表 2. Testing results based on MIMIC-Ⅲ cases.
基于 MIMIC-Ⅲ病例的测试结果
| 组别 | AUROC
(mean ± std) |
AUPRC
(mean ± std) |
灵敏度
(mean ± std) |
特异度
(mean ± std) |
正确率
(mean ± std) |
| 注:targetLSTM 和 transLSTM 算法采用经典 LSTM 结构,targetLSTM(G) 和 transLSTM(G) 算法采用 LSTM 的流行变体 GRU | |||||
| A 组 | |||||
| targetLSTM 算法 | 0.806 8 ± 0.029 6 | 0.559 4 ± 0.065 0 | 0.697 6 ± 0.060 2 | 0.777 6 ± 0.029 6 | 0.760 6 ± 0.022 3 |
| transLSTM 算法 | 0.834 3 ± 0.025 9 | 0.604 7 ± 0.049 1 | 0.753 0 ± 0.056 3 | 0.762 0 ± 0.029 6 | 0.760 2 ± 0.025 0 |
| targetLSTM(G) 算法 | 0.815 4 ± 0.030 0 | 0.569 8 ± 0.066 5 | 0.713 0 ± 0.063 6 | 0.777 6 ± 0.033 6 | 0.763 8 ± 0.027 3 |
| transLSTM(G) 算法 | 0.838 7 ± 0.026 0 | 0.609 6 ± 0.060 4 | 0.778 3 ± 0.052 0 | 0.766 1 ± 0.037 8 | 0.768 9 ± 0.031 0 |
| B 组 | |||||
| targetLSTM 算法 | 0.805 7 ± 0.036 8 | 0.470 7 ± 0.065 7 | 0.663 0 ± 0.060 2 | 0.785 5 ± 0.032 9 | 0.766 7 ± 0.028 0 |
| transLSTM 算法 | 0.842 9 ± 0.033 1 | 0.531 0 ± 0.072 3 | 0.720 9 ± 0.090 1 | 0.785 1 ± 0.030 4 | 0.774 9 ± 0.026 0 |
| targetLSTM(G) 算法 | 0.822 4 ± 0.042 4 | 0.484 1 ± 0.080 4 | 0.699 0 ± 0.077 2 | 0.774 0 ± 0.037 8 | 0.762 4 ± 0.028 5 |
| transLSTM(G) 算法 | 0.842 5 ± 0.034 4 | 0.526 3 ± 0.087 8 | 0.741 1 ± 0.080 5 | 0.775 1 ± 0.033 1 | 0.769 6 ± 0.028 5 |
| C 组 | |||||
| targetLSTM 算法 | 0.845 0 ± 0.015 9 | 0.365 1 ± 0.051 5 | 0.717 8 ± 0.043 7 | 0.797 8 ± 0.019 9 | 0.791 6 ± 0.017 2 |
| transLSTM 算法 | 0.860 9 ± 0.019 3 | 0.412 8 ± 0.061 4 | 0.759 3 ± 0.052 8 | 0.801 4 ± 0.016 9 | 0.798 2 ± 0.014 9 |
| targetLSTM(G) 算法 | 0.852 8 ± 0.017 4 | 0.380 8 ± 0.053 4 | 0.721 5 ± 0.059 9 | 0.804 9 ± 0.023 2 | 0.798 4 ± 0.018 6 |
| transLSTM(G) 算法 | 0.865 0 ± 0.019 7 | 0.424 5 ± 0.056 8 | 0.760 5 ± 0.059 7 | 0.806 0 ± 0.019 2 | 0.802 5 ± 0.016 0 |
| D 组 | |||||
| targetLSTM 算法 | 0.755 0 ± 0.030 2 | 0.422 2 ± 0.070 0 | 0.629 3 ± 0.055 6 | 0.740 6 ± 0.033 7 | 0.721 0 ± 0.028 7 |
| transLSTM 算法 | 0.793 6 ± 0.034 5 | 0.494 3 ± 0.057 8 | 0.692 2 ± 0.080 6 | 0.742 5 ± 0.037 8 | 0.733 2 ± 0.030 9 |
| targetLSTM(G) 算法 | 0.772 4 ± 0.032 9 | 0.436 5 ± 0.058 5 | 0.666 8 ± 0.080 9 | 0.743 9 ± 0.027 8 | 0.730 3 ± 0.022 8 |
| transLSTM(G) 算法 | 0.793 6 ± 0.036 5 | 0.493 1 ± 0.062 7 | 0.698 3 ± 0.071 6 | 0.742 3 ± 0.030 5 | 0.734 4 ± 0.025 4 |
| E 组 | |||||
| targetLSTM 算法 | 0.820 6 ± 0.037 9 | 0.444 7 ± 0.090 5 | 0.676 6 ± 0.085 3 | 0.813 0 ± 0.029 6 | 0.799 2 ± 0.025 2 |
| transLSTM 算法 | 0.850 6 ± 0.032 1 | 0.504 2 ± 0.092 8 | 0.722 0 ± 0.091 5 | 0.822 8 ± 0.034 3 | 0.812 3 ± 0.025 1 |
| targetLSTM(G) 算法 | 0.826 9 ± 0.036 7 | 0.444 2 ± 0.087 5 | 0.675 3 ± 0.088 2 | 0.812 9 ± 0.035 3 | 0.798 7 ± 0.028 2 |
| transLSTM(G) 算法 | 0.851 5 ± 0.032 4 | 0.509 0 ± 0.095 6 | 0.729 3 ± 0.077 3 | 0.815 5 ± 0.035 5 | 0.806 4 ± 0.027 5 |
| F 组 | |||||
| targetLSTM 算法 | 0.756 9 ± 0.120 6 | 0.438 9 ± 0.170 0 | 0.556 0 ± 0.195 9 | 0.786 9 ± 0.083 5 | 0.750 9 ± 0.078 5 |
| transLSTM 算法 | 0.824 4 ± 0.070 4 | 0.579 1 ± 0.168 4 | 0.646 7 ± 0.190 9 | 0.829 9 ± 0.065 9 | 0.801 8 ± 0.047 2 |
| targetLSTM(G) 算法 | 0.776 2 ± 0.109 7 | 0.463 2 ± 0.153 9 | 0.618 2 ± 0.131 1 | 0.792 6 ± 0.097 6 | 0.767 0 ± 0.091 5 |
| transLSTM(G) 算法 | 0.841 3 ± 0.060 2 | 0.598 3 ± 0.174 4 | 0.709 2 ± 0.162 5 | 0.814 8 ± 0.060 5 | 0.799 1 ± 0.047 5 |
| G 组 | |||||
| targetLSTM 算法 | 0.829 8 ± 0.018 0 | 0.393 5 ± 0.070 2 | 0.699 1 ± 0.052 2 | 0.800 8 ± 0.025 8 | 0.790 6 ± 0.020 8 |
| transLSTM 算法 | 0.861 7 ± 0.018 9 | 0.468 7 ± 0.073 2 | 0.747 5 ± 0.059 3 | 0.807 9 ± 0.022 6 | 0.801 5 ± 0.016 9 |
| targetLSTM(G) 算法 | 0.838 8 ± 0.022 6 | 0.397 0 ± 0.070 5 | 0.734 0 ± 0.059 4 | 0.803 8 ± 0.026 9 | 0.796 8 ± 0.021 8 |
| transLSTM(G) 算法 | 0.866 8 ± 0.017 1 | 0.473 1 ± 0.054 3 | 0.766 3 ± 0.054 2 | 0.806 6 ± 0.021 5 | 0.802 6 ± 0.015 9 |