strains (54, 55). The likely environmental
source, including agricultural water use and ballast water imported from regions of en-
demicity across the world, containing strains with antimicrobial resistance genes and
other mobile genetic elements, can lead to environmental-human transmission. These
environmental V. cholerae strains can acquire new resistance genes and toxigenic mo-
bile genetic elements that enable them to become more pathogenic and could cause
human infections leading to outbreaks. Therefore, continuous monitoring of virulence
and antimicrobial resistance genes in environmental V. cholerae strains, including O1
and NOVC serogroup strains, is important for the early detection and prevention of
cholera outbreaks.

Conclusion. This study analyzed Queensland V. cholerae O1 and NOVC serogroup strains
collected between 1983 and 2020. There is evidence to suggest that there is an abundance
of pathogenic and antimicrobial-resistant V. cholerae strains in Queensland waterways; fur-
ther research is needed to determine if these waterways are the cause of this. Moreover, the
presence of similar virulence gene profiles and diverse antimicrobial resistance gene profiles
among NOVC clinical and environmental strains from Australia is comparable to that in
strains from regions where cholera is endemic, which is of concern. Although the occurrence
of toxigenic V. cholerae in the natural environment is rare in a nonepidemic region like
Australia, the discovery of Australian genotype 2 CTX phage in the Queensland River water-
ways, which could have been transferred from toxigenic previously reported V. cholerae
strains from Queensland to environmental V. cholerae, demonstrates the feasibility of con-
verting environmental nontoxigenic V. cholerae to toxigenic strains, which has the potential
to cause human cholera disease. Similarly, additional mobile genetic elements can be
acquired from other bacterial species in these aquatic ecosystems, enabling V. cholerae to
become more virulent, more pathogenic, and more resistant to multiple antibiotics. Thus, it
is crucial to monitor Queensland waterways regularly to identify the likely source of cholera
outbreaks and to understand the evolution genetics of pathogenic and resistant strains of V.
cholerae.

MATERIALS ANDMETHODS
Selection of strains, DNA extraction, and whole-genome sequencing. NOVC strains included in

this study were isolated from clinical or environmental samples (n = 61) and subjected to WGS, and their
sources, locations of isolation, biotypes, sequence types, and year of isolation are outlined in Fig. 1. DNA
was extracted from isolates grown overnight at 37°C on horse blood agar (Edwards Group Holdings,
Australia), using the QIAsymphony DSP DNA minikit (Qiagen) according to the manufacturer’s protocol.
DNA was prepared for sequencing using the Nextera XT kit (Illumina) and sequenced on the
NextSeq500 using the NextSeq 500 Mid Output v2 kit (300 cycles) (Illumina) according to the manufac-
turer’s instructions. Sequence reads for the V. cholerae isolates were trimmed with Trimmomatic v0.36
(56) and quality checked by FastQC v0.11.5 and MultiQC v1.1 (57). Sequence reads with .75% of the
read length in the green zone of the mean quality scores graph on FastQC (.Q28), that have an average
read length of .120 bp, and that gave the majority of reads over 140 bp according to the sequence
length distribution graph were selected. De novo assemblies were generated with the SPAdes assembler
v3.12.0 (58), the quality of the assemblies was analyzed using QUAST 4.6.3, and annotation was per-
formed by using Prokka. The quality of assemblies was determined based on the number of contigs
with a length of $500 bp being less than 500 and the total length of the assembled contigs being simi-
lar (within 30%) to the expected genome median from the NCBI genome (34).

SNP-based phylogenetic analysis. To perform phylogenetic analysis, 61 recently sequenced strains
from Australia and travel-associated strains, as well as 18 international and seven local O1 genome
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sequences obtained from a public database (NCBI; https://www.ncbi.nlm.nih.gov), were used. Core sin-
gle nucleotide polymorphisms (SNPs) were determined using Snippy version 4.3.6 (https://github.com/
tseemann/snippy) using the seventh-pandemic V. cholerae O1 El Tor N16961 genome as a reference
(GenBank accession numbers NZ_CP028827.1 and NZ_CP028828.1). Core SNPs were aligned and used to
generate a maximum likelihood tree using FastTree v2.1.10. The distance matrix was constructed with
snp-dists v0.6.2. Interactive Tree of Life (iTol) v5.6 was used for the visualization of the phylogenetic tree
(https://itol.embl.de/) (59).

Genomic characterization of NOVC strains from Australia and selected publicly available
strains. All the V. cholerae strains selected for this study were previously identified and characterized using a
combination of biochemical, serological, and molecular methods. Furthermore, in this study, whole-genome
sequences of all the strains were characterized by using the CholeraFinder (https://cge.food.dtu.dk/services/
CholeraeFinder/) database as described in our previous study (34) (online tool CholeraFinder v1.0). This tool
uses BLAST as a search engine and was used to determine the presence of the species-specific gene (ompW),
serogroup-specific genes (rfbV-O1, wbfZ-O139), biotype-specific genes (ctxB, rstR, tcpA), seventh-pandemic-
specific gene (VC2346), several virulence genes (ctxA, ctxB, zot, ace, tcpA, hlyA, stn, chxA, rtxA, ompU, toxR,
mshA,makA, als, TTSS, T6SS), and pathogenic islands (VPI-1, VPI-2, VSP-I, VSP-II) with a threshold equal to 95%
identity and 60% coverage as previously described (40). For ctxB genotyping, the ctxB gene sequences were
extracted from annotated strains and translated protein sequences were analyzed in Geneious (https://www
.geneious.com/) using a multiple-sequence alignment tool, CLUSTALW, (http://www.clustal.org/clustal2/).
This was used to determine sequence similarities and uniqueness among ctxB protein sequences among
strains from Australia.

Antimicrobial resistance genes, mobile genetic element (SXT), and class 1 integron genes were detected
using the ResFinder tool (https://cge.food.dtu.dk/services/ResFinder/) for all V. cholerae strains with a threshold
equal to 95% identity and 60% coverage as previously described (40).

All the whole-genome-sequenced assemblies (Fasta sequence) were submitted to the PHASTER
online web interface (https://phaster.ca/) using default settings to detect the presence of V. cholerae pro-
phages. Results were tabulated from ctxB gene-containing strains, and a genome comparison visualizer,
Easyfig 2.2.2 (https://mjsull.github.io/Easyfig/), was used to compare and visualize CTX phage regions as
described previously (60).

Data availability. Raw sequence files and associated metadata have been submitted to the NCBI
with BioProject identifier (ID) PRJNA915130.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.01 MB.
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