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ABSTRACT Chromosome evolution drives species evolution, speciation, and adaptive
radiation. Accurate genome assembly is crucial to understanding chromosome evolution
of species, such as dikaryotic fungi. Rust fungi (Pucciniales) in dikaryons represent the
largest group of plant pathogens, but the evolutionary process of adaptive radiation in
Pucciniales remains poorly understood. Here, we report a gapless genome for the wheat
leaf rust fungus Puccinia triticina determined using PacBio high-fidelity (HiFi) sequencing.
This gapless assembly contains two sets of chromosomes, showing that one contig rep-
resents one chromosome. Comparisons of homologous chromosomes between the
phased haplotypes revealed that highly frequent small-scale sequence divergence shapes
haplotypic variation. Genome analyses of Puccinia triticina along with other rusts revealed
that recent transposable element bursts and extensive segmental gene duplications syn-
ergistically highlight the evolution of chromosome structures. Comparative analysis of
chromosomes indicated that frequent chromosomal rearrangements may act as a major
contributor to rapid radiation of Pucciniales. This study presents the first gapless, phased
assembly for a dikaryotic rust fungus and provides insights into adaptive evolution and
species radiation in Pucciniales.

IMPORTANCE Rust fungi (Pucciniales) are the largest group of plant pathogens. Adaptive
radiation is a predominant feature in Pucciniales evolution. Chromosome evolution plays
an important role in adaptive evolution. Accurate chromosome-scale assembly is required
to understand the role of chromosome evolution in Pucciniales. We took advantage of
HiFi sequencing to construct a gapless, phased genome for Puccinia triticina. Further anal-
yses revealed that the evolution of chromosome structures in rust lineage is shaped
by the combination of transposable element bursts and segmental gene duplications.
Chromosome comparisons of Puccinia triticina and other rusts suggested that frequent
chromosomal arrangements may make remarkable contributions to high species diversity
of rust fungi. Our results present the first gapless genome for Pucciniales and shed light
on the feature of chromosome evolution in Pucciniales.

KEYWORDS HiFi sequencing, gapless genome, rust fungi, chromosomal
rearrangement, evolutionary radiation

Advances in long-read sequencing technologies have accelerated complete assem-
blies for complex genomes (1, 2). Highly identical repeats are major limitations due

to discrimination errors in these genome projects. PacBio high-fidelity (HiFi) long reads
with high accuracy of (.99.9%) conduce to the assembly of complex repeat regions in
resolving complex genomes (3). Recently, the completion of the first telomere-to-telo-
mere (T2T) human genome (4) and gapless rice genomes (5, 6) has benefited from HiFi
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sequencing. More genome projects with the goal of T2T and gapless assemblies are
ongoing. Noticeably, most of animals, plants, and fungi contain more than one chromo-
some copy, and thus, accurate phasing of haplotypes is essential to shedding new light
on genome organization and evolution. The emergence of more scaffold-level and haplo-
type-resolved chromosome assemblies has been greatly driven by long-read sequencing,
Hi-C sequencing, and improved algorithms (7–9).

The ultimate goal of assembly is a high-quality haplotype-resolved genome without
gaps. The closure of gaps in phased assemblies, especially for complex genomes, is still
not trivial. Given that high accuracy of HiFi reads is in favor of haplotype phasing, the as-
sembly software hifiasm (10), designed for haplotype-resolved de novo assembly using
graph-binning algorithm and maintaining the contiguity of each haplotype, is a powerful
tool to obtain phased assembly with high accuracy and contiguity. Other methods are
also available in different projects (11). Overall, coupled with different strategies, HiFi reads
are expected to help achieve gapless and phased assembly or highly contiguous chromo-
some sequences.

Dikaryotic fungi carry two different haploid nuclei in a cell along with the two chro-
mosome sets contributing to adaptive evolution. Rust fungi (Pucciniales) in dikaryons
are the most speciose natural group of plant pathogens, and many members of this
group are the causal agents of prevalent diseases in agriculture and ecology (12, 13). In
the life cycle of rust fungi, the predominant stage is generally the dikaryotic develop-
mental phase of urediniospores that recurrently infect hosts. Rust fungi have to enhance
their genetic variation to generate intraspecies diversity to overcome numerous host
resistances. Comparative genomic analyses have unraveled that sexual recombination
and somatic exchange are important drivers of genetic diversity (14, 15). High interha-
plotype diversity has been shown to contribute to adaptive evolution (16, 17). Although
intraspecies diversity in rust fungi has been reviewed extensively (12, 13), the genetic
mechanism driving evolutionary radiation and interspecies diversity is poorly understood
(13, 18).

Chromosome evolution plays a pivotal role during speciation and adaptive radiation. It
is unclear how chromosomes have evolved to promote species radiation of Pucciniales.
Recently, the combination of long-read sequencing and Hi-C data has helped achieve
chromosome-level and haplotype-phased assemblies for some rust species, although too
many gaps exist in the assembled chromosomes (9, 15, 19–23). Puccinia triticina is the
most widely distributed wheat rust fungus (24) and is one of the key species used in rust
fungal genomics. To dissect chromosome changes for rust lineage, our study aimed to
obtain a highly contiguous, phased chromosome assembly for P. triticina and to investi-
gate the role of chromosome evolution in Pucciniales through evolutionary and compara-
tive analyses.

RESULTS
Gapless assembly of Puccinia triticina isolate. Puccinia triticina isolate Pt15 was

from field samples in central China in 2015. Its virulence profiles were tested using a wheat
differential set (see Table S1 in the supplemental material). Whole-genome sequencing of
Pt15 yielded 19.83-Gb HiFi reads with a mean length of 14.6 kb and 29.42-Gb Illumina
reads (Table S2). hifiasm (10) was used for initial phased assembly with $10-kb HiFi reads.
Read correction was conducted through two rounds of hifiasm correction in this step.
Then, the redundant sequences from heterozygous regions and mitochondria for each
haplotype were identified and filtered out, producing two highly contiguous haplotype
assemblies (Table S3). Using all long reads, the HERA pipeline (25) was used to connect
the remaining contigs of the two haplotypes. The resulting assembly contained 18 contigs
totaling 122.82 Mb for haplotype A and 18 contigs totaling 121.11 Mb for haplotype B
(Table 1). Given the haploid chromosome number of P. triticina (26) and genome synteny
between the two haplotype assemblies, our phased assembly was thought to represent
36 pseudochromosomes in dikaryons. The numbers of chromosomes were assigned
according to the length in haplotype A, from the longest, as chromosome 1 (chr1A), to
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the shortest, as chromosome 18 (chr18A), and homologous chromosomes in haplotype B
were identified using haplotype synteny (Fig. S1A). Additionally, our phased genome con-
tained 67 telomeric sequences, and 31 chromosomes contained telomeric sequences at
each end (Fig. S1B). Genome synteny between our assembly and Pt76 scaffold-level chro-
mosomes validated the chromosomal structure of the assembled contigs (Fig. S2). The
chromosomal structure was also confirmed using Hi-C contact maps by mapping Hi-C
sequencing reads from the Pt76 and Pt64 genomes (9, 19) to our assembly (Fig. S3).

We next evaluated the completeness, continuity, accuracy, and phasing quality of our as-
sembly. Benchmarking Universal Single-Copy Orthologs (BUSCO) (27) analysis for evaluating
gene space completeness showed that of 1,335 single-copy orthologues in Basidiomycota,
94.3% and 93.7% were complete in the two haplotypes, respectively. The missing rates of
BUSCO genes were 2.6% and 2.8% (Fig. 1A). The long terminal repeat (LTR) assembly index
(LAI) was used to assess the continuity of repeat regions (28). The LAI scores of the two hap-
lotypes were 20.63 and 18.93 respectively, which was indicative of a well-assembled genome
with many repeats. Long-read coverage analysis at the whole-genome level showed that
the two haplotypes were fully phased (Fig. 1B). Merqury analysis (29) with highly accurate
Illumina reads showed that the estimated completeness was 97.24% based on k-mers of 19,
and the base call accuracy of each chromosome was.QV50 (QV: quality value). Collectively,
these analyses demonstrated that our de novo phased assembly is of high quality.

We predicted a total of 25,429 protein-coding genes for haplotype A and haplotype
B (Table 1; Table S4). BUSCO evaluation showed that the gene annotation complete-

FIG 1 Assessment of genome assembly. (A) Genome completeness of the two haplotypes was assessed using conserved fungal BUSCO
genes. (B) Read depth histogram plotted by mapping HiFi reads to the phased assembly, showing full phasing of the assembled genome.

TABLE 1 Summary of the Pt15 genome assembly and annotation

Parameter

Value for:

Haplotype A Haplotype B
Total length (bp) 122,823,596 121,114,073
Contig no. 18 18
Contig N50 (bp) 7,485,535 7,574,744
GC content (%) 46.63 46.63
Telomere no. 32 35
Repetitive sequences (%) 63.64 63.31
No. of protein-coding genes 12,737 12,692
Mean gene length (bp) 2,130.81 2,031.33
No. of secreted proteins 1,135 1,119
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ness was 95.9%, and the missing rate of conserved genes was 1% (Fig. S4). Predicted
secreted proteins of the two haplotypes accounted for ;9% of total proteins. Repeat
and gene density plots for the chromosomes showed that the distribution of secreted
protein genes was not correlated with repeat sequences (Fig. S5).

Haplotypic variations between homologous chromosomes. The fully phased ge-
nome at the chromosomal level allowed us to discover genomic changes between homolo-
gous chromosomes. We found 98.79% sequence identity between the two haplotypes by
calculating the average nucleotide identity (ANI) (30). We used Syri (31) to identify structural
variations (SVs) between homologous chromosomes (Fig. S6). A total of 108.60 Mb (88.42%)
in haplotype A and 108.48 Mb (89.57%) in haplotype B were syntenic blocks. We identified
53 inversions (1,349,548 bp), 73 translocations (280,613 bp), 76 inverted translocations
(236,774 bp), 495 duplications (1,544,911 bp), and 370 inverted duplications (587,203 bp)
(Table S5). These SVs ranged from over 100 bp to hundreds of kilobases, and the predomi-
nant SVs were inversions (Fig. 2A). Sequence variations included 370,259 single nucleotide
polymorphisms (SNPs), 19,177 insertions (317,638 bp), and 19,834 deletions (364,941 bp).
These variations between homologous chromosomes indicated that haplotypic divergence
in Pt15 was largely caused by highly frequent small-scale sequence divergence.

We identified a total of 9,956 allelic gene pairs using gene synteny between homol-
ogous chromosomes. All allelic pairs were one-one syntenic genes. All allelic genes
were colinear except that only one inversion was found on chr4. Most allelic genes
underwent purifying selection, and 5.4% underwent positive selection (Fig. 2B). We
compared the evolutionary differences between secreted protein genes and conserved
fungal BUSCO genes. The ratio of the number of substitutions per nonsynonymous site

FIG 2 Haplotypic variation. (A) Size distribution of structural variations between homologous chromosomes. Inv, inversions; Trans,
translocations; InvTrans, invert translocations; Dup, duplications; InvDup, invert duplications. (B) Ka and Ks distribution for allelic
genes. (C) Distribution of Ka/Ks ratios in conserved fungal BUSCO genes and secreted protein genes.
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to the number of substitutions per synonymous site (Ka/Ks ratio; median, 0.4381; mean,
0.5314) of secreted protein genes was higher than that of BUSCO genes (median,
0.2307; mean, 0.3626). The proportion of positively selected allelic genes encoding
secreted proteins was higher than that of BUSCO genes, and the same was true for the
proportion of allelic genes that underwent more relaxation of purifying selection
(Fig. 2C), suggesting that secreted protein genes evolved more rapidly and were sub-
jected to stronger selective pressure in response to host adaptation.

Characterization of repetitive sequences. The two haplotypes in Pt15 contained
similar levels of repetitive sequences (haplotype A, 63.64%; haplotype B, 63.31%). The re-
petitive sequences were almost evenly distributed on each chromosome (Table S3). The
predominant transposable element (TE) type was LTR retrotransposons (LTR-RTs), which
mainly included Gypsy and Copia elements (Fig. 3A). We also reanalyzed repetitive
sequences of the scaffold-level chromosome assembly for Puccinia graminis f. sp. tritici,
Puccinia striiformis f. sp. tritici, Puccinia coronata f. sp. avenae, andMelampsora larici-popu-
lina and the primary assembly for Austropuccinia psidii (Table S6). The distribution of TEs
in these rust species was similar to that in our assembly (Fig. 3A), indicating that the LTR-
RTs, including Gypsy and Copia, and unclassified TEs were the dominant repetitive ele-
ments in rust fungi.

We calculated the insertion time of the LTR-RTs in the six genomes (Fig. 3B; Fig. S7),
based on the divergence between the LTRs at the ends of each LTR-RT. Although the
sequence accuracy of TEs may vary in these genomes and could influence the calcula-
tion, the six rust species were found to undergo the significant accumulation of LTR-

FIG 3 Analysis of TEs in rust species. (A) Comparison of different TEs in P. triticina (Pt), P. graminis f.
sp. tritici (Pgt), P. coronata f. sp. avenae (Pca), P. striiformis f. sp. tritici (Pst), M. larici-populina (Mlp), and
A. psidii (Ap). (B) Insertion times of LTR-RTs in P. triticina. The red curve represents the trend of the
accumulation of TEs in selected rust species. Ma, 1 million years.
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RTs for genome expansion millions of years ago. Recent large-scale bursts of LTR-RTs
were observed over the last 0.2 million years, which contributed dramatically to ge-
nome expansion in Puccinia species and M. larici-populina. The gigabase-sized genome
in A. psidii was attributed to the recent burst and the accumulation over a long period.
Given that different TE families in A. psidii showed the burst at discrete time scales (32),
we inferred that A. psidii has evolved the complex and efficient mechanism of TE
expansion in shaping the supersize of the A. psidii genome compared to those of many
species of the rust lineage. Our data also indicated that the expansion of LTR-RTs may
still be ongoing.

Gene duplication drives genome evolution. Gene duplications play a crucial role
in species adaptation to diverse environmental changes. Collapsed or incomplete haplo-
type assembly often leads to errors in the identification of gene duplications in heterozy-
gous diploid genomes. Using whole-genome pairwise alignments of homologous genes
in P. triticina, we did not observe significant syntenic blocks within the haploid chromo-
some set (Fig. 4A) and found that gene duplicates were randomly distributed in the
chromosomal structures. Gene collinearity supported the randomness of gene duplicates
(Fig. S8). We detected the distribution of Ks values of paralogues in P. triticina, and no Ks
peak was observed (Fig. 4B). These findings suggested that P. triticina did not experience
recent whole-genome duplications (WGDs) or large-scale gene duplication events, con-
sistent with the observations for Ks distribution of paralogues in P. graminis, P. striiformis
f. sp. tritici, P. coronata f. sp. avenae, A. psidii, and M. larici-populina (Fig. S9). Most gene
duplicates in P. triticina and other rust species were dispersed duplicates, which may
result from extensive segmental duplications, given that segmental duplication events
often occur in eukaryotic genomes with a high TE content (33–35).

We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
of gene duplicates in P. triticina after P. triticina-P. graminis divergence (Ks , 0.7). The
results showed that gene duplicates were mainly enriched in pathways including me-
tabolism, biosynthesis, and ABC transporters, which contribute to lifestyle adaptation
(Fig. 4C). The number and proportion of paralogues that underwent positive selection
(Ka/Ks ratio .1) and relaxed purifying selection (Ka/Ks .0.8) were significantly higher af-
ter P. triticina-P. graminis divergence than before P. triticina-P. graminis divergence
(Fig. 4D). Species-specific genes in P. triticina were inferred using protein clusters of P.
triticina and five other rusts. Species-specific genes shared over one-third of genes that
underwent positive selection after P. triticina-P. graminis divergence (Fig. S10), suggest-
ing that rapid evolution of species-specific genes in P. triticina contributed to environ-
mental adaptability.

Chromosomal rearrangement among rust genomes. To investigate chromosome
structural changes among rust species, we used P. triticina chromosomes as the reference
genome to perform comparative analysis with high-quality genomes of five other rust spe-
cies. By mapping the P. graminis, P. striiformis f. sp. tritici, and P. coronata f. sp. avenae chro-
mosome sequences onto the P. triticina genome, we found that overall synteny existed
between genomes and genes of these closely related species, and we identified multiple
chromosomal rearrangements on different chromosomes, most of which were large inver-
sions (Fig. 5A; Fig. S11). The irregular locations of rearrangements suggested that rear-
rangement events may occur randomly. In combination with the timescale of TEs of rust
genomes in our analysis, the overall genome synteny between P. triticina and the other
three Puccinia species should be attributed to homologous gene synteny rather than to
TEs. Each chromosome of P. graminis, P. striiformis f. sp. tritici, and P. coronata f. sp. avenae
had one matched chromosome in P. triticina (Fig. 5B), meaning that continual rearrange-
ments occurred on each chromosome. These analyses suggested that frequent rearrange-
ments of ancestral chromosomes probably led to the current karyotypes in these species.

P. triticina and P. graminis shared 10,637 syntenic genes of 5,326 pairs that
accounted for 34.85% of their total genes. P. triticina and P. striiformis f. sp. tritici shared
9,422 syntenic genes of 4,756 pairs that accounted for 33.45% of their total genes. P.
triticina and P. coronata f. sp. avenae shared 8,407 genes of 4,218 pairs that accounted
for 28.58% of their total genes. A total of 5,317, 4,681, and 4,198 genes in P. triticina
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were syntenic to those of P. graminis, P. striiformis f. sp. tritici, and P. coronata f. sp. ave-
nae, respectively. We used Ks values of gene pairs between syntenic blocks to evaluate
gene divergence among these species. The mean Ks values of P. triticina-P. graminis, P. tri-
ticina-P. striiformis f. sp. tritici, and P. triticina-P. coronata f. sp. avenae were 1.22732,
1.88705, and 1.88731, respectively. These results showed the phylogenetic divergences
of the four Puccinia species. The Ks comparisons of matched chromosomes of the three
species and P. triticina showed that rearrangement may promote gene divergence; for
example, gene divergence on chr13 was relatively greater (Fig. 5C; Fig. S12). Altogether,
the comparisons suggested that rearrangements may lead to genetic innovations re-
sponsible for adaptation and/or speciation.

Subsequently, we detected chromosome structural changes of M. larici-populina and
A. psidii from Melampsoraceae and Sphaerophragmiaceae, respectively, compared to P.
triticina. For the M. larici-populina chromosome assembly, homologous genes were disor-
dered compared to P. triticina chromosomes but were mostly clustered on each matched
chromosome (Fig. 6A). Gene synteny identified retained signals of recurrent chromo-
some shuffling between M. larici-populina and P. triticina (Fig. S13A). No significant large
rearrangement was observed, largely due to the larger phylogenetic distance between
M. larici-populina and P. triticina. A high degree of gene order divergence may be

FIG 4 Gene duplication and evolution. (A) Dot plots showing gene duplicates in P. triticina. Chromosome numbers are shown. Best hits, secondary hits,
and other hits are shown in red, blue, and gray, respectively. (B) Ks distribution for paralogues in P. triticina and orthologues in P. triticina and other rust
species. (C) Bar plot of KEGG pathway enrichment for P. triticina genes after P. triticina-P. graminis divergence. TCA, tricarboxylic acid. (D) Distribution of Ka/
Ks ratios for paralogues in P. triticina. (Left) After P. triticina-P. graminis divergence; (right) before P. triticina-P. graminis divergence. Positive selection,
relaxed purifying selection, and purifying selection represent Ka/Ks . 1, 0.8 , Ka/Ks , 1, and Ka/Ks # 0.8, respectively.
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attributed to recurrent rearrangements from their ancestral chromosomes. When the
supersized assembly in A. psidii was compared to the P. triticina chromosomes, multiple
chromosomal rearrangements were detected regardless of the effect of large numbers
of TEs (Fig. 6B; Fig. S13B). This is likely due to the phylogenetic relationship between
Sphaerophragmiaceae and Pucciniaceae. Chromosome structural changes in M. larici-
populina and A. psidii suggested that rearrangements may exist extensively in a broad
array of species in the rust lineage.

DISCUSSION

An accurate, chromosome-level phased genome is necessary to understand the
biology and evolution of species, such as dikaryotic fungi. Previous genome projects
have shown that Hi-C data appeared to be indispensable for the completion of chro-
mosome-level and phased assembly in dikaryons as well as diploid organisms (15, 19–
23). Using higher coverage (80�) of HiFi reads, we obtained a gapless, phased genome
of P. triticina isolate Pt15 with hifiasm (10) and HERA (25), and its assembly quality was
confirmed by high contiguity and accuracy. While Hi-C sequencing was unavailable in
the current project, which limited the assessment of phase switches in the two haplo-
types (9), the chromosomal structure and its quality in Pt15 were determined by multi-
ple approaches, such as the assessment of genome data of other P. triticina isolates (9,
19) and the coverage of long reads in the two sets of chromosomes. Overall, this chro-
mosome assembly presents the first gapless, phased genome for a dikaryotic rust fun-
gus and provides a feasible strategy for resolving phased, chromosome-scale genomes
of dikaryotic fungi.

FIG 5 (A) Dot plots showing homologous genes in P. triticina-P. graminis, P. triticina-P. striiformis f. sp. tritici, and P. triticina-P. coronata f. sp. avenae. Best
hits, secondary hits, and other hits are shown in red, blue, and gray, respectively. (B) Gene synteny in P. triticina-P. graminis, P. triticina-P. striiformis f. sp.
tritici, and P. triticina-P. coronata f. sp. avenae. Syntenic blocks containing at least 10 genes are shown. Regular chromosomes are in blue and reversed
chromosomes are in red. (C) Ks distribution of gene pairs between syntenic blocks. The median value is shown to represent the Ks distribution of the blocks
containing at least 10 gene pairs. Chromosome numbers are shown for the four species.
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The gene set identified in the two haplotypes of Pt15 showed high completeness of
conserved fungal genes. Nevertheless, the number of identified genes in each haplo-
type (12,737 and 12,692) was relatively lower than the previous haplotypes of other P.
triticina isolates and Puccinia species (9, 21, 22). This was likely due to the effect of Pt15
haplotypes with high contiguity and lack of reductant heterozygous sequences or was
associated with the differences in the transcript data.

The dramatic expansions of TEs and gene families have shaped adaptive evolution of
rust fungi (13, 36). We evaluated the role of the expansions at the chromosomal scale.
Recent bursts of TEs and extensive segmental gene duplications characterize the evolution
of chromosome structures in P. triticina and five other rust species, suggesting that TEs and
segmental duplications synergistically contribute to genomic adaptation in the rust lineage.

Via comparative analysis of P. triticina chromosomes, we uncovered frequent chro-
mosomal rearrangements in species from Pucciniaceae, Sphaerophragmiaceae, and
Melampsoraceae. Given that these species have the larger phylogenetic distance
across the rust lineage (13, 37) and lack evidence of recent WGDs, we speculate that
chromosome structural changes act regularly and chromosome number changes may
be rare in the formation and evolution of modern rust species. This leads to our hy-
pothesis that haploid chromosome number (n = 18) may be highly conserved in a
wide range of species of the rust lineage, although multiple assembled chromosomes
(9, 15, 19–23, 38) support a consistent chromosome number and cytological evidence
of karyotypes still remains insufficient (26).

It has been proposed that speciation is driven by chromosomal rearrangements in
eukaryotes. For instance, chromosomal inversion can suppress recombination, result-
ing in reproductive isolation to speciation (39–41). DNA double-strand break repair
during the proliferation of TEs has been known to mediate rearrangements (41–43).
Strikingly, a relatively higher proportion of TEs in the rust lineage than in other groups
of plant pathogens (44–47) may confer the benefit of frequent chromosomal rear-
rangements, facilitating rapid species radiation by triggering a high rate of formation
of new species. This inference is consistent with the observation that species radiation
is driven by frequent rearrangements across other eukaryotes, such as the fungal phy-
lum Ascomycota (48) and the angiosperm family Cyperaceae (49). It remains unclear

FIG 6 Dot plots showing homologous genes in P. triticina-M. larici-populina (A) and P. triticina-A. psidii (B). Chromosome numbers are shown for P. triticina
and M. larici-populina. Sequence numbers are shown for A. psidii.
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how the occurrence and fixation of chromosomal rearrangements are regulated by TEs
or natural selection. Chromosome assembly and comparisons among more diverse
taxa are required to reveal the mechanism and trajectory of evolutionary radiation for
rust fungi and other fungal lineages.

In summary, this study reports a high-quality gapless genome for P. triticina and
provides insights into resolving phased genomes for dikaryotic fungi. Further evolu-
tionary and comparative analyses will enhance the understanding of how chromosome
evolution facilitates adaptation and species radiation in Pucciniales.

MATERIALS ANDMETHODS
Puccinia triticina isolate and pathotyping. P. triticina samples were collected from Henan province

of China. After single-spore isolation and purification, urediniospores were produced on seedlings of the
wheat cultivar Mingxian16. Pathotype identification was tested on the standard wheat differential set
for wheat leaf rust.

DNA extraction and sequencing. High-molecular-weight DNA was extracted from urediniospores as
previously described (50). Qualified DNA was used for constructing a PCR-free SMRT bell library (15 kb) and
was sequenced in a SMRT cell on the PacBio Sequel II platform. A PCR-free library for Illumina sequencing
was prepared, and 150-bp paired-end reads were produced on the Illumina NovaSeq 6000 platform.

Genome assembly and evaluation. Genome assembly was first obtained with HiFi reads using hifiasm
0.15 (10). A BLASTN (51) search against the P. triticina mitochondrial sequences and the NCBI NT database
was performed to discard contaminated sequences (52). Heterozygous sequences in each haplotype assem-
bly were identified and removed using Purge Haplotigs (53). HERA (25) was used to construct the final as-
sembly. Hi-C reads for Pt76 and Pt64 were downloaded from the NCBI SRA database (Pt76, SRR14386306;
Pt64, SRR14470629). Hi-C contact maps were produced with HiC-Pro 3.10 (54) and HiCExplorer 3.7.1 (55).

Telomeres were identified by searching multiple repeats of TTAGGG or CCCTAA within 200 bp.
Genome completeness was assessed using BUSCO 3.02 with genome mode (27) based on the data set
basidiomycota_odb9 (2016-02-13). The LAI program (28) was used to evaluate LTRs with default parame-
ters. Genome completeness and accuracy were measured using Merqury (29) with Illumina reads. A ge-
nome-wide coverage plot was generated by mapping long reads to genome assembly with the
CollapsedGenomicRegions tool (https://github.com/JanaSperschneider/GenomeAssemblyTools).

Genome annotation. De novo repeats were identified with RepeatModeler 2.0.2a and the option
-LTRStruct (56). These repetitive elements and Pucciniomycetes elements from the RepeatMasker library
(http://www.repeatmasker.org) (57) were merged as the annotation library, and then RepeatMasker 4.1.2
was run to annotate repetitive sequences. Annotation of protein-coding genes was performed on the
repeat-masked genome with the Funannotate pipeline (https://github.com/nextgenusfs/funannotate).
Transcript and protein evidence included full-length cDNA from germinated urediniospores in our ge-
nome project and transcript sequences from Puccinia genomes (Table S6). Ab initio gene prediction tool
AUGUSTUS (58) was trained using transcript evidence. GeneMark-ES (59) and GlimmerHMM (60) were
used for self-training. Finally, all the above-mentioned gene models were combined to produce the con-
sensus gene sets using EvidenceModeler (61).

Gene annotation was evaluated using BUSCO 3.02 with protein mode (27). Secreted proteins were
predicted using a combination of SignalP 5.0 (62) and TMHMM 2.0 (63). Repeat and gene densities for
the chromosomes were plotted using karyoploteR (64).

Analysis of LTR-RTs. Intact LTR-RTs were identified with LTR_retriever (65) based on the merged results
from LTR_FINDER (66) and LTRharvest (67). The nucleotide alignments between intact LTR-RTs were per-
formed by MUSCLE (68). The insertion time (T) of LTR-RTs was calculated based on the following formula:
T = K/2r, where K is the divergence rate between the 59 and 39 ends of LTRs and r is the fungal substitution
rate of 1.05 � 1029 nucleotides per site per year (69). K was estimated using R package ape (http://ape
-package.ird.fr/) with the K80 model.

Structure variation detection. The ANI was calculated using fastANI with “–fragLen 1 Mb” (30).
Whole-genome alignments between the two haplotypes was performed using Nucmer of MUMmer 3.23
with the parameters “–maxmatch -c 100 -b 500 -l 50,” followed by delta-filter and show-coords (70). SyRi
(31) was used to identify genomic rearrangements.

Analysis of gene duplications. Ks distributions of paralogues and orthologues were generated
using the wgd pipeline (https://github.com/arzwa/wgd) (71). KEGG pathway enrichment analysis was
conducted using KOBAS-i (72) with a P value of ,0.05. OrthoFinder 2.3.3 (73) was used to infer species-
specific genes using Markov cluster algorithm (MCL) clustering.

Synteny analysis. A whole-genome pairwise alignment of genome assemblies was generated using
d-Genies (74). Homologous genes within and between the genomes were identified with their protein
sequences by BLASTP alignments (E value , 1e25). WGDI (75) was used to construct homologous-gene
dot plots. Gene synteny was identified using MCScanX (76) and visualized using SynVisio (https://
synvisio.github.io/#/).

Ka/Ks calculation. The protein sequences were aligned using MUSCLE (68). Protein alignments were
converted into coding sequence alignments using PAL2NAL (77). The number of substitutions per non-
synonymous site (Ka), the number of substitutions per synonymous site (Ks), and Ka/Ks values were esti-
mated with the YN00 model in the PAML program (78). Ks values of .5 in the analysis were excluded
due to saturation.
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Data availability. The genome sequence of Pt15 has been deposited in the NCBI database under
BioProject numbers PRJNA848635 and PRJNA848634. All sequencing reads are available in the SRA data-
base under BioProject number PRJNA848635.
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