Skip to main content
. 2023 Jan 19;11(1):e03134-22. doi: 10.1128/spectrum.03134-22

TABLE 1.

Classification performance metrics for each MAP infection-predictive modela

Algorithm Data set Precision Recall F1 score AUC
KNN (k = 3) Raw 0.81 ± 0.11 0.79 ± 0.11 0.79 ± 0.11 0.86 ± 0.09
1.5 power 0.80 ± 0.06 0.78 ± 0.05 0.77 ± 0.06 0.87 ± 0.06
Exp 0.83 ± 0.11 0.82 ± 0.11 0.82 ± 0.11 0.86 ± 0.08
LinearSVC Raw 0.76 ± 0.11 0.75 ± 0.10 0.75 ± 0.10 0.84 ± 0.06
1.5 power 0.86 ± 0.09 0.84 ± 0.09 0.84 ± 0.09 0.91 ± 0.07
Exp 0.78 ± 0.06 0.76 ± 0.07 0.75 ± 0.07 0.84 ± 0.08
Random forest Raw 0.90 ± 0.07 0.89 ± 0.08 0.89 ± 0.08 0.93 ± 0.05
1.5 power 0.88 ± 0.05 0.84 ± 0.08 0.84 ± 0.08 0.96 ± 0.04
Exp 0.88 ± 0.07 0.86 ± 0.07 0.85 ± 0.08 0.94 ± 0.05
SVM Raw 0.80 ± 0.09 0.77 ± 0.08 0.77 ± 0.08 0.87 ± 0.07
1.5 power 0.82 ± 0.07 0.80 ± 0.08 0.79 ± 0.09 0.91 ± 0.05
Exp 0.80 ± 0.04 0.79 ± 0.04 0.79 ± 0.05 0.86 ± 0.06
a

For each experiment, the precision, recall, F1 score, and AUC value of the ROC curves were considered to quantify the performance. Values are means and SD for the predictive model that applied 10-fold cross-validation (training set, n = 49; testing set, n = 5) based on the labeled information for each sample.