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1  |  INTRODUC TION

The endocannabinoid system is recognized as an important player 
in neuromodulation in the central nervous system (CNS). It com-
prises cannabinoid receptors, endogenous molecules called endo-
cannabinoids (eCBs) that activate these receptors, and enzymes 
that synthesize and degrade eCBs.1 The most abundant eCBs are 
anandamide and 2-arachidoylglycerol. Many effects of eCBs are me-
diated by type 1 (CB1R) and type 2 (CB2R) cannabinoid receptors, 
which are the best known and involved in the homeostatic control of 
several physiological functions in the brain and other organs.2 CB1R 
and CB2R are G protein-coupled receptors (GPCRs) that, in addition 

to interacting with eCBs, are also activated by synthetic and plant-
derived cannabinoids. Both were cloned in the early 1990s from 
human leukemia cells.3,4 However, it is important to note here that 
we must take a much broader view of this system. Indeed, studies 
over the last decade have revealed the existence of a wide range of 
lipid mediators with eCB-like properties, novel enzymes, and new 
receptors, effectively complicating our picture of the endocannabi-
noid system and justifying the use of endocannabinoidome to de-
scribe it.5

CB1R is the most prevalent GPCR in the CNS and is expressed 
extensively by most neuron types.6 This receptor is the major media-
tor of the psychoactive effects of Cannabis sativa and its derivatives. 
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Abstract
The function of cannabinoid receptor type 2 (CB2R), mainly expressed by leukocytes, 
has long been limited to its peripheral immunomodulatory role. However, the use of 
CB2R-specific ligands and the availability of CB2R-Knock Out mice revealed that it 
could play a functional role in the CNS not only under physiological but also under 
pathological conditions. A direct effect on the nervous system emerged when CB2R 
mRNA was detected in neural tissues. However, accurate mapping of CB2R protein 
expression in the nervous system is still lacking, partly because of the lack of specific-
ity of antibodies available. This review examines the regions and cells of the nervous 
system where CB2R protein is most likely present by cross-referencing mRNA and 
protein data published to date. Of the many antibodies developed to target CB2R, 
only a few have partially passed specificity tests and detected CB2R in the CNS. 
Efforts must be continued to support the development of more specific and better 
validated antibodies in each of the species in which CB2R protein is sought or needs 
to be quantified.
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It has been cloned from rat, mouse, and human tissues and exhibits 
97%–99% amino acid sequence identity across these species. The 
intracellular region of CB1R is most frequently coupled to Gi/o pro-
teins. Stimulation of CB1R by endogenous or exogenous agonists 
inhibits adenylate cyclase (AC) activity with subsequent reduction in 
intracellular levels of cyclic adenosine monophosphate or promotes 
mitogen-activated protein kinase (MAPK) activity. The different 
intracellular pathways involved have been previously described in 
greater detail.7

CB2R exhibits 44% homology with CB1R.8 Unlike CB1R, CB2R 
is mainly expressed by peripheral immune cells and mediates im-
munomodulatory properties. Due to this near-exclusive expres-
sion, CB2R has long been referred to as a peripheral cannabinoid 
receptor.9 However, since the early 2000s, an increasing number 
of studies have reported the effects of CB2R-specific ligands on 
neuroinflammation. In addition, such ligands have also been shown 
to exert effects at the neuronal and behavioral levels both in phys-
iological and pathological conditions,10–12 suggesting that CB2R is 
also expressed in the CNS and may represent a therapeutic target 
for many pathologies of the nervous system. Owing to technical ad-
vances and the emergence of more sensitive methods, weak CB2R 
gene expression has been confirmed in the brain, paving the way 
for attempts to refine CB2R messenger ribonucleic acid (mRNA) 
and protein detection at both tissue and cellular levels. However, 
numerous controversies regarding the irrelevance of the detec-
tion tools used have led to the current “CB2R identity crisis.”13 
Resultantly, no consensus exists regarding the mapping of CB2R 
expression in the nervous system.

In this review, we attempted to understand what underlies these 
difficulties and list the brain areas and cells where CB2R gene ex-
pression is most likely, by cross-referencing transcript and protein 
detection data.

2  |  CB2R: FROM GENE TO PROTEIN

The CB2R gene and receptor structures have been recently detailed 
by Jordan et al.10 Briefly, the human cnr2 gene size reaches 90 kb, 
whereas the size of the mouse and rat cnr2 gene is 23 and 20 kb, 
respectively. Mouse and rat CB2R proteins share 93% amino acid 
homology, and human CB2R shares 82% homology with mouse 
and 81% homology with rat.14 Some characteristics of the human, 
mouse, and rat CB2R transcripts and proteins are summarized in 
Table S1. Given that the identification of the different isoforms of 
CB2R transcript and protein has evolved several times since the 
discovery of the gene and the protein and has not been taken into 
consideration in the vast majority of the studies, we chose not to 
distinguish them in this review.

CB2R is a membrane protein expressed at the plasma mem-
brane. Recently, it has been demonstrated that CB2R is localized in 
the nonlipid raft compartment of the plasma membrane of mouse 
cortical tissue.15 CB2R also mediates its effects in an internal-
ized form. Intracellular injections of specific agonists elicited Ca2+ 

signaling,16 which contributes to the very complex pharmacology of 
this receptor. Similar to CB1R, CB2R is a GPCR that is mainly coupled 
to Gi/o α proteins. Its stimulation inhibits AC activity and activates 
MAPK.17 CB2R intracellular pathways have been recently reviewed.2 
Intracellular signaling pathways may differ depending on the tissues, 
cell types,18 and subcellular localization of CB2R.

3  |  DETEC TION OF CB2R IN THE CNS: 
METHODOLOGIC AL CONSIDER ATIONS

3.1  |  At the mRNA level

Cnr2 gene expression detection in the CNS was first attempted at 
the transcriptional level during the 1990s using endpoint reverse 
transcription polymerase chain reaction (RT-PCR) and northern 
blots. Numerous studies have failed to detect CB2R mRNA in the 
CNS of human,19,20 mouse,21,22 and rat.4,21,23,24 It is noteworthy that 
the use of endpoint RT-PCR presents many pitfalls in detecting and 
quantifying mRNAs in biological samples.25 Since then, real-time 
or quantitative PCR (qPCR) has emerged as a robust and widely 
used methodology for biological investigation and has resulted in 
greater accuracy in the detection and quantification of CB2R-mRNA 
in the CNS. Moreover, in situ hybridization (ISH)—in particular, the 
RNAscope ISH technique—which affords very high sensitivity and 
specificity26 in detecting in situ mRNA molecules—even expressed 
at very low levels—allows for the refinement of cartography of Cnr2 
gene expression in the CNS. In this review, only the results of stud-
ies that investigated CB2R-mRNA expression using RT-qPCR and/or 
ISH are presented.

3.2  |  At the protein level

Many antibodies have been developed to identify the protein ex-
pression and localization of CB2R. To be considered specific, an anti-
body should meet different criteria, including the absence of labeling 
in genetic knockout (KO) animals, validation by western blotting 
(WB), and the ability to be blocked by the immunizing peptide used 
to generate the antibody. Ideally, concordant results should be ob-
tained with antibodies raised against other epitopes when available. 
The “CB2R identity crisis” 13 partly relies on the lack of fully validated 
and commercially available antibodies. Thus, for a given species, the 
absence of a signal should be obtained in KO animals with com-
plete invalidation of the Cnr2 gene established in the same species. 
However, only two mouse strains presenting with partial deletion 
of the Cnr2 gene encoding either the C-terminal (Zimmer strain) or 
N-terminal (Deltagen strain) of the protein (partial CB2R-KO mice) 
have been generated to date. To test the specificity of any anti-CB2R 
antibody, it has recently been advised to carefully select the partial 
CB2R-KO mouse strain with a deletion of the gene sequence encod-
ing the 3D structure of the epitope recognized by the antibody to 
be tested.27
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Since the first rabbit polyclonal antibody raised against a C-
terminal peptide sequence of human CB2R in 1995 by Galiègue 
et al.,20 different polyclonal antibodies have been generated to de-
tect CB2R in the primate and rodent nervous tissue. In this review, 
which is not exhaustive, we identified 22 different anti-CB2R anti-
bodies used in immunohistological studies targeting the CNS. For 
ease of reading, an upper- or lower-case letter has been assigned 
to each antibody depending on whether the authors mentioned the 
precise reference or not, respectively. (Table 1).

3.2.1  |  Antibodies for which part of the validation 
was performed in partial-KO mice

The best negative control for testing the specificity of any anti-
CB2R antibody in mice are full-length CB2R-KO mice. However, 
these mice are currently unavailable to date. Instead, two strains 

of mice with partial deletions of the CB2R gene have been gener-
ated. One has a deletion of the sequence encoding the N-terminal 
part of the protein and is often referred to as the Deltagen strain 
(The Jackson Laboratory, Cnr2tm1Dgen/J, #005786). In contrast, 
the other has a deletion of the sequence encoding the C-terminal 
part of the protein, commonly referred to as the Zimmer strain.28 
The two mouse strains were used to determine the specificity of 
the signals obtained using antibodies generated against the CB2R 
protein. Nevertheless, it has been hypothesized that mutant or 
truncated fragments of CB2R are present in mice with a partial de-
letion of the CB2R gene, making interpretation of the results dif-
ficult, particularly when the antibodies were tested in mice whose 
CB2R gene deletion does not match the portion of the protein rec-
ognized by these antibodies.27 In the following section, we will 
only describe the validation tests performed in partial-KO mice 
whose deleted sequence encodes the epitope recognized by the 
tested antibody. The antibodies have been represented according 

TA B L E  1  List of anti-CB2R antibodies used for the detection of CB2R protein in the central nervous system

Ab Ref. Distri. Availability Immunogen Host
Poly-mono 
clonal

Predicted Species 
reactivity

A #101550 Cayman Chemical Yes aa 20–33 of human CB2R Rabbit Poly Human, mouse

B #Ab3561 Abcam Yes aa 1–32 of rat CB2RR Rabbit Poly Human, rat

C #Ab45942 Abcam No aa 200–300 of rat CB2R Rabbit Poly Human, mouse, rat

D #ACR-002 Alomone Yes aa 228–242 of rat CB2R Rabbit Poly Mouse, rat

E #ACR-003 Alomone No aa 11–24 of human CB2R Rabbit Poly Human

F #bs-2377R Bioss Yes aa 298–360 of human CB2RR Rabbit Poly Human, mouse, rat

G #CB2R2A Alpha diagnotics Yes C-term of rat CB2R Rabbit Poly Rat

H #KMCB2R-CT Ken Mackie No aa 326–342 of rat CB2R Rabbit Poly Rat

I #KMCB2R-NT Ken Mackie No N-term of rat CB2R Rabbit Poly Rat

J #MAB36551 R&D Systems No aa 1–360 of human CB2R Mouse Mono Human

K #NIH-5633 Customed (Genemed 
Synthesis)

No C-term of mouse CB2R Rabbit Poly Mouse

L #PA1-744 Affinity Bioreagents No aa 1–33 of human CB2RR Rabbit Poly Human

M #PA1-746 Affinity Bioreagents Yes aa 1–32 of rat CB2R Rabbit Poly Human, rat

N #SAB2500191 Sigma-Aldrich Yes C-term of human CB2R Goat Poly Human

O #sc10071 Santa Cruz 
Biotechnology

No N-term of human CB2RR Goat Poly Human

P #sc10073 Santa Cruz 
Biotechnology

No C-term of human CB2R Goat Poly Human

Q #sc10076 Santa Cruz 
Biotechnology

No C-term of mouse CB2RR Goat Poly Mouse, rat

R #sc25494 Santa Cruz 
Biotechnology

No aa 301–360 of human CB2R Rabbit Poly Human, mouse, rat

s ? Affinity Bioreagents — N-term peptide Rabbit Poly —

t ? Affinity Bioreagents — — — Poly —

u ? Sigma-Aldrich — — Rabbit Poly —

v ? — — N-term peptide - Poly —

Note: For the ease of reading, an upper or a lower-case letter has been assigned to each antibody depending on whether authors mentioned the 
precise reference or not, respectively. The availability of the antibodies described on the day the review was written is specified in the “availability” 
column.
Abbreviations: AA, amino-acid; Ab, antibody; CB2R, cannabinoid receptor type 2; Distrib, distributor; Ref, commercial reference.
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to their recognition of the N-terminal or C-terminal region of CB2R 
in Figure 1A. The use of different antibodies in partial-KO mice is 
illustrated in Figure 1B.

D, G, H, and K antibodies have been tested in the suitable Zimmer 
mouse strain. The use of this strain has revealed reduced in situ im-
munolabeling signal (D, K27,29; G30,31). WB and/or the loss of in situ 
immunolabeling with the immunizing peptide support the specificity 
of D,27,29 H,27 and K27,29 antibodies to detect CB2R in mice (Table 2). 
For antibodies A, B, and M, tested in the suitable Deltagen mouse 
strain, less intense in situ immunolabeling was observed (A and M32; 
B27,33); however, such a validation has not been identified by others 

(A34; B34,35). Additionally, WB analyses revealed that the three an-
tibodies failed to detect a reduced signal in the Deltagen mouse 
strain (A and M32,34; B27). Notably, the sensitivity and specificity of A, 
which appears to be one of the most widely used antibody for CB2R 
detection in the CNS, have been extensively studied by Marchalant 
et al. using combined WB and mass spectrometry. They unequiv-
ocally demonstrated its sensitivity in overexpressing cell lines, but 
also showed cross-reactivity with other proteins, resulting in a lack 
of specificity.36

Other antibodies have been invalidated when correctly tested in 
adequate partial-KO mouse strains: E,34 I,32 and O.35

F I G U R E  1  Anti-CB2R antibodies. 
The letters assigned to the antibodies 
correspond to those assigned in Table 1. 
(A) Recognition of CB2R by antibodies 
used on nervous tissue. Antibodies 
directed against the N-terminal (N-term) 
region of the CB2R receptor are shown 
in orange. Antibodies against the C-
terminal (C-term) region of the receptor 
are shown in pink. (B) CB2R antibodies 
tested in CB2R partial Knock-Out mice. 
The antibodies which have been tested 
on tissue from each of the two available 
partial KO mouse are represented, that 
is on the Zimmer strain28 in which CB2R 
C-term region is deleted and on the 
Deltagen strain (The Jackson Laboratory, 
Cnr2tm1Dgen/J, #005786) in which CB2R 
N-term region is deleted. The antibodies 
tested on tissue from “non-adequate” 
partial KO mice, that is to say in which 
the deleted part of the CB2R gene does 
not encode the epitope recognized by 
the antibody, are represented in gray. 
Conversely, the antibodies which have 
been tested on “adequate” partial KO 
mouse tissue are represented in colors, 
that is, in orange and pink for those 
recognizing the N-term and C-term 
regions, respectively. The antibodies 
validated by these tests, that is to say 
for which a reduction in signal was 
observed on the tissue of the appropriate 
KO mouse, are represented in green. 
C-term, C-terminal; CB2R, cannabinoid 
receptor type 2; KO, knock-out; N-term, 
N-terminal. Figure generated with https://
biore​nder.com/

https://biorender.com/
https://biorender.com/


764  |    GRABON et al.

3.2.2  |  Other antibody validation studies

Antibodies other than A, B, D, E, G, H, I, K, M, and O have not been 
tested in a suitable partial-KO mouse strain. However, C and Q an-
tibodies were validated in mice by WB and using a blocking pep-
tide (C34,37; Q34,38). C antibody sensitivity was further confirmed in 
a knock-in mouse model and in overexpressing cells.37 R and F anti-
bodies were validated only by WB34 and blocking peptide,39 respec-
tively. Finally, N antibody has not been validated by WB.32

In rats, A, B, G, O, P, and Q were validated by both WB and im-
munizing peptide (A40–42; B35,43,44; G30; O35,45; P46; Q45) and C, H, M, 
and u were validated only by the use of their blocking peptide (C37,47; 
H48; M49; u41).

In humans, L appears to be the most commonly used antibody 
to detect CB2R in the CNS. It has been validated using both WB 
and blocking peptide.50–53 The other antibodies were only validated 
either by WB for P54 and S55 or by the use of a blocking peptide for 
A,56 J,57 and t.58 R was also used to detect CB2R protein in the human 
CNS, but its validity was not assessed.59 Finally, the A antibody was 
validated by WB in nonhuman primates (NHP).60

All presented antibodies are polyclonal, except for antibody J, 
which is a mouse monoclonal antibody. Considering the diversity of 
the antibodies presented and the obvious lack of consistency in the 
data obtained so far in the studies aimed at testing their specificity, it 
is now necessary to have anti-CB2R monoclonal antibodies for each 
species detailed, at least tested on cells of the targeted species, with 
a complete KO of the CB2R gene.

The level of confidence attributed to the results of immunohisto-
logical studies depends strongly on the tools used to validate the anti-
bodies used. Thus, we classified brain regions according to the degree 
of probability that they would express CB2R protein. The brain re-
gions with the highest probability of expressing CB2R protein were 
those for which CB2R was detected with at least one antibody vali-
dated in the relevant partial-KO mouse model, that is, antibodies D, 
G, H, and K. This is followed by brain structures for which the prob-
ability was lower because the antibody used has only been validated 
by WB or using a blocking peptide. Finally, we remained cautious 
about the possibility that CB2R could have been detected in certain 
brain regions, especially with antibodies whose specificity had not 
been demonstrated, while CB2R mRNA was not sought or detected, 
especially by ISH techniques. It remains to be mentioned that the ab-
sence of CB2R-mRNA detection by RT-qPCR in a homogenate of a 
brain area can be insufficient to reject the possibility that the CB2R 
protein is present in that brain region, because CB2R-mRNA might be 
too diluted in the sample to reach the detection threshold.

4  |  BR AIN REGIONS AND CELL T YPES 
FOUND TO E XPRESS CB2R AT THE MRNA 
LE VEL

Under physiological conditions, CB2R mRNA has been detected 
using RT-qPCR and/or ISH, including RNAscope technology, in 

the neocortex,61–63 nucleus accumbens,14,63,64 striatum,14,63–66 
hippocampus,34,40,63,65–67 amygdala,61,63 Ventral Tegmental Area 
(VTA),29,68,69 red nucleus,33 substantia nigra,70 cerebellum,41,62,66 
brainstem,30 spinal cord,71 hypothalamus,41,72 and retina.42,73

CB2R mRNA has also been detected in pathophysiological condi-
tions in the neocortex in a model of stroke,74 in the striatum in mod-
els of Huntington's disease49 and Parkinson's disease (PD),57,75 in the 
substantia nigra in a model of PD,76 and in the spinal cord in models of 
neuropathic chronic pain77 and multiple sclerosis.78 The detection of 
CB2R mRNA using quantitative/semi-quantitative methods in these 
regions makes it very likely that the CB2R protein is also expressed.

To identify cells that express CB2R, some studies have per-
formed double detection at the mRNA level and found that CB2R 
mRNA was expressed in tyrosine hydroxylase (TH)-positive neurons 
of the VTA,29,64,68 glutamatergic neurons of the red nucleus,33 and 
CA3 neuronal nuclei (NeuN)-positive neurons.67 Using combined ISH 
and immunohistochemistry, CB2R mRNA was also detected in pyra-
midal neurogranin-positive neurons and glutamate decarboxylase 
(GAD)67-positive gamma-aminobutyric acid (GABA)ergic interneu-
rons of the hippocampus34 and interneurons of the striatum,65 as well 
as in activated cluster of differentiation (CD)11b-positive microglia 
of the spinal cord.77 CB2R mRNA has been detected in interneuron-
like cells in the hippocampus.65 CB2R mRNA was also detected in 
the microglial cells of the neocortex following fluorescent-activated 
cell sorting.79 Finally, based on cell morphology, CB2R mRNA was 
also localized in neuron-like cells in the substantia nigra.70

5  |  IDENTIFIC ATION OF BR AIN REGIONS 
WHERE BOTH CB2R MRNA AND PROTEIN 
WERE DETEC TED

To express the CB2R protein, the brain regions and cell populations 
involved must express CB2R mRNA. In the previous section, we 
detailed the brain regions in which CB2R mRNA was unequivocally 
identified. In this section, we report studies that have demonstrated 
the presence of CB2R protein in these same regions, which will be 
classified according to whether the CB2R protein was detected with 
validated antibodies or with nonvalidated antibodies.

5.1  |  Brain regions and cell types with CB2R 
detection using validated antibodies

In this section, we provide a list of brain regions in which CB2R pro-
tein was detected by at least one of the antibodies that we currently 
consider the most specific, that is, D, G, H, and K antibodies.

5.1.1  |  Hippocampus

CB2R expression has been extensively investigated in both the human 
and rodent hippocampi in physiological as well as pathological states.
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TA B L E  2  Evaluation of the validity of antibodies used for the detection of CB2R in the central nervous system

AB Predicted species reactivity

Validation tool Applications Studies

BP WB

KO mice

IH WB Model ReferencesAdequate Inadequate

A Human, mouse x Human [88]
− x Human fœtus [56]
− + x NHP [60]
− + + x Mouse [32]
− − x

− + x x Mouse [34]
x Mouse [89]

+ x Rat [42]
− + x Rat [41]

+ x Rat [40]
x Mouse [90]
x Human [76]

B Human, (mouse,) rat + x Mouse [29]
− + x x Mouse [34]

− x Mouse [31]
− + − + x Mouse [27]

− + x
− x Mouse [33]

− + + x Rat [35]
x Rat [42]

+ x Rat [44]
+ x Rat [91]

Mouse [74]
− + x Rat [43]

x Rat [92]
x Rat [93]

C Human, mouse, rat + + x Mouse [34]
− x Mouse [37]
− x Rat [37]
− x Rat [47]
− x Rat [94]

D Mouse, rat − − x Mouse [29]
− + − + x Mouse [27]

− + x
x Mouse [33]

+ x Rat [81]
E Human − + x Mouse [34]
F Human, mouse, rat − x Mouse [39]
G Rat + − x Mouse [32]

+ + x Mouse [34]
− + x Rat [30]

x
− + x Ferret

x
− x Mouse
− x Mouse [31]

H Rat − + x Mouse [32]
− + x

+ − x Mouse [27]
− x Rat [48]

x Rat [82]
x Rat [80]

(Continues)
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AB Predicted species reactivity

Validation tool Applications Studies

BP WB

KO mice

IH WB Model ReferencesAdequate Inadequate

I Rat − + x Mouse [32]
+ + x

J Human − x Human [57]
− x Human [95]

K Mouse − − x Mouse [29]
− + − + x Mouse [27]

− + x
L Human x NHP [96]

+ x Human [52]
− + x Human [50]

x Human [97]
− x Human [53]

+ x x Human [51]
M Human, rat − − + x Mouse [32]

+ − x
+ + x Mouse [34]

x Rat [98]
− x Rat [49]

x Mouse [44]
N Human − + x Mouse [32]

+ x
O Human − + + x Rat [35]

− + x Rat [45]
P Human x Human [59]

− + x Rat [45]
+ x Human [54]

Q Mouse, rat + x Mouse [34]
+ + x

− + x Rat [45]
− + x Mouse [38]

x Mouse [57]
x Rat [99]

R Human, mouse, rat + + x Mouse [34]
x Human [59]

s + x x Human [55]
t − x Human [58]
u − − x Rat [41]
v x Mouse [66]

Note: Nonexhaustive list of studies that have used antibodies to detect CB2R in the central nervous system in situ (by immunohistochemistry) or on 
homogenates (by western blot) and that have tested or not their specificity through the use of available partial KO mice (Deltagen strain and Zimmer 
strain) and/or the use of blocking peptide and/or western blot. The letters assigned to the antibodies correspond to those assigned in Table 1. For 
each validity test, the symbol “−” stands for an absence or a decrease in the measured signal. Thus, for validity tests with blocking peptide, symbol “−” 
indicates a decrease in signal on histological sections (for IH studies) or on homogenates (for WB studies) in the presence of the peptide. Similarly, for 
tests on partial KO mice, the symbol “−” indicates a decrease of the signal on histological sections (for IH studies) or on homogenates (for WB studies) 
from KO mice compared to that measured in wild type animals. Finally, for western blot studies, the symbol “−” indicates the absence of a band at the 
size corresponding to CB2R. Conversely, the “+” symbol corresponds to the presence of a signal. For validity tests with blocking peptide or on KO 
mice, it indicates a quantity of signal identical to that measured without peptide or on wild-type mice, respectively. For western blot, it indicates the 
presence of a band corresponding to the molecular weight of CB2R. The validation tests conducted on KO mice that we have qualified as “adequate” 
correspond to those conducted on KO mice whose deleted sequence encodes the epitope recognized by the antibody tested.
For the validation tools, the results in favor of the specificity of the tested antibody for CB2R are represented in green (i.e. an absence of signal either 
with the blocking peptide or when using the adequate KO mouse, or the presence of a band in WB). The results invalidating the specificity of the 
antibody for CB2R are represented in red (presence of signal either with the blocking peptide or when using the adequate KO mouse, and absence of 
band in WB). Results that do not allow to conclude are shown in grey (use of inadequate KO mice).
Abbreviations: Ab, antibody (see Table 1); BP, blocking peptide; IH, Immunohistology; KO, knock out; NHP, nonhuman primate; WB, western blot.

TA B L E  2  (Continued)
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Neurons
Under physiological conditions, CB2R protein has been detected 
in neuron-like cells of the hippocampus using G and H antibodies. 
Based on the morphological features observed by electron micros-
copy, CB2R was detected using antibody H in CA1 neurons in rats.48 
Using the same antibody, CB2R was detected in rats in both the den-
tate gyrus and stratum radiatum.80

Finally, CB2R neuronal expression has also been studied in cul-
tured hippocampal neurons from both rats and mice using the vali-
dated D antibody.81

Microglia
Under physiological conditions, CB2R has been detected in rat 
microglia-like cells, using antibody H.48

5.1.2  |  VTA

Using antibodies D and K, CB2R protein has been detected in the VTA 
under physiological conditions in mouse neurons and astrocytes.27,29

5.1.3  |  Red nucleus

CB2R protein has been detected in TH-positive neurons in the red 
nucleus, using antibody D.33

5.1.4  |  Brainstem

In the mouse brainstem, under physiological conditions, NeuN-positive 
cells co-express CB2R in the dorsal motor nucleus of the vagus, nu-
cleus ambiguous, and spinal trigeminal nucleus, using antibody G.30

5.1.5  |  Retina

Immunolabeling of CB2R has been detected in different neuronal el-
ements of the mouse retina, namely, in the outer nuclear, outer plex-
iform, and inner plexiform layers, using the validated G antibody.32 
CB2R was also detected in the inner nuclear layer of rats using H.82

5.2  |  Brain regions and cell types where CB2R was 
detected using unvalidated antibodies

It is noteworthy that some of the antibodies whose specificity is dis-
putable, owing to the lack of validation in adequate KO mice, have 
also been used successfully in the regions presented in Section 5.1 
(see the first part of Table S2).

In some brain regions described in Section 4, where CB2R mRNA 
has been detected, CB2R protein detection has been investigated 
using unvalidated antibodies only, that is, A, B, C, E, F, I, J, L, M, N O, 

P, Q, R, s, t, u, and v. This is the case for the following areas, as de-
tailed in the second part of Table S2: neocortex, nucleus accumbens, 
striatum, amygdala, substantia nigra, cerebellum, spinal cord, and 
hypothalamus.

6  |  BR AIN REGIONS AND CELL T YPES 
WITH POOR E VIDENCE OF CB2R PROTEIN 
PRESENCE

In this section, we discuss areas where the presence of CB2R mRNA 
has not been investigated, to our knowledge, and where CB2R pro-
tein has only been detected with unvalidated antibodies. These 
regions are the lateral habenula, corpus callosum, midbrain, pons 
nuclei, and cochlea. The CB2R detection in these areas is presented 
in Table S3.

7  |  CONCLUDING REMARKS

Given the role of CB2R in the functioning of the nervous system, 
numerous studies have attempted to map the brain regions and 
identify the cells where it is expressed. The evolution of detection 
and assay techniques for CB2R mRNA has confirmed its low expres-
sion under physiological conditions. At the protein level, difficulties 
were more numerous owing to the lack of specificity of the different 
antibodies produced. Of the 22 antibodies used for CB2R protein 
detection in the nervous system and listed in this review, only four 
(D, G, H, and K) were considered more specific than the others on 
the basis of the reduction of the signal in mice whose genetic se-
quence coding for the epitope recognized by these antibodies was 
invalidated. On the basis of tables in which we have tried to provide 
as much relevant information as possible, we leave it to the discre-
tion of reader to appreciate the choice of antibodies used in certain 
studies and the choices to be made for conducting their own stud-
ies. However, we have provided a table (Table S4) summarizing the 
regions and cell types likely to express CB2R, based on the relevance 
of the validation performed to test the specificity of the antibodies 
used, and on the detection of mRNA in these regions and cell types 
as detailed in Section 4.

Due to the difficulty in determining the localization and pheno-
type of CB2R-expressing cells in the CNS using anti-CB2R antibod-
ies, Schmöle et al. generated a reporter mouse line in which the cnr2 
gene is replaced by enhanced green fluorescent protein (EGFP) with-
out interfering with its putative promoter sequences.83 Western 
blot assays on brain tissue samples showed no expression of GFP 
protein, but in situ GFP immunolabeling was present in some Iba-1 
expressing microglial cells in the hippocampus.

Recently, Lopez et al. generated a new transgenic mouse model 
with EGFP reporter gene expression under the control of the en-
dogenous mouse cnr2 gene promoter, referred to as CB2EGFP/f/f 
mice. This approach allows for coupling of EGFP expression to cnr2 
gene transcription without loss or modification of the CB2 protein. 
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Microscopic analysis in adult CB2EGFP/f/f mice has revealed no EGFP 
immunoreactivity in the brain84 and spinal cord.84,85 However, when 
these mice were crossed with 5xFAD mice modeling Alzheimer's dis-
ease, an intense EGFP signal, and thus likely CB2R, was visualized in 
the offspring in the vicinity of beta-amyloid plaques in cells with an 
ameboid shape reminiscent of activated microglia. Further investiga-
tions by electron microscopy revealed the presence of low EGFP sig-
nal in the membrane of some Iba1-positive cells in the subiculum of 
CB2EGFP/f/f mice, and at higher levels in both membrane and cytosol 
of Iba1-positive cells from CB2EGFP/f/f/5xFAD mice.86 In retina, EGFP 
signal was sparse at baseline in microglial elements, but upregulated 
following inflammatory stimuli.87

Efforts must be made to support the development of better-
validated antibodies in each species in which the CB2R protein is 
assessed or must be quantified. However, while waiting for these 
tools of major importance, progress can be made toward refining the 
identification of cells expressing CB2R, at least at the transcript level, 
via assays performed on single cells or on specific cell populations 
obtained after the dissociation of different brain regions.
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