TABLE 1.
Algorithm | Data set | Precision | Recall | F1 score | AUC |
---|---|---|---|---|---|
KNN (k = 3) | Raw | 0.81 ± 0.11 | 0.79 ± 0.11 | 0.79 ± 0.11 | 0.86 ± 0.09 |
1.5 power | 0.80 ± 0.06 | 0.78 ± 0.05 | 0.77 ± 0.06 | 0.87 ± 0.06 | |
Exp | 0.83 ± 0.11 | 0.82 ± 0.11 | 0.82 ± 0.11 | 0.86 ± 0.08 | |
LinearSVC | Raw | 0.76 ± 0.11 | 0.75 ± 0.10 | 0.75 ± 0.10 | 0.84 ± 0.06 |
1.5 power | 0.86 ± 0.09 | 0.84 ± 0.09 | 0.84 ± 0.09 | 0.91 ± 0.07 | |
Exp | 0.78 ± 0.06 | 0.76 ± 0.07 | 0.75 ± 0.07 | 0.84 ± 0.08 | |
Random forest | Raw | 0.90 ± 0.07 | 0.89 ± 0.08 | 0.89 ± 0.08 | 0.93 ± 0.05 |
1.5 power | 0.88 ± 0.05 | 0.84 ± 0.08 | 0.84 ± 0.08 | 0.96 ± 0.04 | |
Exp | 0.88 ± 0.07 | 0.86 ± 0.07 | 0.85 ± 0.08 | 0.94 ± 0.05 | |
SVM | Raw | 0.80 ± 0.09 | 0.77 ± 0.08 | 0.77 ± 0.08 | 0.87 ± 0.07 |
1.5 power | 0.82 ± 0.07 | 0.80 ± 0.08 | 0.79 ± 0.09 | 0.91 ± 0.05 | |
Exp | 0.80 ± 0.04 | 0.79 ± 0.04 | 0.79 ± 0.05 | 0.86 ± 0.06 |
For each experiment, the precision, recall, F1 score, and AUC value of the ROC curves were considered to quantify the performance. Values are means and SD for the predictive model that applied 10-fold cross-validation (training set, n = 49; testing set, n = 5) based on the labeled information for each sample.