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Abstract

Major depressive disorder (MDD) is a major cause of disability in adults. MDD is both a comorbidity and a risk
factor for Alzheimer’s disease (AD), and regular physical exercise has been associated with reduced incidence
and severity of MDD and AD. Irisin is an exercise-induced myokine derived from proteolytic processing of fibro-
nectin type III domain-containing protein 5 (FNDC5). FNDC5/irisin is reduced in the brains of AD patients and
mouse models. However, whether brain FNDC5/irisin expression is altered in depression remains elusive. Here,
we investigate changes in fndc5 expression in postmortem brain tissue from MDD individuals and mouse models
of depression. We found decreased fndc5 expression in the MDD prefrontal cortex, both with and without psy-
chotic traits. We further demonstrate that the induction of depressive-like behavior in male mice by lipopolysac-
charide decreased fndc5 expression in the frontal cortex, but not in the hippocampus. Conversely, chronic
corticosterone administration increased fndc5 expression in the frontal cortex, but not in the hippocampus. Social
isolation in mice did not result in altered fndc5 expression in either frontal cortex or hippocampus. Finally, fluoxe-
tine, but not other antidepressants, increased fndc5 gene expression in the mouse frontal cortex. Results indicate
a region-specific modulation of fndc5 in depressive-like behavior and by antidepressant in mice. Our finding of
decreased prefrontal cortex fndc5 expression in MDD individuals differs from results in mice, highlighting the im-
portance of carefully interpreting observations in mice. The reduction in fndc5 mRNA suggests that decreased
central FNDC5/irisin could comprise a shared pathologic mechanism between MDD and AD.
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Significance Statement

Major depressive disorder (MDD) is a major cause of disability in humans. Physical exercise reduces the incidence
and severity of MDD, but molecular mechanisms are elusive. One of the pleiotropic actions of exercise alludes to the
increased production and circulation of irisin, a myokine cleaved from fibronectin type III domain-containing protein
5 (FNDC5) that mediates some benefits of exercise in the brain. Here, we observed reduced fndc5 expression in
postmortem samples of dorsolateral prefrontal cortex from patients withMDD. In themouse frontal cortex, themod-
ulation of fndc5was variable acrossmodels of depressive-like behavior. Our findings indicate reduced fndc5 expres-
sion inMDDwith discordant results inmice and stimulate further research on the roles of brain FNDC5/irisin inMDD.
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Introduction
Major depressive disorder (MDD) is a debilitating dis-

ease that affects one in five people during their lifetimes
(Kessler et al., 2006). In addition to an immediate impact
on daily activities, MDD contributes to the allostatic load,
elevates the risk of developing other conditions, such as
diabetes mellitus and dementia, and increases the odds
of suicide by 20-fold (Otte et al., 2016; Selles et al., 2018;
De Felice et al., 2022).
Irisin is a myokine that is increased in the bloodstream after

physical exercise (Boström et al., 2012; Jedrychowski et al.,
2015). Irisin derives from proteolytic processing of the trans-
membrane precursor fibronectin type III domain-containing
protein 5 (FNDC5), a protein notably expressed in skeletal
muscle and in select brain regions, including the hippocam-
pus and frontal cortex (Boström et al., 2012; Wrann et al.,
2013; Lourenco et al., 2019; Islam et al., 2021). Physical exer-
cise and muscle contraction also induce fndc5 expression in
the brain (Wrann et al., 2013; Maekawa et al., 2018).
FNDC5/irisin regulates peripheral energy metabolism

(Boström et al., 2012) and induces neuronal brain-de-
rived neurotrophic factor (BDNF) expression (Wrann et
al., 2013; Lourenco et al., 2022). In the brain, FNDC5/iri-
sin was shown to be important for synapse plasticity
and memory (Lourenco et al., 2019) and to promote ex-
ercise-induced neurogenesis.
FNDC5/irisin is reduced in postmortem Alzheimer’s dis-

ease (AD) brains and in mouse models of AD (Lourenco et
al., 2019), and reduced CSF irisin is associated with im-
paired cognition in mild cognitive impairment and AD pa-
tients. Moreover, irisin counteracted molecular pathologic
changes responsible for synapse failure and memory loss,
and rescues cognition in mouse models of AD (de Freitas
et al., 2020; Islam et al., 2021; Lourenco et al., 2019, 2022).
Physical exercise has been long known for its health

benefits. Regular physical exercise improves general me-
tabolism and prevents cardiovascular and neurologic dis-
orders (Balducci et al., 2009; Mattson, 2012). In the brain,
physical exercise induces a plethora of signals that boost
neuronal health, synaptic plasticity, and neurogenesis (Isaac
et al., 2021), but the precise molecular mechanisms remain
unresolved. Exercise has antidepressant effects in MDD pa-
tients, notably in mild to moderate cases (Schuch et al.,

2016, 2018). Evidence from rodent models indicates that ex-
ercise increases brain levels of monoamines, BDNF, and
neurogenesis—all factors presumably associated with anti-
depressant actions (Krishnan and Nestler, 2008; Isaac et al.,
2021). Importantly, irisin mediates brain benefits of physical
exercise in mice (Lourenco et al., 2019; Islam et al., 2021).
However, evidence for how and which myokines contribute
to antidepressant actions in the brain is still lacking.
Depression is a risk factor and a comorbidity of AD.

Biological processes that are common in depression and
AD include vascular disease, alterations in glucocorticoid
and neurotrophin signaling, hippocampal atrophy, neuro-
inflammation, and deficits in neurogenesis (Selles et al.,
2018; Dafsari and Jessen, 2020). However, specific mo-
lecular mechanisms underlying the association between
depression and AD have not been completely elucidated.
Further, associations between AD neuropathology and
depression remain controversial (Li et al., 2017; Babulal et
al., 2020; Saldanha et al., 2021; Pomara et al., 2022).The
links between AD and depression (Ledo et al., 2016,
2013; Dafsari and Jessen, 2020) and previous findings of
the association between exercise and antidepressant ac-
tivity prompted us to investigate whether fndc5 expres-
sion could be dysregulated in depression. Here, we used
several mouse models of depressive-like behavior and
postmortem human brain tissue to test the hypothesis
that depressive states impair fndc5 expression in brain
areas relevant to depression.

Materials and Methods
Human samples
Postmortem human dorsolateral prefrontal cortex RNA

samples were donated by the Stanley Medical Research
Institute Brain Bank (USA). The cohort comprised 36 pa-
tients diagnosed with MDD, MDD with psychotic features
(MDD-P), or healthy control subjects (HCs). Patients were
mostly white (94.4%), males represented between 50%
and 66.6% of each group, and the mean age varied be-
tween 41.5 and 46.8 years (without significant statistical
differences among groups). The mean postmortem inter-
val (PMI) was 23.6 h for MDD patients, 25.3 h for HCs, and
35.75 h for MDD-P patients (Table 1). Causes of death in
the control group included cardiac conditions (7 of 11 pa-
tients) and vehicle accidents (2 of 11 patients). Causes of
death in MDD and MDD-P groups were mostly suicide, but
also included cardiac conditions (3 of 10 patients in the MDD
group). More detailed demographic information regarding
this cohort can be found at https://www.stanleyresearch.org/
brain-research/depression-collection. Postmortem hippo-
campal samples from subjects were not available at the time
of this study.

RNA extraction and quantitative RT-PCR
For human samples, total RNA was extracted postmor-

tem from dorsolateral prefrontal cortex (dlPFC; Brodmann’s
area 46) from the Depression collection was provided by the
Stanley Medical Research Institute Brain Bank (http://www.
stanleyresearch.org/brain/). RNA was extracted from frozen
brain tissue homogenized in TRIzol (Thermo Fisher Scientific)
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at the Stanley Medical Research Institute, following manufac-
turer instructions. Real-time quantitative RT-PCR (qRT-PCR)
was performed with a high-capacity cDNA reverse transcrip-
tion kit (Thermo Fisher Scientific) using 2.5mg of RNA from
each sample. For animal tissue, total RNA was extracted
from frozen brain tissue homogenized in TRIzol (Thermo
Fisher Scientific) with an ultrasonic homogenizer (Thermo
Fisher Scientific), following manufacturer instructions. RNA
purity and integrity were assessed by the 260:280 absorb-
ance ratio, and only preparations with ratios�1.8 were used.
For qRT-PCR, 1mg of RNA was used for cDNA synthesis
using a high-capacity cDNA reverse transcription kit (Thermo
Fisher Scientific). Quantitative expression analysis of target
genes was performed on a 7500 Real-Time PCR System
(Thermo Fisher Scientific) with the PowerUp SYBR Green
PCRMaster Mix (Thermo Fisher Scientific).
For mouse samples, b-actin [actb; forward (Fw): TGTGA

CGTTGACATCCGTAAA; reverse (Rv): GTACTTGCGCTC
AGGAGGAG] was used as an endogenous reference gene.
For human samples, the geometric mean of b-actin (actb;
Fw: GCACCCAGCACAATGAAG; Rv: CTTGCTGATCCACAT)
and GAPDH (gapdh; Fw: CCTGTTCGACAGTCAGCCG; Rv:
CGACCAAATCCGTTGACTCC) were used as endogenous
references. Specific mouse fndc5 (Fw: GGACTCTTGGAAA
ACACCACTG; Rv: TCCACACAGATGATCTCACCAC) and
human fndc5 (Fw: AAGCACAAGGACTGACTCAAGC; Rv:
CATGTCCTTGATGGCTGGAT) primers were used. qRT-
PCR was performed in 20ml reactions, according to manu-
facturer instructions. Cycle threshold (Ct) values were used
to calculate the fold change in expression relative to control
using the 2-DDCt method (Livak and Schmittgen, 2001).

Animals
Male C57BL/6 mice were obtained from the animal fa-

cility at Federal University of Rio de Janeiro. Mice were 3–
5months of age at the beginning of experiments. Animals
were housed in groups of up to five per cage, with free ac-
cess to water and food, under a 12 h light/dark cycle (7:00
A.M. to 7:00P.M. local time), and controlled room temper-
ature and humidity. Behavioral tests were performed be-
tween zeitgeber time 4 (ZT4) and ZT8, equivalent to local
time 11:00 A.M. to 5:00P.M. All procedures followed prin-
ciples of animal care and were previously approved by the
Federal University of Rio de Janeiro Committee for Ethics
and Animal Use, under protocol no. 020/18.

Trained experimentalists killed the mice by cervical dis-
location between ZT6 and ZT11. Decapitation and tissue
collection were performed immediately after cervical dis-
location. Although all mice were killed during the light
cycle, possible circadian variations of fndc5 levels were
not controlled for in this study.
We acknowledge that the use of male mice only is a limi-

tation of our study. The use of female mice has been over-
looked historically in preclinical neuroscience research,
likely contributing to less effective diagnosis and treatment
for women (Shansky, 2019; Shansky and Murphy, 2021).
Investigating sex as a biological variable in the patterns of
fndc5 expression in depression in future studies is essen-
tial to understand its function and translational potential of
our findings.

Induction of depressive-like behavior in mice
Lipopolysaccharide administration
Male C57BL/6 mice (age, 3–4months) received a single

intraperitoneal injection of Escherichia coli lipopolysac-
charide (LPS; 1mg/kg) or an equivalent volume of saline
solution as vehicle (Walker et al., 2013). The tail suspen-
sion test (TST) was performed 24 h after injection. Mice
were killed ;6 h after the tail suspension test, and tissue
was collected and stored frozen at �80°C until molecular
analysis. Sucrose preference testing was initiated imme-
diately after the intraperitoneal injection. In this case, tis-
sue was collected;50 h after a single LPS injection.

Chronic corticosterone administration
Male C57BL/6 mice (age, 3–5 months) were given a so-

lution of 50mg/ml corticosterone in 1% ethanol in drinking
water available ad libitum for a period of 21d. The control
group received 1% ethanol in drinking water. Water bot-
tles from both groups were weighted regularly to assess
intake, and there were no significant differences in mean
volumes consumed between groups. TST was performed
on day 22, followed by a sucrose preference test on days
23–24. Mice were killed on day 25, and tissue was col-
lected and stored at�80°C for molecular analyses.

Social isolation
Male C57BL/6 mice (age, 3 months) were placed in

home cages in groups of five (control group) or alone (so-
cial isolation) for 60d. Food and water were available ad li-
bitum for both groups, and cages were kept in the animal

Table 1: Demographic information about human brain samples used in this study

HC MDD MDD-P Significance (test performed)
Sample size 11 10 12
Sex (F/M) 4/7 5/5 6/6 p=0.0716 (x2 test)
Age (years) 47.91 (12.06) 44.70 (10.11) 41.50 (12.02) F(2,30) = 0.8925; p=0.4202 (one-way ANOVA � HC)
Race (% white) 90.91 100.00 91.67 p=0.0105 (x2 test)
Duration of Illness (years) — 11.11 (8.61) 12.33 (7.00) p=0.7211 (x2 test)
Brain pH 6.64 (0.19) 6.69 (0.14) 6.59 (0.14) F(2,30) = 1.075; p=0.3540 (one-way ANOVA � HC)
PMI (h) 24.73 (11.00) 23.40 (7.37)0.949 35.75 (13.96)0.049 F(2,30) = 4.085; p=0.0270 (one-way ANOVA � HC)
Suicide (%) 0.00 60.00 75.00 p, 0.0001 (x2 test)
Antidepressant use (%) 9.09 90.00 58.33 p, 0.0001 (x2 test)
Antipychotic use (%) 0.00 30.00 41.66 p, 0.0001 (x2 test)

F, Female; M, male. Values represent the mean (SD). For PMI, one-way ANOVA with Dunnett’s post-test was performed, and respective adjusted p values are
shown in superscript in MDD and MDD-P.
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facility with controlled light/dark cycles, temperature, and
humidity. A tail suspension test was performed on day 61,
and mice were killed and tissue was collected and stored
the following day.

Behavioral testing
Tail suspension test
Mice were suspended by their tails at a height of 1 m, in

an apparatus where they were unable to escape, touch any
surfaces, or see other mice. They were kept in this position
for 6min, and immobility time was scored by a trained ex-
perimentalist, as a measure of helplessness. Immobility was
defined by a lack of escape-related behavior (e.g., swing-
ing). After testing, immobility time during the final 3min of
testing was compared between groups (Can et al., 2011).

Sucrose preference test
Mice were individually placed in home cages with free ac-

cess to food and with two identical bottles of water. On day 1,
both bottles contained water (for habituation), and consump-
tion of liquid from each bottle wasmeasured, with no differen-
ces observed for any side or total volume between groups.
On the following day, the content of one of the bottles was re-
placed by a solution of 2% sucrose in water. After 12 h, the
volume of liquid remaining in each bottle was measured, and
bottle positions were switched to avoid any preference for the
location. The remaining volume wasmeasured again after an-
other period of 12 h, and total intake was calculated to deter-
mine the ratio of preference for the sucrose solution.
Reduced sucrose preference is indicative of anhedonia, a
marker of depressive-like behavior (Nasca et al., 2013).

Antidepressant treatment
Male C57BL/6 mice (age, 3–4 months) received daily in-

traperitoneal injections of fluoxetine (10mg/kg; Sigma-
Aldrich) for 10 d. Clomipramine (10mg/kg; Sigma-Aldrich),
trazodone (40mg/kg; Sigma-Aldrich), or an equivalent vol-
ume of saline was administered for 14d. For ketamine, a
single intraperitoneal injection (3mg/kg; Syntec) was per-
formed 3 h before killing. All drugs were diluted in sterile
saline solution before injection.

Statistical analysis
All analyses were performed on GraphPad Prism 7 or 8

(GraphPad Software). Datasets were assessed for group
variance before statistical testing. Outliers were identified
(using the ROUT method, set at 1%) before statistical test-
ing, and outliers were excluded from the analysis. Values
are expressed as the mean6 SEM unless stated otherwise
in figure legends. Two-tailed statistical tests were used,
and p-values are displayed above the bars. Post-test cor-
rections were used every time multiple comparisons were
performed, as indicated in the figure legends.

Results
Expression of fndc5 is reduced in postmortem brain
tissue fromMDD patients
We first assessed fndc5 expression in postmortem

brain tissue from a well established MDD cohort from the

Stanley Medical Research Institute Brain Bank, which
included individuals diagnosed with MDD and MDD-P,
and healthy control subjects. The mean patient age was
between 41 and 47 years, and males and females were
equally distributed among groups (Table 1, demo-
graphics). qRT-PCR analysis revealed a marked de-
crease in fndc5 mRNA in both MDD and MDD-P patient
groups compared with control subjects (Fig. 1). Sex did
not affect fndc5 expression in the PFC (Extended Data
Fig. 1-1A). Although only one control subject took anti-
depressants and most of MDD and MDD-P patients
were under antidepressant prescription, antidepressant
medication did not impact PFC fndc5 mRNA within diag-
nostic categories (Extended Data Fig. 1-1B). We note,
however, that additional studies in larger cohorts split by
antidepressant pharmacological class are required to de-
termine the potential impact of antidepressants on PFC
fndc5 expression. To our knowledge, this is the first report
to examine fndc5 expression in the brains of patients diag-
nosed with major depression. This result prompted us to
investigate fndc5 expression in mouse models of depres-
sive-like behavior.

Frontal cortex fndc5 expression is decreased by LPS
in male mice
We next investigated whether the induction of depres-

sive-like behavior alters brain fndc5 expression in male
mice. Acute intraperitoneal administration of LPS (at
1mg/kg) represents a classic model for the induction of
depressive-like behavior in mice (O’Connor et al., 2009).
We confirmed the depressive-like status 24 h after LPS
administration by a marked increase in immobility in the
TST (Fig. 2A), although mice did not develop anhedonic
behavior in the sucrose preference test (Fig. 2B).
Analysis of fndc5 mRNA levels revealed decreased ex-
pression in the frontal cortex of LPS-treated mice (Fig.

Figure 1. Expression of fndc5 is reduced in the dorsolateral
PFC of individuals with MDD. Expression of fndc5 was meas-
ured in postmortem dorsolateral prefrontal cortex samples from
individuals diagnosed with MDD (N=10) or MDD-P (N=12), or
from HCs (N=11). Reduced expression of fndc5 was verified in
MDD or MDD-P individuals. Male subjects are represented by
circles, and female subjects by triangles. One-way ANOVA
(F(2,30) = 5.278; p=0.0109) with Dunnett’s correction; adjusted
p-values are shown above the bars. Bars express the mean 6
SEM. Sex or antidepressant use did not impact fndc5 expres-
sion (Extended Data Fig. 1-1).
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2C), while the hippocampal expression remained un-
changed (Fig. 2D).

Fndc5 expression is increased in the mouse frontal
cortex after chronic corticosterone administration
We further used chronic (21d) administration of corticos-

terone in the drinking water (at 50mg/ml) as an alternative
protocol to chemically induce depressive-like behavior in
mice, as previously described (Gourley et al., 2008).
Immobility in the TST was similar between groups (Fig. 3A).
On the other hand, male mice that received corticosterone
showed no preference for sucrose in the sucrose con-
sumption test (Fig. 3B), a proxy for the anhedonia compo-
nent of depressive states (Nasca et al., 2015), as expected
for this model (Ali et al., 2015). Corticosterone-treated male
mice showed increased fndc5 expression in the frontal cor-
tex (Fig. 3C), while hippocampal fndc5 expression was un-
changed (Fig. 3D).

Expression of fndc5 remains unchanged in social
isolation-induced depressive-like behavior
To determine the impact of social stress on fndc5 ex-

pression, we resorted to chronic social isolation, a proto-
col known to induce depressive-like behavior (Wallace et
al., 2009). Male mice were either isolated or remained in
groups for 60d. Depressive-like behavior was confirmed

by increased immobility in the TST (Fig. 4A). However,
such mice showed no changes in fndc5 expression in ei-
ther frontal cortex (Fig. 4B) or hippocampus (Fig. 4C). The
discrepant results observed in mice subjected to social
isolation or treated with LPS or corticosterone suggest

Figure 3. Chronic corticosterone-induced depressive-like be-
havior increase fndc5 expression in the frontal cortex of mice.
Male C57BL/6 mice were given corticosterone (50 mg/ml) or
vehicle in the drinking water for 21 d. A, No difference in the
immobility time was observed in the tail suspension test. B,
Mice that received corticosterone failed to show sucrose
preference in the sucrose consumption test. C, D, Analysis
of fndc5 mRNA levels showed increased levels in the frontal
cortex (C) and no change in the hippocampus (D) of corticoster-
one-treated mice. Bars express the mean 6 SEM. N = 11–13/
group; Student’s t test. The p-value is shown above the
bars. Bars express the mean 6 SEM.

Figure 4. Social isolation-induced depressive-like behavior
does not alter fndc5 expression. Male C57BL/6 mice were
housed in groups of five [controls (Ctrl)] or alone [social isolation
(SI)] in their home cages for 60d. A, increased immobility times
were observed in socially isolated mice compared with controls.
B, C, Analysis of fndc5 mRNA levels revealed no changes in
frontal cortex (B) or hippocampus (C) between groups. N=6–
10; Student’s t test. The p-value is shown above the bars. Bars
express the mean 6 SEM.

Figure 2. Lipopolysaccharide-induced depressive-like behavior
decreased fndc5 expression in the frontal cortex, but not the
hippocampus. Male C57BL/6 mice received a single intraperito-
neal injection of LPS (1mg/kg), and their immobility times were
assessed in the tail suspension test after 24 h. A, Increased im-
mobility times were observed in LPS-injected mice. B, No dif-
ference was observed in sucrose preference in the sucrose
consumption test. C, D, Analysis of fndc5 mRNA levels revealed
a decrease in the frontal cortex (C) and no changes in the hip-
pocampus (D) of mice that received LPS. N=7–18/group;
Student’s t test. The p-values are depicted above the bars.
Bars express the mean 6 SEM.

Research Article: New Research 5 of 9

February 2023, 10(2) ENEURO.0256-22.2023 eNeuro.org



that distinct murine models of depressive-like behavior
may not fully recapitulate the changes in fndc5 expression
observed in humans with MDD.

Chronic fluoxetine administration selectively induces
fndc5 expression in the frontal cortex of mice
Finally, we investigated whether brain fndc5 expression

is modulated in response to antidepressant treatment. We
treated male C57BL/6 mice with antidepressants with dif-
ferent mechanisms of action. Mice received daily intraperi-
toneal injections of clomipramine or trazodone (or saline)
for 14d, fluoxetine for 10d, or a single dose of ketamine, all
of which are regimens known to produce bioactive re-
sponses (Gideons et al., 2014; Duque et al., 2016; Halliday
et al., 2017; Browne et al., 2018). Among the antidepres-
sants tested, fluoxetine selectively induced an increase in
fndc5 mRNA levels in the frontal cortex (Fig. 5A). None of
the antidepressants tested (ketamine, clomipramine, trazo-
done, or fluoxetine) promoted significant changes in fndc5
expression in the hippocampus (Fig. 5B), a brain region
also linked to depression (Tsankova et al., 2006). These re-
sults indicate that fluoxetine promotes fndc5 gene expres-
sion selectively in the frontal cortex.

Discussion
Here, we investigated whether brain fndc5 expression

is altered in individuals diagnosed with MDD and is modu-
lated by depressive-like behavior or by antidepressant
treatment in mice. Fndc5 is expressed in the brain (Wrann
et al., 2013; Lourenco et al., 2019) and has been reported
to promote BDNF expression (Wrann et al., 2013), exer-
cise-induced neurogenesis (Islam et al., 2021), synaptic
plasticity, and memory (Lourenco et al., 2019; Islam et al.,
2021). Furthermore, brain delivery of viral vectors driving
the expression of fndc5 confers neuroprotection in mouse
models of AD (Lourenco et al., 2019).
In rodents, a chronic unpredictable stress protocol re-

duced levels of FNDC5/irisin in the hippocampus (Babaei
et al., 2021; Wu et al., 2021). In addition, intracerebroven-
tricular administration of irisin (0.5–1ng) reduced immobil-
ity times in the tail suspension and forced swim tests in
mice (Siteneski et al., 2018). While FNDC5 knock-out
mice do not develop alterations in the elevated plus maze
or TST when compared with wild-type littermates (Islam
et al., 2021), whether brain region-specific fndc5 expres-
sion impacts depressive-like behavior remains an intrigu-
ing question that warrants further investigation.
Previous studies have shown reduced plasma irisin in

patients with depression after stroke (Tu et al., 2018) or
coronary heart disease (Han et al., 2019). This association
was not observed in a cohort of obese women with de-
pression (Hofmann et al., 2016). Plasma irisin may under-
go complex regulation by multiple tissues and metabolic
states. Recent evidence suggests that peripheral irisin
crosses the blood–brain barrier and reaches brain areas
linked to cognition (Islam et al., 2021). Whether blood iri-
sin levels are modified by depression in the absence of
comorbidities in humans and the intricacies of plasma to
brain irisin transport remain unknown. To avoid these po-
tential sources of confusion and focus on the specific

modulation of brain fndc5, we assessed gene expression
as a proxy of local FNDC5/irisin induction.
We first measured fndc5 expression in dlPFC samples

of MDD patients from a well characterized cohort com-
posed of adult subjects (Martins-De-Souza et al., 2012;
Sabunciyan et al., 2012). We observed a significant re-
duction in fndc5mRNA content in the dlPFC of individuals
with depression, regardless of the presence or absence of
psychosis, compared with healthy control subjects. To
the best of our knowledge, this is the first evidence of al-
tered (reduced) brain fndc5 expression in MDD patients.
Of note, age is a particularly relevant parameter as CNS
irisin levels are altered by age (Lourenco et al., 2019,
2020), and this was carefully controlled in the cohort used
in the current study. Although PMI was significantly higher
for MDD-P, this difference does not seem to impact fndc5
expression, as we observed similar levels in MDD and
MDD-P groups—and both are similarly reduced when
compared with HCs. It is noteworthy that most cases of
major depression in this cohort had suicide as the cause
of death, which might indicate a more severe pathology
and/or unresponsiveness to treatment. We feel that these
results encourage future studies in larger cohorts, as well
as translational research to ascertain the roles of FNDC5/
irisin in the PFC.
We used three different mouse models of depressive-

like behavior to explore how fndc5 expression is modu-
lated by depressive-like behavior. LPS and corticosterone
are thought to induce depressive-like states through differ-
ent mechanisms and lead to different behavioral outcomes
(Gourley et al., 2008; O’Connor et al., 2009). We observed
divergent changes in frontal cortex fndc5 expression in

Figure 5. Treatment with fluoxetine selectively induces FNDC5 ex-
pression in the frontal cortex, but not in the hippocampus. A, B,
Levels of fndc5 mRNA in the frontal cortex (A) and hippocampus (B)
of male C57BL/6 mice chronically treated with different antidepres-
sants. For frontal cortex: saline (N=13), ketamine (N=8), clomipr-
amine (N=7), trazodone (N=7), and fluoxetine (N=9). F(4,39)=4.301;
p=0.0056. For hippocampus: saline (N=11), ketamine (N=8),
clomipramine (N=8), trazodone (N=8), and fluoxetine (N=9).
F(4,39) = 0.4019; p=0.8061; one-way ANOVA with Dunnett’s cor-
rection. The adjusted p-value is shown above bars. Bars express
the mean 6 SEM. The y-axis range was formatted to accommo-
date changes in fndc5 values.
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mice treated with LPS or corticosterone, with no changes in
the hippocampus. While LPS-treated mice showed a reduc-
tion in FC fndc5 expression, similar to what we observed in
humans, corticosterone treatment led to increased frontal
cortex fndc5 expression. Notably, LPS-based and corticos-
terone-based models also resulted in divergent behavioral
outcomes, with LPS recapitulating the despair component
of depressive-like behavior and corticosterone inducing an-
hedonia behavior. Intriguingly, inducing a depressive-like
state by deprivation of social interaction had no impact on
fndc5 expression in either region. It is noteworthy that previ-
ous reports have indicated that chronic unpredictable stress
protocols reduce hippocampal fndc5 expression in mice
(Babaei et al., 2021; Wu et al., 2021).
MDD is a complex pathology with heterogeneous mani-

festations in humans (Fried et al., 2022). Distinct animal
models may better recapitulate biochemical and physio-
logical aspects more specific to different risk factors, such
as inflammation, hypothalamus–pituitary–adrenal axis de-
regulation or persistent environmental stress (Krishnan and
Nestler, 2008; Otte et al., 2016). Thus, the contrasting re-
sults observed by us in animal models and postmortem
samples may be a consequence of the limitations in mod-
eling mood disorders in rodents, as extensively noted
(Cryan and Holmes, 2005; Gururajan et al., 2019; Fried et
al., 2022).
The prefrontal cortex is notably impaired in MDD pa-

tients and rodent models of depressive-like behavior
(Pizzagalli and Roberts, 2022). In patients, aberrant spon-
taneous brain activity (Gong et al., 2020) and reduced
cortical thickness (Schmaal et al., 2017) were observed in
the PFC of MDD patients when compared with control
subjects. In rodents, stress induces morphologic and
functional changes in the prefrontal cortex (Cerqueira et
al., 2005; Hains et al., 2009; Yuen et al., 2012), as well in-
creased glial reactivity (Banasr and Duman, 2008; Banasr
et al., 2010). Notably, exercise training improves PFC
function (Voss et al., 2013). Thus, exploring the roles of
FNDC5 in PFC function associated with mood control is
an exciting question for further studies.
To investigate whether antidepressants modulate fndc5

expression in male mice, we analyzed both frontal cortex
and hippocampus, two brain regions related to depres-
sion (Krishnan and Nestler, 2008), and examined the ef-
fects of drugs from different antidepressant classes. We
administered chronic treatments with a selective serotonin
reuptake inhibitor (fluoxetine), a serotonin antagonist and
reuptake inhibitor (trazodone), and a tricyclic antidepres-
sant (clomipramine), as well as acute treatment with fast-
acting ketamine. This experimental plan allowed us to pin-
point the following two levels of specificity: (1) a region-
specific effect in the frontal cortex of male mice; and (2)
antidepressant class specificity for fluoxetine among the
drugs investigated. Using naive mice further allowed us to
isolate the basal effects of antidepressants in the absence
of potentially unclear responses induced by depressive
stimuli. Results revealed that modulation of fndc5 expres-
sion is not a shared mechanism among antidepressants
but is robustly and selectively induced by fluoxetine in the
frontal cortex. Except for ketamine, most antidepressants

require chronic administration to produce antidepressant
effects. We note that the doses and durations of treatment
we used for each compound have been previously re-
ported to be compatible with their neuromodulatory activ-
ities in mice (Gideons et al., 2014; Duque et al., 2016;
Halliday et al., 2017; Browne et al., 2018). We further note
that most of the MDD and MDD-P subjects studied here
took antidepressants and/or antipsychotics, whereas only
one control case reported use of an antidepressant. No
clear difference in fndc5 mRNA levels was observed be-
tween those receiving antidepressants and not receiving
them, although the reduced sample size precludes statisti-
cal analyses at this point. Further studies are necessary to
determine whether the modulation of fndc5 expression
could be related to differential responsiveness to antide-
pressants in patients.
Our findings support the notion that the induction of de-

pressive-like behavior or antidepressant responses can
modulate differential fndc5 expression in the frontal cortex
of male mice. Divergent results observed in the brains of
MDD individuals and mouse models may be related to limi-
tations of modeling mood disorders in rodents. Although our
results in MDD patients did not reveal an impact of sex in
the fndc5mRNA in the PFC, a limitation of our mouse study
is the use of male mice only. Sex differences have been his-
torically underappreciated in neuroscience (Shansky, 2019;
Shansky and Murphy, 2021), and additional studies investi-
gating sex as a biological variable in the patterns of fndc5
expression and roles in depression are needed. Finally, fu-
ture studies are warranted to determine the relevance of
brain fndc5 expression in humans, and whether and how
this relates to the pathophysiology of major depression.
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