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Abstract

Substance use disorder (SUD) is characterized, in part, by lack of control over drug seeking and 

taking. The prefrontal cortex (PFC) is highly involved in control of behavior and deficits in PFC 

structure and function have been demonstrated in clinical and preclinical studies of SUD. Of the 

various classes of drugs associated with the development of SUD, inhalants are among the least 

studied despite their widespread use among adolescents and children. In this work, we review what 

is currently known regarding the sites and mechanisms of action of inhalants with a focus on the 

volatile solvent toluene that is contained in a wide variety of legal and easily obtained products. 

We then describe how inhalants including toluene affect various behaviors with an emphasis on 

those associated with PFC function and how chronic use of inhalants alters brain structure and 

neuronal signaling. Findings from these studies highlight advances made in recent years that have 

expanded our understanding of the effects of inhalants on brain structure and reinforce the need for 

continued work in this field.
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1. Introduction

The term “inhalant” refers to any volatile, non-combusted substance that is inhaled to 

experience a euphoric high [1,2]. Human inhalant users commonly achieve this high by either 

“sniffing” fumes directly from a canister or concentrating the substance in a bag or cloth 

and inhaling or “huffing” the vapor (3000 – 15,000 ppm), several times over the course 

of 15 minutes to several hours [3]. Inhalants are chemically and pharmacologically diverse 

and include anesthetics, alkyl nitrites, nitrous oxide, and volatile organic solvents such as 

toluene (methylbenzene) [1,3,4] that is the main focus of this review. Whereas intoxicating 

illicit substances are often difficult or expensive to obtain, volatile organic solvents are 

found in many common and accessible household products (e.g. spray paints, cleaners, and 

adhesives). Despite the potential for harmful effects following acute or chronic use [1] of 
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inhalants and the prevalence of their use among adolescents and children, only a handful of 

NIH funded grants are devoted to their study (NIH Reporter, https://reporter.nih.gov).

2. Inhalant Use: General Features

2.1 Epidemiology

The National Survey of Drug Use and Health reports that over 26 million Americans aged 

12 and older have used inhalants (includes volatile solvents, gases and nitrites) at least once 

in their lives [5] with 2.4 million individuals reporting use in the past year [5]. This number 

is likely an underestimate as it does not account for delinquent and homeless individuals 

that are particularly susceptible to inhalant use. The highest percentage of inhalant users 

are adolescents aged 12–17 and unlike most other drugs, inhalant use declines with age [5]. 

Inhalant use in the United States peaked in the 1970’s but among adolescents has remained 

relatively constant over the period from 2015–2020 [5]. There are also sex-related differences 

in inhalant use (reviewed by Crossin and Arunogiri) [6]. For example, in American middle 

schools, girls have a higher lifetime prevalence than boys, but this is reversed by the end 

of high school [7]. In Europe, while lifetime prevalence in male adolescents has historically 

been higher than females, the opposite finding is reported in certain countries (e.g. Estonia, 

Croatia, Latvia) [8] although these gender specific differences are relatively small.

Inhalant use is a global phenomenon although usage patterns vary widely. Other well-

developed nations including Canada, Japan and several Western European countries report 

comparable or lower lifetime rates of inhalant use compared to the United States [8–10]. 

A particular burden, however, is placed on impoverished or isolated communities [11]. For 

example, groups of young Native Americans have been found “bagging” gasoline in rural 

Alaska [12]. In India, 35% of homeless children reported huffing toluene-containing whitener 
[13] and 91% of children living on the streets of Upper Egypt have been reported to use 

inhalants [14]. Native populations in the United states [15,16], Australia [17] and eastern 

Slovakia [18] also report some of the highest rates of inhalant use. These findings extend to 

the most impoverished countries of Europe, as high lifetime prevalence has been reported in 

Croatia (25%), Slovenia (14%), Greece (13%), Estonia (13%), Georgia (12%) and Austria 

(10%) [8]. A similar trend is observed across the United States where some of the poorest 

states (Alabama, Arkansas, Mississippi, West Virginia) report the highest lifetime prevalence 

(all > 9.9%) of inhalant use [19]. An important sequela of inhalant use is a high lifetime 

prevalence of mood, personality or anxiety disorders with female inhalant users being more 

likely to develop multiple psychiatric disorders than males [20]. In addition, early onset of 

inhalant use is associated with an increased risk of developing a substance use disorder 

including that for alcohol, cannabis, nicotine and psychostimulants [21].

2.2 Pharmacokinetics of Toluene

Organic solvents are perhaps the most accessible inhalant as illustrated by U.S. Poison 

Control data which describes cases involving over 3000 different solvent containing 

products [22]. Despite the overall modest amount of basic neuroscience research on 

inhalants, there are a number of reports on toluene (methylbenzene) including those 

examining the toxicity of toluene-containing products like adhesives, paints and paint 
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thinners [23–27] and those focused on industry workers exposed to chronic, low-level 

concentrations of vapor [28–33]. Following inhalation of toluene, the majority of vapor is 

exhaled unchanged. The rest enters the bloodstream through the alveoli and distributes 

through the body [34]. Blood concentration in rats reaches 60% of the peak concentration 

about 10 minutes following inhalation and declines to 30% about 40 minutes following 

inhalation [35]. Only about 3% of inhaled toluene reaches the brain [35] and it is mostly 

eliminated from the central nervous system 30 min following inhalation [36].

2.3 Pharmacodynamics of Toluene: Ion Channels

Toluene modulates the function of a diverse array of neuronal ion channels with effects 

ranging from inhibition to excitation to no effect (Figure 1) [3,37]. Toluene enhances the 

activity of recombinant and neuronal γ-aminobutyric acid (GABAA) receptors [38–40] as 

well as glycine receptors [38] and serotonin-gated 5HT3 receptors [41]. However, it inhibits 

nicotinic acetylcholine receptors [42], L-type neuronal calcium channels [43,44], gap junction 

connexin channels [45], and BK and GIRK potassium channels [46]. Toluene’s effect on 

ATP-gated P2X receptors is subtype-dependent as it potentiates P2X2, P2X4 and P2X2/X4 

receptors while inhibiting currents of P2X3 receptors [47]. Finally, toluene inhibits skeletal 

(Nav1.4) and cardiac (Nav1.5) voltage-gated sodium channels [48,49] but has little direct 

effect on those expressed in neurons in the hippocampus or mPFC [39,40].

Toluene dose-dependently inhibits recombinant N-methyl-D-aspartate receptors (NMDAR) 

at concentrations that do not affect membrane integrity and these effects are rapid, 

reversible, and subunit selective, with GluN1/2B receptors being more sensitive than 

GluN1/2A or GluN1/2C [50]. Toluene also inhibits native NMDAR channels expressed 

by neurons in the rodent medial prefrontal cortex (mPFC), nucleus accumbens, and 

hippocampus [40,51,52]. Toluene’s site of action on NMDARs is not precisely known 

although transmembrane domain mutations that reduce the inhibitory actions of alcohol 

on NMDARs have no effect on toluene inhibition suggesting different sites of action for 

these compounds [53]. In addition, a recent study found that pretreatment of mice with the 

NMDAR agonist N,N-dimethylglycine prior to toluene exposure reduced toluene-induced 

memory impairments [54]. These protective effects were prevented by co-treatment with the 

glycine site antagonist 7-chlorokynurenic acid suggesting that the NMDAR glycine binding 

site may be a critical mediator of toluene’s action on NMDARs.

In contrast to NMDARs, toluene has little direct effect on recombinant AMPA (2-

amino-3-(3-hydroxy5-methyl-isoxazol-4-yl) propionic acid or kainate receptors [50,51]. 

However, in mPFC NAc neurons, and BLA neurons innervated by the mPFC, toluene 

induces a slowly developing inhibition of AMPA-mediated excitatory post-synaptic currents 

(EPSCs) that persists following washout of toluene [40,55,56]. This effect resembled that of 

endocannabinoids (ECs) that reduce the release of glutamate by activating cannabinoid type 

I receptors (CB1R) on presynaptic terminals [57]. The toluene inhibition of AMPA EPSCs 

in mPFC and NAc neurons was blocked by a CB1R antagonist as well as a chelator of 

intracellular calcium suggesting that toluene induces the formation of ECs in these neurons 
[40,55]. Interestingly, in the NAc, the toluene-EC mediated inhibition of AMPA-mediated 
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EPSCs was observed only in D2 medium spiny neurons [52] similar to that found for 

EC-mediated long-term depression of AMPA EPSCs [58].

3. Behavioral Effects of Inhalants

3.1 Human Studies

Intoxication occurs after inhaling concentrated vapors (3000 – 15,000 ppm) of inhalants 

several times over the course of 15 minutes to several hours [3]. Individuals report positive 

effects including euphoria, disinhibition, and excitement that lasts 15 – 60 minutes following 

use of the drug [59,60]. While the addictive potential of inhalants was first posited in the 

mid-1900s [61,62], a specific disorder related to inhalant use was underdiagnosed through the 

early 2000s, with one meta-analysis classifying only 8% of inhalant users as individuals with 

a disorder [63]. With the adoption of the DSM-5, inhalant misuse and dependence is now 

defined using similar diagnostic criteria as traditional drugs of misuse including symptoms 

such as strong desire to use the inhalant (craving), continued use despite negative physical 

or interpersonal problems and tolerance to the effects of the inhalant [64]. Comparison of 

two similarly sourced populations shows that approximately 46% of individuals who use 

inhalants now meet criteria for an inhalant use disorder [65], up from 35% in 2006 [66].

3.2 Animal Studies

3.2.1 Locomotor Effects—Inhalation of toluene vapor causes biphasic effects on 

goal-directed behavior that is typical of central nervous system (CNS) depressants: low 

concentrations of toluene increase and high concentrations decrease fixed-rate responding 

for a food reward in mice, rats and pigeons [67–69]. Toluene generates an inverted-U dose-

response curve on locomotion like that produced by other CNS depressants [70–73]. Brief, 

repeated schedules of high-concentration toluene vapor exposures designed to model human 

consumption patterns also causes locomotor sensitization [74–76]. Behavioral sensitization 

has also been reported to vary across several strains of mice, with the ethanol-avoiding 

DBA/2J strain being particularly susceptible [77]. Toluene shows cross-sensitization to 

the locomotor effects of other drugs including diazepam and cocaine [78] and in a 

drug discrimination task, toluene substitutes for CNS depressants including ethanol and 

pentobarbital [79,80]. Similar to locomotor effects, toluene also cross-sensitizes with cocaine 

and substitutes for amphetamine in drug-discrimination studies [81,82]. While toluene can 

suppress CNS activity, these findings suggest that toluene is not strictly a depressant, 

supporting clinical observations and its mixed pharmacological profile in studies of human 

solvent users [59,60].

3.2.2 Conditioned Place Preference and Intracranial Self-Stimulation—The 

conditioned place preference (CPP) test is used with animals to measure the association 

of a rewarding experience with the context in which it was experienced. Like all other 

drugs of misuse, toluene generates this hedonic association in rodents [83,84]. In addition 

to CPP, intracranial self-stimulation (ICSS) can be used to assess the effect of drugs on 

reward-processing. To conduct this task, rodents are implanted with an electrode in the 

median forebrain bundle and then trained to operantly respond for different frequencies of 

activation. Stimulation of this tract is highly reinforcing, as it activates limbic structures 
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involved in reward [85]. The response rate in the presence of a drug compared to baseline 

is used to measure how primed the reward neurocircuitry is compared to baseline with 

lower rates indicating that the animal needs less stimulation to feel reward. Animals treated 

with amphetamine, methamphetamine, MDMA, cocaine, nicotine, diazepam, or caffeine 

have lower ICSS response rates [85–87]. Surprisingly, initial reports showed that glue vapors 

containing 25% toluene increased ICSS threshold [88]. Studies using pure toluene vapor, 

however, have demonstrated the expected decreases in ICSS response rate, an effect that 

requires mGlu2/3 and GABAA activity [89–92].

3.2.3 Inhalant Self-Administration—In operant-based drug self-administration, 

animals learn to self-administer a drug (usually orally or intravenously via a chronically 

implanted catheter) for multiple hours per day over the course of several weeks. This 

is usually followed by extinction training where no cues or drug are presented followed 

by reinstatement or relapse trials to detect changes in drug seeking or craving. The 

development of an animal model of inhalant self-administration has lagged behind other 

drugs presumably due to the difficulty in controlling inhalant concentrations and the 

possible aversive effects associated with solvent odor. In early studies, a small number 

of monkeys fitted with a nasal catheter [93] or a custom inhalation helmet [67] were trained 

to self-administer lacquer thinner, nitrous oxide or toluene vapor. Response patterns were 

largely consistent with reward-based behavior although there was considerable variability 

between subjects. A subsequent study using a yoked control procedure in mice involved 

intravenous administration of a toluene-containing solution elicited via a nosepoke at the 

front of the chamber [94]. Mice whose injections were contingent upon the nosepoke 

made more responses than those who received the same dose in a non-contingent manner 

suggesting that responses were reward driven. More recently, our group developed a rat 

model of toluene self-administration in which a nosepoke in the active port delivered a 

brief exposure to toluene vapor while a response in the other port had no consequence [95]. 

During training, animals first underwent sessions where they were exposed to low vapor 

concentrations (~100 ppm) to acclimate them to the odor of toluene followed by sessions 

involving regularly timed non-contingent infusions accompanied by a cue light and sound. 

During subsequent free choice sessions, toluene-trained rats demonstrated a preference 

for the active nosepoke and achieved vapor concentrations that produce conditioned place 

preference (Figure 2). Responding for the active nosepoke showed a burst during initial 

extinction trials (no vapor or cues provided) followed by a gradual reduction in activity. 

Following extinction, responding for the active nosepoke was elicited by the introduction 

of cues previously associated with toluene vapor (cue-induced reinstatement) but not by a 

single re-exposure to the toluene vapor (drug-induced reinstatement). The failure of toluene 

to induce responding likely indicates that the dose (500 ppm) and duration (15 seconds) of 

the vapor cue were sub-optimal and that additional exposures should be tested. However, 

this finding could also reflect a differential loss of drug versus cue-induced reinstatement 

such as that reported for methamphetamine [96], albeit over a shorter time frame. In addition, 

prefrontal circuits underlying drug and cue-induced reinstatement appear to differ [97,98] and 

as reviewed below, toluene-induced alterations in mPFC neural activity are projection and 

layer specific [99] suggesting a possible mechanism underlying the dissociation between cue 

and drug-induced reinstatement following toluene self-administration.
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4. The Prefrontal Cortex

4.1 Executive Function & Top-Down Control of Behavior

The prefrontal cortex (PFC), a specialized sub-division of the frontal lobe, is a hub for 

executive function and exerts control over a variety of sub-cortical areas [100,101]. In a 

top-down executive control model, the PFC engages in executive functions by maintaining 

patterns of activity that represent goals [102]. This model also suggests subdivisions of 

the PFC based not only on anatomy, but also subcortical (especially limbic) projections. 

Under this model, the rodent PFC is broken down into the following subdivisions, each 

of which have human homologues [100]: dorsomedial (anterior cingulate and precentral), 

ventromedial (prelimbic, infralimbic, medial orbitofrontal), lateral (anterior insula and 

lateral orbitofrontal), and ventral (ventral orbitofrontal and ventrolateral orbitofrontal). The 

ventromedial PFC is particularly relevant for toluene-induced alterations since this region 

appears to be involved in maladaptive goal-based decision making seen in substance use 

disorders [103,104].

Cognitive “top-down” control of executive function refers to the ability to regulate 

cognitive activity and behaviors needed to achieve a central goal, especially in the 

presence of intermediate steps, alternate rewards or distractions [105,106]. This process 

includes monitoring interactions with the world, evaluating the results of actions, and 

modifying behaviors to reach the intended goal. Thus, executive control includes functions 

such as working memory, temporal processing, planning, flexibility, and decision making. 

Pathological failures of cognitive control spans many psychiatric illnesses [107–109] including 

substance use disorders [110], where drug relapse is common despite known negative 

consequences and expressly wanting to quit.

4.2 Effect of addictive substances including inhalants on PFC function

4.2.1 Human Studies—Chronic intake of rewarding substances impairs PFC function 

consistent with the notion of weakened top-down control in individuals with an SUD. For 

instance, reduced PFC reactivity to negative reinforcers predicts marijuana and cocaine use 

in humans [111] and activating the PFC can reduce drug craving in humans [112]. Descending 

cortico-striatal pathways seem especially important [113,114] as human imaging studies 

have demonstrated that activity in the PFC is linked to striatal function, and is inversely 

associated with sensitivity to hedonic effects of psychostimulants [111,115]. Further, reduced 

expression or function of striatal D2Rs is linked to decreased activity in the dorsolateral PFC 

in human subjects with SUD [116].  Moreover, the function of the PFC in individuals with an 

SUD has been shown to predict clinical outcomes, with disrupted connectivity between PFC 

and striatal regions being a consistent finding among individuals addicted to various drug 

classes [117]. Recently, Jain and colleagues measured BOLD fMRI responses in response to 

drug-associated cues to compare craving among inhalant users and control subjects [118]. In 

inhalant users, activity in the dorsal striatum. a dopamine-rich region posited to be important 

for habit formation, was increased by inhalant cues. These results are an important finding 

in the pursuit of treatments for inhalant use in humans. For instance, it was reported that 

substitution therapy using lavender oils and perfume reduced cravings in inhalant abusers 
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although these comparisons were only made against baseline cravings and thus do not 

control for a potential placebo effect [119].

4.2.2 Animal Studies—Studies in animals corroborate the importance of the PFC and 

its descending striatal projections in regulating drug reward related behaviors [103,120–122]. 

For instance, mPFC activity is reduced in cocaine seeking rodents, and optogenetic 

excitation of the mPFC during abstinence reduced drug seeking [123]. In line with human 

studies, specific frontostriatal pathways are involved in drug-seeking behaviors in rodents. 

For instance, prelimbic mPFC neurons that project to the nucleus accumbens core (PL-

NAcc) promote, while infralimbic neurons that project to the nucleus accumbens shell 

(IL-NAcs) block psychostimulant seeking behavior [97,120,121,124]. A similar effect was 

observed for toluene as the expression of toluene CPP was blocked when IL-NAcs neurons 

were chemogenetically silenced [84]. However, these effects may be drug-specific, as 

reinstatement of heroin seeking was enhanced by activation of IL-NAcs neurons [125,126] 

and reinstatement of alcohol self-administration was facilitated by inactivation of PL-NAcc 

neurons [127]. Nonetheless, these data strongly support the involvement of PFC-NAc 

circuitry in regulating substance use-related behaviors in rodents, although the specific 

sub-circuitry does not completely generalize among different rewarding substances.

At the cellular level, the effect of toluene vapor inhalation on mPFC-NAc signaling is circuit 

specific. Following a single binge-like exposure to toluene, current-evoked firing of deep 

layer PL-NAcs neurons is reduced while that of deep layer PL-NAcc neurons is enhanced 
[99]. These changes in excitability were transient and age-dependent as they were present 

24h following the exposure but not after 7 days and were observed when animals were 

exposed during mid-late adolescence (PN41–44 days) but not during adulthood (PN97–100 

days). The mPFC also impacts reward-related circuitry as pharmacological enhancement 

of mPFC activity via intra-mPFC infusion of picrotoxin blocked the toluene-induced 

increase in the AMPA/NMDA ratio of VTA DA neurons that project to the NAc [55]. 

Conversely, pharmacologically inhibiting the mPFC allowed a previously sub-threshold dose 

of toluene vapor to increase the AMPA/NMDA ratio of NAc-projecting VTA DA neurons 
[55]. Interestingly, this effect was circuit selective as toluene inhalation had no effect on 

the AMPA/NMDA ratio of VTA DA neurons that project to the prelimbic mPFC. These 

studies provide strong evidence that toluene alters the function of specific mPFC connected 

networks that may underlie maladaptive decision making in inhalant users.

5. Inhalant-induced Cognitive Dysfunction

5.1 Human Studies-Behavior

The sequelae of inhalant misuse extend beyond changes in reward value processing and 

cue reactivity. Early studies on recreational inhalant users mention impairments in memory, 

attention and judgements compared with control and even polydrug users [27,128]. Impaired 

processing speeds can even be detected after a single drug experience [129]. Other studies 

have demonstrated reductions in IQ, working memory, behavioral flexibility, attention, 

and response inhibition in inhalant users [130–132]. Some toluene-induced impairments in 

cognition appear to recover (e.g. paired-associations, response inhibition) while others 
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(e.g. visual motor speed, learning and memory, and executive control) can persist despite 

a protracted period of drug abstinence [133,134].

Lasting deficits may reflect damage to white matter fiber tracts tissue that are particularly 

susceptible to toluene due to their high lipid content and toluene’s high lipophilicity. Toluene 

damages the corpus callosum and other areas of cortical white matter essential for executive 

function [135–138] with the degree of white matter injury correlated with the severity of 

cognitive impairment [139]. In humans, prolonged inhalant use can also produce toluene 

leukoencephalopathy, a form of dementia [27,135,137,139,140].

5.2 Animal Studies

5.2.1 Learning and Memory—In line with human studies, chronic exposure of rodents 

to toluene also causes a wide range of impairments in cognitive behaviors including reduced 

novel object recognition, spatial learning deficits, and altered inhibitory avoidance when 

tested following little or no drug abstinence [64,75,141,142]. Toluene-treated rats also showed 

insensitivity to contingency degradation as responding in a food-reward task was similar 

between degraded and non-degraded levers [143]. Repeated exposures to toluene increases 

the expression of CYP2E1 and promotes production of reactive oxygen species [144]. 

Subsequent astrogliosis and inflammation, which is also evident following acute toluene 

exposure, could lead to cell death and dysfunction in the prefrontal cortex and other areas 

and contribute to learning and memory deficits [141,145,146]. In fact, Cruz et al. 2020 found 

that co-treatment of rats with toluene and the anti-inflammatory compound minocycline 

across several days of treatment abolished toluene-induced deficits in temporal order 

memory and passive avoidance. Minocycline also prevented glial activation, and partially 

rescued toluene-induced changes in NLRP3 and IL-1β in the prelimbic cortex. These 

findings suggest that persistent deficits in cognitive function following chronic toluene 

exposure may involve both proinflammatory actions as well as effects on ion channel 

function and neurotransmitter signaling.

5.2.2 Delay Discounting and Strategy Set-Shifting—Significant increases in delay 

discounting, where animals are tasked with choosing to wait progressively longer periods of 

time for a large food reward, have also been observed after a history of toluene inhalation 
[143]. This finding is in contrast to other rewarding drugs that normally cause a leftward 

shift in delay discounting indicating that rodents are unwilling or unable to wait longer 

periods of time for a large reward [147]. A similar finding is observed in humans [148,149] 

and is usually interpreted as increased impulsivity. The rightward shift in delay discounting 

produced by toluene was accompanied by increased inhibitory GABAAα1 protein in the 

prelimbic mPFC. Rightward shifts in delayed discounting have also been observed following 

pharmacological lesioning of the mPFC [150,151] and recent reports show that subsets of 

PL-mPFC neurons encode reward value during this task [152]. Interestingly, Bowen and 

colleagues previously reported that performance in a waiting-for-reward task was altered 

in mice chronically exposed to toluene vapor. In this task of inhibitory control, animals 

can earn “free” food rewards by waiting progressively longer periods of time after making 

a lever press. Mice chronically treated with toluene vapor earned significantly fewer free 
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rewards than control mice and this effect persisted for several weeks following cessation of 

the toluene exposure [153].

When strategy set-shifting was tested, rats with a prior history of adolescent toluene 

exposure required fewer trials than controls to achieve criteria using a between-session 

protocol but not during a within-session test [154]. This was hypothesized to reflect a 

toluene-induced reduction in the ability to access the previously learned rule possibly via 

effects on the hippocampus. These effects may be selective for different forms of memory 

as a similar adolescent toluene exposure protocol had no effect on spatial memory learning 

in adults [155]. Regarding effects of toluene on motivation to obtain a reward in an operant 

model, Furlong et. al (2016) noted an increase in progressive ratio breakpoint in animals 

with a history of toluene inhalation [143] while other studies have reported no difference in 

this measure [154,155].

5.2.3 Risky Choice Decision Making—Additional studies have examined the effects 

of toluene vapor on decision making using a paradigm that incorporates an element of 

risk or uncertainty. In one example, food-restricted rats undergo sessions where one lever 

predicts a small but always delivered reward (safe choice) while the other lever yields 

a large reward under an increasing or decreasing probabilistic schedule (risky choice). 

Animals typically shift their preference towards the risky choice as the odds of receiving 

it increase (and vice versa). Work by Floresco and colleagues demonstrated that flexible 

changes in choice behavior requires areas of the prefrontal and orbitofrontal cortex and 

downstream targets including the BLA and NAc [156,157]. In a study from the author’s lab 

using the probabilistic risk task, rats briefly exposed to toluene vapor 30 min before the 

test session showed a dose-dependent rightward shift in the preference for the risky lever 

as reward probabilities decreased as compared to air controls. This effect was observed in 

both males and females and was accompanied by changes in choice strategy reflected as 

a decrease in lose-shift behavior (Figure 3) [158]. While these findings initially suggested 

that toluene vapor increases risky decision making, toluene-exposed rats were slower to shift 

their preference towards the larger reward when reward probability went from low to high. 

Together, these findings are more consistent with a loss of behavioral flexibility manifested 

as impaired updating of the probability of obtaining the large reward as the task progressed. 

A similar finding was reported in rats administered amphetamine [159,160] prior to testing 

suggesting the involvement of altered dopaminergic signaling in the mPFC and connected 

structures such as the BLA [161]. The toluene-induced impairment of flexible decision 

making reported by Braunscheidel et al. was accompanied by alterations in mPFC neural 

activity as measured by in vivo fiber photometry. In air-exposed animals, mPFC GCaMP6f 

calcium signals during reward consumption scaled with the size of the reward while those 

in toluene-exposed animals were similar for small or large rewards (Figure 3). This might 

reflect a toluene-induced deficit in the ability of mPFC neurons to properly assign value 

to a new reward that could then affect subsequent decision making. Notably, no lasting 

changes in probabilistic decision making were observed in rats treated with toluene during 

adolescence and then tested in adulthood in the absence of drug. In these adult animals, 

an acute exposure just prior to the test produced similar effects on risk behavior in toluene 

naïve and adolescent-exposed animals [158].
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5.2.4 Decision Making: Role of Endocannabinoids—As mentioned earlier, slice 

electrophysiology studies showed that toluene induces the formation of endocannabinoids 

to produce a CB1 receptor-dependent long-term depression of glutamatergic signaling 

in mPFC pyramidal neurons, D2 medium spiny neurons in the nucleus accumbens and 

BLA neurons innervated by the mPFC [40,52,56]. Given the role of these areas in decision 

making, Braunscheidel et al. investigated whether CB1Rs including those in the mPFC are 

involved in risk/reward decision making and if they mediate toluene-induced impairment 

of flexible decision making. Systemic administration of the CB1R antagonist AM281 had 

no effect on choice behavior in air-exposed rats and did not prevent the toluene-induced 

shift in risky choice preference [162]. AM281 did reduce the likelihood of an animal 

choosing the risky lever following a risky win (termed win-stay behavior) but this was 

only observed in air-treated animals and there was no effect on lose-shift behavior in 

either group. Intra-mPFC administration of the CB1R antagonist AM251 also did not affect 

choice behavior in air exposed animals and did not prevent the shift in risk preference 

following toluene vapor exposure. A similar lack of effect on choice behavior was observed 

following intra-mPFC infusion of the CB1R agonist WIN55,212–2 in control animals. 

However, other studies have reported that CB1R agonists can affect reversal learning [163] 

and memory recall [164] suggesting that effects of cannabinoid based signaling on behavior 

are task-dependent. While findings from the Braunscheidel et al. study did not support the 

hypothesis that release of ECs mediated toluene’s effects on risk behavior, other factors 

may be involved. For example, the slice electrophysiology studies illustrating toluene/EC 

long-term depression of AMPA receptor signaling were done with adolescent rats while 

animals used in the behavioral risk experiments were of adult age before testing due to 

the extensive training required to learn the task. Whether toluene-induced release of ECs 

is age-dependent is not currently known but other effects of toluene including locomotor 

stimulation and modulation of mPFC neural activity have been shown to more pronounced 

in adolescent animals than adults [75,99]. More studies are needed to establish whether age 

or other factors are important in linking toluene/endocannabinoid long-term depression of 

excitatory signaling and changes in cognitive and/or reward-based behavior.

5.2.5 Long-term Effects of Inhalant Use—Reports of persistent behavioral effects 

following exposure to inhalants are mixed: deficits in learning and memory have been noted, 

but more complicated tasks such as outcome devaluation and Pavlovian-to-instrumental 

transfer do not appear to be significantly altered [143,154,155]. However, rats treated 

chronically with toluene vapor during adolescence and tested in adulthood required more 

trials to achieve criteria during initial simple operant conditioning [154,155]. This deficit was 

transient however, and performance of toluene-treated animals matched those of control 

animals in subsequent phases of training.

In contrast with results from human studies, leukoencephalopathy was not observed in 

animals that experienced a near lifetime exposure to toluene vapor [165]. However, treating 

rodents with chronic, intermittent toluene vapor binges does result in region-specific white 

matter abnormalities, with deficits in the anterior commissure noted following a month of 

exposure [166]. Rearing (vertical plane exploration) deficits were also identified, but they 

preceded any changes in white matter abnormalities and persisted following white matter 
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recovery suggesting separate underlying mechanisms. Rearing more likely reflects either 

fear and anxiety or non-specific increases in motivation and arousal and not higher ordered 

executive function [167]. As such, and in agreement with the general lack of an effect 

on complicated decision making in other preclinical studies, the corpus callosum was not 

affected in this study while other white matter deficits showed recovery following 8 weeks 

of drug abstinence [166]. At the molecular level, chronic exposure of adolescent rats to 

toluene vapor produces changes in expression of NMDAR subunits (GluN2A, GluN2B) and 

PSD95 in the hippocampus that persist well after the last exposure [143,168]. Toluene-induced 

changes in GABA receptor expression have also been noted although the direction of these 

changes appears to be region-dependent [143,168].

6. Concluding Remarks

Much of our understanding on the pharmacology and neurobiology of volatile organic 

solvents comes from studies of toluene, a methylated form of benzene found in a variety 

of paints, paint thinners, and glues. While these studies have identified potential sites and 

mechanisms of action for inhalants on brain reward and control circuitry, inhalants remain 

an understudied class of drugs despite their worldwide use and potential for harmful use 

especially among children and adolescents. Maladaptive decision making in substance use 

disorders is driven in part by drug-induced changes in the prefrontal cortex, a key brain 

area involved in top-down control over complex decision making. The studies cited in 

this review highlight an emerging literature on the effects of toluene on cognitive function 

and the physiology of the prefrontal cortex and its down-stream circuitry. Understanding 

how toluene vapor inhalation produces these changes is critically important for developing 

targeted treatment strategies for individuals diagnosed with an inhalant use disorder.
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Figure 1. 
Summary of toluene’s effect on selected recombinant ion channels. Color bar at bottom 

shows toluene concentrations ranging from odor threshold (left) to that associated with 

voluntary inhalation (right). Position of the channel subtype along the color bar indicates 

degree of sensitivity to toluene while position relative to the dotted horizontal line indicates 

inhibition (below), potentiation (above) or no effect (on the line). Underlined channel 

indicates data from the author’s laboratory. Figure updated from Beckley and Woodward, 

2013 and used with permission.
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Figure 2. 
Self-administration of toluene vapor by rats. A) Schematic shows setup of vapor inhalation 

chamber with active and inactive nosepokes and vaporizers supplying toluene vapor. 

Entry into the active nosepoke delivers 15 sec of toluene vapor from vaporizers. Traces 

below show examples of toluene vapor self-administration by different animals with vapor 

concentration (ppm) on the y-axis and session time (sec) on the x-axis. Open circles 

indicate toluene vapor concentration during the session with red-filled circles indicating 

active nosepokes. B) Daily average of self-administration of toluene or air (mean ± SEM). 

C) Time course of self-administration of toluene or air during a 1 hr session. Data are mean 
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(± SEM) from the last week of self-administration. Figure adapted from Braunscheidel et al., 

2020 and used with permission.
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Figure 3. 
Effects of toluene vapor on decision making by male and female rats during a probabilistic 

risk task. Top panel show performance of males (top) and females (bottom) on (A) 

proportion of risky choice during descending odds protocol; (B) proportion of risky choice 

after risky win (“Win-Stay”); (C) proportion of safe choice after risky loss (“Lose-Shift”); 

(D) choice latency after cue; (E) omissions. Data are mean ± SEM. Changes in mPFC 

neuronal calcium measured by GCaMP6f fiber photometry during probabilistic risk task in 

air (F) and toluene (G) exposed rats. Note increase in signal during deliberation phase just 

prior to choice selection and change in activity during reward consumption. Unlike controls, 

toluene exposed animals showed no discrimination between a safe win (green trace) and 
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a risky win (blue trace). Figure adapted from Braunscheidel et al., 2019 and used with 

persmission.
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