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Abstract

Purpose of review: Malicious or accidental radiation exposure increases risk for the 

hematopoietic acute radiation syndrome (H-ARS) and the delayed effects of acute radiation 

exposure (DEARE). Radiation medical countermeasure (MCM) development relies on robust 

animal models reflective of all age groups and both sexes. This review details critical 

considerations in murine H-ARS and DEARE model development including divergent radiation 

responses dependent on age, sex, and genetic diversity.

Recent findings: Radioresistance increases with murine age from pediatrics through geriatrics. 

Between sexes, radioresistance is higher in male weanlings, pubescent females, and aged males, 

corresponding with accelerated myelopoiesis. Jackson diversity outbred (JDO) mice resemble 

non-human primates in radiation response for modeling human diversity. Weanlings and JDO 

models exhibit less DEARE than other models.

Summary: Highly characterized age-, sex- and diversity-conscious murine models of H-ARS and 

DEARE provide powerful and essential tools in MCM development for all radiation victims.
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Introduction

Nuclear accidents and threats of terrorist activity involving radioactive material put 

humankind at risk for life-threatening acute radiation syndromes (ARS) and the delayed 

effects of acute radiation exposure (DEARE) in survivors of ARS. The hematopoietic 

system is comprised of the rare and highly quiescent bone marrow (BM) hematopoietic 

Address correspondence to Andrea M. Patterson: anmapatt@iu.edu, Indiana University School of Medicine, Department of 
Medicine, Division of Hematology/Oncology, 980 West Walnut St, R3-C322, Indianapolis, Indiana 46202, USA. 

Conflict of Interest: Christie M. Orschell reports receiving consulting fees from NSRI. Tong Wu and Andrea M. Patterson declare 
that they have no conflict of interest.

Human and Animal Rights: This article does not contain any studies with human subjects performed by any of the authors. 
Animal studies performed by the authors (previously published and new data in Figure 2) were approved by the Indiana University 
School of Medicine Institutional Animal Care and Use Committee and complied with all applicable ethical standards (including the 
Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional 
guidelines).

HHS Public Access
Author manuscript
Curr Stem Cell Rep. Author manuscript; available in PMC 2023 September 01.

Published in final edited form as:
Curr Stem Cell Rep. 2022 September ; 8(3): 139–149. doi:10.1007/s40778-022-00214-z.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stem cells (HSC), which give rise to the lineage-committed, mitotically active hematopoietic 

progenitor cell (HPC) pool, which in turn produces all the formed elements of the blood 

at a rate as high as half a trillion elements daily [1]. However, less differentiated and 

actively proliferating cells are the most sensitive to irradiation, as in the Law of Bergonié 

and Tribondeau [2, 3]. High sensitivity of the hematopoietic (H) system to radiation 

damage results in H-ARS, where loss of neutrophils and platelets increases susceptibility to 

infection, hemorrhage, and death within weeks if untreated [4, 5]. The H-ARS subsyndrome 

begins to manifest at absorbed doses of approximately 0.7–2 Gy for humans [2, 6, 7], with 

the LD50/60 (lethal radiation dose for 50% of humans at 60 days post-exposure) estimated 

to be around 4 Gy [8]. Administration of antibiotics and fluids as supportive care can 

increase the LD50/60 to around 6-7 Gy [9, 10]. Exposure to higher radiation doses damages 

more radioresistant organ systems, including the gastrointestinal (GI) system (>8 Gy), the 

cardiovascular system (>20 Gy), and ultimately the central nervous system at extreme doses 

(>80 Gy) where death is imminent [11].

In the event of a nuclear or radiological emergency, H-ARS would be the most prevalent 

but also the most treatable of the ARS subsyndromes, with administration of approved 

and stock-piled medical countermeasures (MCMs) that significantly increase survival via 

targeted recovery or protection of the exquisitely radiosensitive HPCs. There are currently 

four hematopoietic growth factors (HGFs) licensed by the Food and Drug Administration 

(FDA) as MCMs for treatment of lethally irradiated personnel: Neupogen® (G-CSF), 

Neulasta® (peg-G-CSF), Leukine® (GM-CSF), and Nplate® (TPO receptor agonist). These 

HGF accelerate recovery of neutrophils or platelets and have demonstrated efficacy to 

increase survival from H-ARS when administered as radiomitigators at least 24h after lethal 

radiation exposure [12]. Given the current environment and ongoing threat of malicious use 

of radioactivity, research and development of MCMs with more favorable administration 

schedules, storage conditions, shelf lives, efficacy for radioprotection, or efficacy for 

DEARE continues at an astounding pace. The need for radiation MCMs and large-scale 

medical preparedness has never been greater, and robust pre-clinical animal models are 

pivotal to this work [13].

Important considerations for animal models of H-ARS and DEARE

The FDA Animal Rule (AR), introduced in 2002, requires safety and efficacy testing of 

MCMs in practical and relevant animal models when human testing is unethical, such as 

for exposures to chemical, biological, radiological, or nuclear substances (21 CFR, parts 

314 and 601) [14]. The FDA AR requires efficacy testing in two animal species with 

mechanisms expected to be predictive of the human response, or one species if that species 

is sufficiently well-characterized as a model for the human response. In 2015, a supporting 

guidance document was published [15] that encouraged MCM development to also include 

safety and efficacy in at-risk populations including pediatric, geriatric, & pregnant mothers. 

This is particularly relevant since most H-ARS models have been developed in animals of 

an age representing young adult humans, and often in only one sex. There is good reason 

for this; young adult animals offer highly uniform biological replicates ideal for establishing 

MCM efficacy and mechanisms of action, and avoids variables associated with ongoing 

maturation in pediatric animals and onset of deterioration in aging animals. However, 
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the uniformity of response in young adult animals makes them poor models for at-risk 

populations.

Considerable variability exists in the radiation response and MCM sensitivity due to age- 

and sex-dependent differences in body size/composition, physiology, growth rates, and 

metabolism, among others [16-20]. In animals and humans, the pediatric hematopoietic 

system is more radiosensitive than that of adults [21-28], possibly due to faster HSC 

cycling rates in pediatrics and differences in surface marker expression [29, 30]. Rapid 

development in the tissues and organ systems of children can affect radiation response 

and pharmacokinetics/pharmacodynamics of candidate MCMs compared to adults [31-33]. 

Recovery of thymopoiesis from myeloablative therapies has an inverse relationship with 

advancing age [34-36], and baseline DNA damage accumulates in aging HSCs [37-40]. In 

addition, advanced age brings diminished ability to respond to hematopoietic stress, altered 

HSC/HPC niche composition and function, increased clonal hematopoiesis associated with 

malignant transformation, HSC bias toward the myeloid lineage, and declining immunity 

against viruses and cancer [41-45]. Furthermore, sex affects radiosensitivity in humans and 

mice [46-48] and can influence MCM effectiveness [49]. Thus, male and female pediatric, 

young adult, and aged hematopoietic systems are distinct from one another and warrant 

separate modeling for development of MCMs effective for all radiation victims.

While H-ARS animals models have been developed in non-human primates [50], canines 

[51, 52], and mini-pigs [53, 54]), mice are the most common species for MCM efficacy 

testing due to their favorable economics, existence of historical databases, feasibility of 

aging studies, and research tools allowing for sophisticated mechanistic studies. Of the 

myriad mouse strains, C57BL/6 mice are one of the most commonly used strains for 

radiation studies. The hematopoietic system of C57BL/6 mice is well-characterized, and 

the availability of congenic strains provides the only true assay for HSC function, the 

competitive transplantation assay. Important for radiation studies, C57BL/6 are moderately 

radiosensitive compared to other mouse strains [55] and are one of two strains of mice 

recommended for testing of radiomitigators and radioprotectants by the Centers for Medical 

Countermeasures against Radiation in 2010 [56].

Given the genetic homogeneity of C57BL/6 mice, numerous variables can readily affect 

survival outcomes of lethal radiation studies, and must be strictly controlled. We have 

documented survival effects from time of day of irradiation, frequency of blood sampling 

and other stress effects, provision of support such as antibiotics or wet feed during the 

acute phase, mouse source (vendor, barrier, room), and the dosing volume, frequency, 

and route for MCMs and vehicle controls [57-61]. We have also observed the importance 

of controlling for cage effects, acclimation period, identification method, housing (vent 

rack, barrier cages, social groups), husbandry (food, bedding, enrichment, water pH, 

temperature, humidity, air changes, light:dark cycles), irradiation (source, dose rate, 

irradiation apparatus, dosimetry), anesthesia methods, and euthanasia criteria [57, 58]. In 

addition, water consumption rate was found to change with age in a sex-specific manner, 

dropping significantly following irradiation, and dropping even lower with provision of wet 

feed, which is relevant for MCM dosed ad libitum in drinking water [57, 61]. We have 

shown significantly increased radioresistance of C57BL/6J mice derived from our in-house 
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breeding colony compared to C57BL/6J mice purchased from Jackson laboratories [60], 

and geriatric mice of substrain C57BL/6JN sourced from the National Institute on Aging 

(NIA) were significantly more radiosensitive than C57BL/6J aged in-house [61]. These 

observations are in line with reports of genetic drift in same-strain mice maintained in 

separate facilities for extended periods [62, 63]. Taken together, these data illustrate the 

importance of strict control of all possible variables in conducting murine H-ARS studies.

To develop murine H-ARS models relevant for humans of different ages, correlates between 

mouse age and human age must be established, but this is not straightforward. Towards this 

goal, efforts to align developmental rates of various organs and tissues between species have 

been attempted. For example, by epithelial gene expression, the GI system of a 4-week-old 

mouse is equivalent to a newborn human [64], while the brain of a 5-week-old mouse 

is developmentally comparable to a 2-year-old human [65]. In our models, we based age 

equivalency on the growth and maturation rate and sexual maturity of mice according to 

Flurkey et. al [66] and Richman et. al. [67] as shown in Figure 1A. Note that mouse 

maturation rate is accelerated at younger ages compared to older, and puberty occurs at the 

age of 5 weeks in most inbred strains like C57BL/6J [67], which correlates well with the 

calculated human age of 12–13 years. Nevertheless, age equivalencies in Figure 1A should 

be interpreted cautiously. In this review, we will focus on well-characterized murine models 

of H-ARS and DEARE, how they are impacted by age, sex, and genetic diversity, and what 

we can learn from them about hematopoietic radiation biology and MCM development.

Young adult H-ARS murine model

We first developed a total body irradiation (TBI) young adult murine model of H-ARS 

in 3-month-old C57BL/6J mice [57], roughly equivalent to 18-20-year-old humans [67, 

68] (Figure 1A). The radiation Dose lethality Response Relationship (DRR) was defined 

using multiple groups of ~20 mice/group, with each group exposed to a different radiation 

dose spanning 6.5 to 9 Gy in 0.25 Gy increments. Radiosensitivity was similar between 

sexes in the young adult model, with an LD50/30 of 849 cGy in males and 859 cGy in 

females. Likely due to their accelerated physiology compared to larger animals, mice survive 

higher radiation doses than humans but experience H-ARS mortality within a shorter period 

following exposure. Thus, the lethal dose estimates in mice are based on survival at 30 days 

(i.e., LD50/30) rather than 60 days (i.e., LD50/60) as in humans. Probit plots of percent 

30-day mortality at each radiation dose are used to estimate the LD50/30, or any other 

LDXX/30 for the model, as seen in Figure 1. A relatively steep slope was observed for 

the probit plot defining the young adult C57BL/6J model, such that the entire range from 

LD10/30 to LD90/30 spanned only 1.1 Gy. This steep slope underscores the homogeneity 

among young adults of this inbred strain, and illustrates the need for tight control of 

all experimental variables mentioned earlier in this article. For comparison, the LD10/60 

to LD90/60 in nonhuman primates spans 2.27 Gy [50]. As acknowledged previously by 

Cerveny et. al., “the more inbred and homogenous the population, the steeper the slope of 

the lethality curve” [69].

Kinetics of complete blood cell (CBC) decline and recovery were defined throughout the 

30-day acute phase in our young adult C57BL/6J model. Lymphocytes declined most 
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rapidly, reaching their nadir by day 2, followed by neutrophils which reached their nadir 

around days 6-10, and then erythrocytes and platelets which slowly declined to their 

nadirs by approximately day 20. All blood cell parameters were mostly recovered by 

day 30 in surviving mice, except for lymphocytes which were still somewhat depressed 

[57]. Increased recovery of CBC parameters correlated with increased survival when mice 

were administered effective MCM: the radiomitigator Neupogen increased survival from 

30% to 67% and accelerated CBC recovery, while the radioprotectant Amifostine provided 

100% survival with significantly less severe nadirs for all CBC parameters along with 

faster recovery [57]. This model has been widely used to test other candidate MCMs from 

the government or private industry [70-77], and supported the licensure of Neulasta for 

treatment of H-ARS.

Young adult hematopoietic DEARE murine model

The DEARE are a spectrum of chronic illnesses affecting multiple organ systems in 

survivors of H-ARS, and are believed to be due to chronic oxidative stress, inflammation, 

fibrosis, and loss of stem cell self-renewal potential. Hematopoietic DEARE is characterized 

by long-term depression of hematopoiesis and immune function, which becomes more 

evident under stress [78-82]. We established a DEARE model in C57BL/6J mice surviving 

H-ARS as young adults using mice from vehicle-treated control groups in MCM efficacy 

studies [70, 82-84]. Following survival from LD50/30–LD70/30, mice were maintained in 

our facility until natural death or until scheduled euthanasia for DEARE analyses, typically 

at 6, 12, and/or 18 months post-irradiation.

H-ARS survivors exhibit significantly shortened lifespan compared to age-matched non-

irradiated (NI) controls ([85] and our observations), which makes analyses at the latest time 

point (18 months) challenging due to limiting numbers of surviving mice. H-ARS survivors 

exhibited severe lifelong damage to HSCs, characterized by loss of HSC repopulating 

potential, increased cell cycling, decreased numbers of BM HSCs and HPCs, decreased 

CBCs, increased incidence of hematologic malignancies, and myeloid skewing, all which 

persisted for up to 2 years post-TBI [70, 82, 83]. These data illustrate unrecoverable 

loss of HSC self-renewal and differentiation potential, the two established hallmarks of 

HSCs [86-92], and suggest that compensatory mechanisms of hematopoietic support cannot 

overcome the “second hit” imparted by aging in survivors of H-ARS [37, 41, 93, 94]. 

Similar findings have been reported by others but at earlier time points and/or after sub-

lethal irradiation [85, 95].

The T cell compartment was particularly depressed in H-ARS survivors, with significantly 

fewer naïve T cells in the spleen and peripheral blood, and a decrease in all subsets 

of immature thymocytes compared to age-matched NI controls [84]. T cell responses 

in DEARE mice may also be skewed toward pro-inflammatory TH1 polarization [85]. 

In addition, BM was significantly deficient in lymphoid-primed multipotent progenitors 

and common lymphoid progenitors, which were only 8-10% of levels in age-matched NI 

controls. Of interest, alluding to sex differences with age as discussed later in this article, 

irradiated males experienced significantly better long-term reconstitution of thymocyte 

subsets and peripheral blood elements compared to females [84]. Unfortunately, no 
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radiomitigators that significantly increase H-ARS survival have been effective at alleviating 

hematopoietic DEARE [70], underscoring the need for continued and aggressive research 

for MCMs effective for DEARE and other radiation injuries.

Pediatric H-ARS murine model and sex effects related to puberty

Pediatric H-ARS models were developed in C57BL/6J mice at 3, 4, 5, 6, 7, and 8 weeks 

of age [60], roughly equivalent to 8-15-year-old humans [67, 68] (Figure 1A). Models were 

defined in terms of body weight, steady state CBC levels, intestinal development rates, 

and radiation DRRs. Neulasta significantly increased 30-day survival (85-100% survival) 

from the LD50/30 in all pediatric age groups [60], validating the model for testing MCM 

according to the FDA AR and contributing to the licensure of Neulasta for treatment of 

lethal radiation exposure in children.

The 3-week-old weanling mice were the most radiosensitive age group, as illustrated in the 

pediatric DRR probit plots (Figure 1B). The LD50/30 of 3-week-old mice was 712 cGy 

(blue line) compared to 767–787 cGy for 4-8-week-old mice (yellow shaded grouping). 

All pediatric models were more radiosensitive than the 3-month-old young adult model 

(pink line). 3-4-week-old weanling mice of strains SAS/4, BALB/c X DBA/2 F1, and New 

Zealand Black mice [21-27, 60, 96-99] were also observed to be more radiosensitive than 

other pediatric or young adult ages.

3-week-old mice had the lowest body weight, lowest RBC counts, and most rapidly growing 

intestinal epithelium (indicating the highest proliferation rate in intestinal crypts) of any 

age group [60], which may contribute to its high radiosensitivity. Indeed, others have 

documented more severe damage to the small intestine of 3-4-week-old mice of various 

strains compared to older mice, indicating initiation of GI-ARS at relatively lower radiation 

doses in weanlings and correlation with increased radiosensitity [24, 27, 96, 100, 101]. 

Increased radiosensitivity in weanlings may also be related to the more proliferative fetal-

type HSCs present in the youngest mice, as opposed to more quiescent, and thus more 

radioresistant, HSCs in older C57BL/6J mice [29]. Also, weanling BM has been found 

to have fewer and more radiosensitive colony forming cells (CFC), with slower CBC 

recovery compared to adult mice [97]. However, partial BM shielding or hematopoietic 

cell transplantation are not fully radioprotective in weanling mice as they are in adult mice 

[24, 27, 99, 101-103] which, along with accelerated timing of mortalities [60], indicates GI 

effects are likely more involved in weanling radiation deaths in these models.

Sex-specific radiosensitivity was marked in the pediatric models and dependent on pediatric 

age. Females were more radiosensitive than males before 5 weeks of age, but more 

radioresistant than males after 5 weeks of age (Figure 1C) [60], coincident with the onset 

of puberty. Estrogen begins to increase in female C57BL/6J mice around 5-6 weeks of 

age [104, 105], and sex steroids have been found to influence hematopoietic regeneration 

[106-110]. In both mice and humans, estrogen receptor α (ERα) is highly expressed 

on HSCs and ERα signaling increases HSC regeneration following hematopoietic stress 

[106, 110-112]. One steroid hormone with estrogenic properties, 5-androstenediol, is under 

development as a radioprotectant [113]. Thus, it is possible that hormones contribute to 
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the sex differences in pediatric radiation responses surrounding puberty. We did not detect 

significant sex differences in GI histology across pediatric age groups, but sex-specific 

expression of infection response genes reported in the small intestine and colon of 

prepubertal mice [114] could relate to greater radiosensitivity of females observed at this 

age.

Pediatric DEARE

Interestingly, while 3-week-old mice were the most radiosensitive in regard to acute 

survival, hematopoietic DEARE following LD50/30 was least severe in survivor mice 

irradiated at 3 weeks old, closely followed by those at 4 weeks old. Three and four week old 

models showed higher CBCs and increased BM progenitor number and function at 6-months 

post-TBI, and the least HSC myeloid bias at 12 months post-TBI [60], suggesting very 

young age at irradiation may confer greater hematopoietic resilience in H-ARS survivors. 

The fact that 3-week-olds received a lower LD50/30 radiation dose of 712 cGy versus 767–

787 cGy for the other pediatric groups may contribute to this observation, though survivors 

in the 4-week-old group dosed in the higher 767-787 cGy range had similarly mild DEARE. 

By 12 months post-TBI, CBCs and BM progenitors, which were higher at 6 months in 

the 3- and 4-week-old groups, succumbed to similarly low levels as the other age groups, 

illustrating how the added stress of aging can impact hematopoietic DEARE regardless of 

age at irradiation. We also observed some sex-specific DEARE in the pediatric models, such 

as decreased body weights 6 months post-TBI in males only, which was most severe in the 

3-week-old irradiated group and lessened with increasing age-at-irradiation, while females 

showed more severe kidney dysfunction than males at 12 months post-TBI, evidenced by 

increased levels of BUN [60].

Neulasta radiomitigation for H-ARS in pediatric mice again had no apparent effect on the 

severity of long-term hematopoietic or renal DEARE. While we have not yet characterized 

cancer incidence in our pediatric H-ARS survivors, increased cancer incidence has been 

documented after pediatric radiation exposure in humans [115].

Aging/Geriatric H-ARS murine models and significant sex divergence with 

age

Middle-aged and geriatric H-ARS models were developed in C57BL/6J mice at 1 and 

2 years of age [61], roughly equivalent to 41-44-year-old and 66-69-year-old humans, 

respectively [67, 68] (Figure 1A). The DRRs (Figure 1B) showed decreasing slope with 

age, reflecting increased variability, and increased hematopoietic radioresistance compared 

to pediatric and young adult mice, with sex-combined LD50/30s of 964 cGy (1 year) and 

937 cGy (2 years). However, striking sex differences were found in radiosensitivity of the 

aged mice which resulted in a >100 cGy difference in LD50/30 between 2-year-old geriatric 

males (1008 cGy) and females (842 cGy) (Figure 1C).

The geriatric model provided a convenient paradigm for studying differential hematopoietic 

radioresistance. Aged males had higher steady state platelet and neutrophil counts compared 

to females, while counts in both sexes were increased from their young counterparts, in 
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accordance with reported trends from Jackson laboratories [116, 117]. Blood production 

is known to become increasingly myeloid-biased with HSC aging [41, 43]. Paradoxically, 

this hallmark of HSC aging may present an advantage for H-ARS survival, as myeloid 

components—namely neutrophils and platelets—are essential to prevent death from 

infection and hemorrhage post-irradiation [4, 5]. When a fixed radiation dose of 650 cGy 

[61] or 800 cGy (Figure 2) was given to young and old, male and female mice, platelet 

and neutrophil rebound was accelerated in aged mice and significantly higher in aged males 

versus females. Interestingly, following exposure to the age- and sex-specific LD70/30 for 

young adult mice (872 cGy), middle-aged males (1043 cGy) and females (960 cGy), and 

geriatric males (1124 cGy) and females (947 cGy), despite differences up to 252 cGy, 

functional myeloid progenitors in the BM decreased to an equivalent nadir of ~50-100 CFCs 

per mouse after 2 days in all age and sex groups. Thus, this low level of residual CFCs in 

the BM may represent a threshold for survival of approximately 30% of mice, and illustrates 

a correlation between the age- and sex-specific LD70/30 and number of radioresistant CFC. 

In line with these data, when young adult and 24 m/o geriatric male mice were exposed to 

the same radiation dose, significantly more CFCs remained in old BM compared to young, 

indicating greater radioresistance at the level of the aged HPC [61].

Accelerated CFC recovery from the nadir in aged mice [61] possibly implicated a 

stronger/earlier influx from upstream HSCs. Aged BM is enriched for HSCs primed for 

a myelopoietic inflammatory response, marked by increased expression of markers such 

as CD61 and CD150 [118, 119]. In our hands, expression of both CD61 and CD150 was 

significantly higher on HSCs in aged males versus females, suggesting a more extreme 

myeloid-primed aging phenotype that may in part underlie the increased hematopoietic 

radioresistance observed in aged males. In addition, RNA sequencing identified sex-

divergent HSC aging gene signatures related to cholesterol metabolism (increased in males), 

interferon signaling (increased in females), and GIMAP family members (decreased in 

males and increased in females with age) for follow-up as potential sex-specific targets in 

HSC aging and radiomitigation [61].

In contrast to our observation of increased radioresistance of geriatric C57BL/6J mice 

compared to young adults, Spaulding et. al [21, 120] showed in the 1960s that RF-strain 

female mice were less radioresistant with age. There are several possible explanations 

for this difference. In addition to being done half a century earlier in a different lab 

with different experimental protocols, Mus musculus strains exhibit different degrees of 

radiosensitivity based on their genetics [55], which can lead to opposing experimental 

results. In particular, mice of the RF genetic background have significantly lower 

hematopoietic function compared to C57BL/6J mice [121]. In addition, males were excluded 

from the RF studies, whereas males were the major source of increased radioresistance with 

age in our models [61].

Diversity outbred models of H-ARS and DEARE

Jackson Diversity Outbred (JDO) mice are the most genetically diverse strain available, 

with randomly recombined genetic elements from eight founder strains uniquely comprising 

each animal for a more accurate model of human genetic diversity [122-125]. The unique 
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genetic makeup of JDO mice also opens the possibility of discovering phenotypes and 

mechanisms not present in inbred strains [126-129], and represents an exciting model to 

study radiobiology. Thus, we also developed young adult JDO mouse models of H-ARS and 

DEARE [130].

The DRR of JDO mice showed a shallower slope of 1.02 in the probit plot compared 

to that of the inbred C57BL/6J young adult mice (slope = 2.56; Figure 1B), mirroring 

the shallower slopes of probit plots for non-human primates and humans, which are 

characteristic of increased variability. In comparison with the C57BL/6J model, JDO mice 

were more radioresistant, with an LD50/30 of 900 cGy, (Figure 1B). They were more 

sensitive to levofloxacin radiomitigation than C57BL/6J mice, and similarly responsive 

to radiomitigation and accelerated CBC recovery with Neulasta [130]. Long-term JDO 

survivors exhibited less severe hematopoietic DEARE than C57BL/6J mice, with increased 

recovery of CBCs and CFCs. While long-term JDO H-ARS survivors did show more severe 

loss of HSC numbers, these JDO HSCs maintained a greater degree of quiescence compared 

to those from C57BL/6J H-ARS survivors, which is essential for maintaining function [130]. 

These JDO radiation models are highly advantageous, offering the economics, lifespan, 

and other beneficial features of small animals, with the genetic diversity of large animals, 

providing a valuable and potentially more translatable option for MCM development in 

H-ARS and DEARE.

Conclusions

Development of MCMs against radiation relies on robust animal models, and vast 

differences in hematopoietic function and radiation response as a consequence of age 

and sex necessitate individual modeling of age and sex groups for accurate assessment of 

survival efficacy in at-risk populations. Models must be stringently conducted and all known 

variables tightly controlled for optimal results.
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Figure 1. Pediatric, young adult, geriatric, and JDO murine models of H-ARS.
A) Mouse-human age equivalencies used to develop C57BL/6J H-ARS models. B) Groups 

of C57BL/6 pediatric mice at 3, 4, 5, 6, 7, or 8 weeks old, young adult mice at 3 months old, 

middle-aged mice at 1 year old, and geriatric mice at 2 years old, or JDO mice at 8 weeks 

old, were exposed to various doses of TBI, n=200-400 mice per age/strain, and day 30 

survival at each dose was used to construct sex-combined DRR probit plots for each group 

with LD50/30 indicated. Slope and LD50/30 of 4-8-week-old C57BL/6J mice were similar 

(yellow highlight). C) Sex differences in LD50/30 with age in C57BL/6J mice (*p<0.05 for 

hazard ratio of death between sexes by Cox regression analysis). Data compiled from [60, 

61, 130].
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Figure 2. Platelet and neutrophil recovery post-TBI is accelerated in aged mice and higher in 
aged males.
Young (3-month-old C57BL/6J from Jackson Laboratories) and old (21-month-old 

C57BL/6JN from NIA) male and female mice were exposed to 800 cGy on day 0, with 

peripheral blood CBC analyses performed at the indicated time points using an Element 

HT5 veterinary hematology analyzer (HESKA Corporation, Loveland, CO); n = 4 for aged 

males, and n = 9-14 for other groups; one-way ANOVA with Sidak’s test was performed at 

each time point: *p<0.05 for old versus young male (blue) or female (red) and **p<0.05 for 

old male versus both young male and old female.
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