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A topographic atlas defines developmental 
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The lung contains numerous specialized cell types with distinct roles 
in tissue function and integrity. To clarify the origins and mechanisms 
generating cell heterogeneity, we created a comprehensive topographic 
atlas of early human lung development. Here we report 83 cell states and 
several spatially resolved developmental trajectories and predict cell 
interactions within defined tissue niches. We integrated single-cell RNA 
sequencing and spatially resolved transcriptomics into a web-based, open 
platform for interactive exploration. We show distinct gene expression 
programmes, accompanying sequential events of cell differentiation and 
maturation of the secretory and neuroendocrine cell types in proximal 
epithelium. We define the origin of airway fibroblasts associated with airway 
smooth muscle in bronchovascular bundles and describe a trajectory of 
Schwann cell progenitors to intrinsic parasympathetic neurons controlling 
bronchoconstriction. Our atlas provides a rich resource for further research 
and a reference for defining deviations from homeostatic and repair 
mechanisms leading to pulmonary diseases.

The traditional account of cellular heterogeneity in the lung based on 
meticulous histology and expression of few characteristic markers 
suggests more than 40 cell types in the adult human lung1. The lung 
cell-type repertoire has been further expanded by recent developments 
in single-cell genomics allowing the interrogation of hundreds of thou-
sand cells from adult healthy and diseased human lungs2–5. So far, 58 
distinct cell types and states can be categorized into the five major cell 
classes of epithelial, stromal, immune endothelial and neuronal cells.

Our knowledge of human lung development derives largely from 
animal models and simplified organoid cultures6,7 underscoring 

the lack of systematic studies of intact embryonic tissues. In this 
Resource, we focused on the first trimester of gestation and applied 
state-of-the-art technologies to capture and map the gene expression 
profiles of human embryonic lung in time and space. We first defined 
six main cell categories: mesenchymal, epithelial, endothelial, neuronal 
and immune cells, and erythroblasts/erythrocytes. Higher-resolution 
analysis of each of these categories suggested 83 cell identities, cor-
responding to cell types and transitional states. Next, we defined 
topological neighbourhoods of spatially related cell identities and 
used interactome analyses to describe communication niches and 
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Distinct positions of mesenchymal cell states
The largest cluster in our dataset consisted of mesenchymal cells 
(Extended Data Fig. 2a). Subclustering revealed six distinct cell types 
expressing specific markers for known fibroblast, mesothelial, chon-
droblast and smooth muscle cell types and several immature states, 
characterized by the general mesenchymal markers COL1A2 (ref. 2) 
and TBX4 (ref. 15) and the lack of specific cell-type markers (Fig. 2a, 
Extended Data Fig. 4a and Supplementary Table 1 (4)). Annotation was 
also based on the spatial mapping of clusters at different timepoints 
(Fig. 2b and Extended Data Fig. 4b), the relative cluster positioning in 
the uniform manifold approximation and projection (UMAP) plot16, 
partition-based graph abstraction (PAGA plot)17 (Fig. 2a) and scVelo18 
analyses (Extended Data Fig. 4c) positioning immature cell states in 
the UMAP-plot centre and the more mature ones at the periphery. We 
spatially detected: (1) mesothelial cells (cluster (cl)-19), expressing WT1, 
MSLN, KRT18 and KRT19 at the tissue margins (Extended Data Fig. 4d), 
(2) pericytes/vascular smooth muscle (cl-14) associated with endothe-
lium (Fig. 1c) and marked by PDGFRB and moderate levels of ACTA2 
and TAGLN, (3) SOX9pos COL2A1pos chondroblasts (cl-18) surrounding 
proximal airways, (4) MYH11pos DACH2pos airway smooth muscle (ASM, 
cl-13) close to airway epithelium, (5) SERPINF1pos SRFP2pos adventitial 
fibroblasts (AdvFs, cl-10) and (6) ASPNpos TNCpos airway fibroblasts (AFs, 
cl-16). AdvF and AF occupied distinct positions in the bronchovascular 
bundles19, with the AFs being localized closer to airways than AdvF (Fig. 
2b (5), (6)). Immature cell states (cl-0, cl-2 and cl-6) showed scattered 
distribution (Extended Data Fig. 4b). Lastly, 5 of the 21 mesenchymal 
clusters contained proliferating cells, which were widely distributed 
at early stages and became more localized around distal airways over 
time (Fig. 2a and Extended Data Fig. 4e).

ASM maturation states coincide with distinct topologies
A prominent PAGA-plot trajectory suggested a differentiation path of 
immature mesenchyme towards ASM. It connected three immature 
clusters (cl-0, cl-2 and cl-6) to a proliferating ASM cluster (cl-20) and 
three ASM clusters (cl-8, cl-12 and cl-13) (Fig. 2a). This proposed that 
the trajectory stems from the immature mesenchyme connects to 
the immature ASM cl-8 and cl-12, leading to the more mature ASM 
cl-13 (Fig. 2c,d and Extended Data Fig. 4f). Proliferating ASM cells 
showed high expression of smooth muscle markers, such as ACTA2 
and TAGLN, implying that they represent a more mature state than cl-0 
(Extended Data Fig. 4a). Interestingly, cl-20 also selectively expressed 
genes encoding extracellular matrix (ECM) proteins (Extended Data 
Fig. 4g), suggesting that proliferating ASM progenitors are tran-
scriptionally distinct and locally contribute to ECM composition. 
Using pseudotime analysis20,21, we defined differentially expressed 
gene-modules that might contribute to differentiation along the 
ASM trajectory (Extended Data Fig. 5a). Characteristic regulators 

tissue-design rules driven by spatial factors and cell interactions. We 
present an online platform integrating single-cell RNA sequencing 
(scRNA-seq) with the spatial analyses to facilitate interactive explora-
tion of our data on whole lung tissue sections at different ages.

Results
Overview of cell heterogeneity in the embryonic lung
We dissected lungs from 17 embryos, ranging from 5 to 14 weeks post 
conception (PCW) at approximately weekly intervals (Supplementary 
Table 1 (1) and Extended Data Fig. 1a–c). Assuming that the two lungs are 
bilaterally symmetric, we regularly used the right lobes for scRNA-seq 
and processed the left lobes for spatial analyses. For in situ mapping, we 
aimed to analyse consecutive sections of the same tissues to indepen-
dently validate the cell-state topologies. A first clustering and differen-
tial expression analysis of 163,236, high-quality complementary DNA 
libraries (Extended Data Fig. 1d–h) revealed six main cell categories: the 
mesoderm-derived (1) mesenchymal, (2) endothelial, (3) immune cells 
and (4) erythroblasts/erythrocytes, as well as (5) the ectoderm-derived 
neuronal and (6) the endoderm-derived epithelial cells (Extended Data 
Fig. 2a–g and Supplementary Table 1 (3) and (13)). Next, we dived deeper 
into each of them by re-clustering the corresponding cells, to expose 
additional cell states that were hidden in the whole dataset analysis. 
This revealed an unexpectedly high heterogeneity of 83 distinct cell 
states (Fig. 1a and Extended Data Fig. 3a).

To further explore the proposed cell-states and map them back 
to the tissue, we monitored gene expression patterns on tissue sec-
tions with spatial transcriptomics (ST) in nine different stages (the 
interactive viewer8 contains representative sections of 6, 8.5, 10 and 
11.5 PCW lungs). Probabilistic analysis of the ST data9 largely validated 
the scRNA-seq results and spatially mapped the suggested clusters 
(example in Fig. 1b). The probability estimation of each cluster in every 
ST spot allowed definition of possible cluster pairs, located consistently 
in the same ‘niche’ (55-µm-diameter ST spot). We defined four distinct 
cell neighbourhoods, in characteristic anatomical positions, including 
proximal and distal airway compartments, vessels and parenchyma 
(Fig. 1c and Methods). To explore the communication code among 
cell states in each neighbourhood, we used interactome analyses with 
CellChat10 and Nichenet11 (interactive viewer and example in Fig. 1d).

To achieve higher resolution, we targeted 177 cell-state markers 
and selected NOTCH, HH, WNT and RTK/FGF signalling components 
to validate cell communication events by multiplex HybISS12,13 (Fig. 1e 
and Extended Data Fig. 2h) and SCRINSHOT14. To facilitate accessibil-
ity and easy data exploration, we constructed an interactive viewer 
combining all modules of our analyses (https://hdca-sweden.scilifelab.
se/tissues-overview/lung/). Below, we present the analyses of mes-
enchymal, epithelial and neuronal cell states and their interactions. 
Immune and endothelial cells are described in Supplementary Note 1.

Fig. 1 | Overview of the study. a, UMAP plot of the 83 identified cell clusters by 
the analyses of the main cell categories (mesenchyme, epithelium, endothelium, 
immune and neuronal cells) from all 17 analysed donors. The two insets (dotted 
lines) at the right side of the plot correspond to clusters of doublets (top) and 
epithelial ciliated cells (bottom), which have been re-arranged in the original 
UMAP plot. Their initial locations are shown in Extended Data Fig. 2a. imm, 
immature; endo, endothelial; macroph, macrophage; fibro, fibroblast; prol, 
proliferating; mesench, mesenchymal; ASM, airway smooth muscle; prog, 
progenitor; SCP, schwann precursor cell; megakaryo, megakaryocyte; epith, 
epithelial. b, Example of an analysed 6 PCW lung section with ST, showing 
the cluster positional predictions for 75 out of the 83 identified cell clusters, 
as pie charts, according to stereoscope analysis. The missing eight clusters 
correspond to the cell states in parasympathetic ganglia, which were detected 
as one neuronal cell state. Insert: magnification of an ST spot, showing its cluster 
composition. epi, epithelial; prox, proximal; pcw, post conception week. c, 
Co-localization graph based on cluster co-occurrence in ST spots, according 
to stereoscope. Neuronal clusters are grouped in a single group (neuronal), 

and immune cell types are excluded. Lines indicate the strongest connections 
(Pearson’s r > 0.04) between two clusters in the 55-µm-diameter ST spots. 
Distal and proximal airways, vessels and parenchyma are the four identified 
‘cell neighbourhoods’. Colours as in a. epi, epithelial; mes, mesenchymal; endo, 
endothelial; erythro, erythrocytes. d, Cartoon of predicted WNT-signalling 
communication patterns between spatially related clusters, showing its effect 
on target cells, based on previous knowledge. Interactome analyses with 
(1) CellChat10, based on expression of ligands, receptors and co-factors and 
(2) Nichenet11, which that predicts target-gene activation in response to cell 
communications. Clusters represented by each drawn cell are indicated in a. e, 
Experimental validation of WNT7B communication pattern, between WNT7Bpos 
epithelium and the surrounding mesenchyme, using HybISS (individual-gene 
images in Extended Data Fig. 2h). Interactive visualization of (1) scRNA-seq 
analyses with (2) cell-type distributions on whole sections, (3) spatial gene 
expression patterns (experimentally detected and imputed) and (4) cellular 
interactions, focusing on distinct tissue neighbourhoods is available in https://
hdca-sweden.scilifelab.se/tissues-overview/lung/.
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include the myogenic transcription factor (TF) DACH2 (ref. 22), which 
was detected mainly in intermediate states (cl-8 and c-12) (Extended 
Data Fig. 5a,b, module 5). LEF1 was expressed in cl-8 but not earlier, in 
agreement with the published role of WNT signalling in smooth mus-
cle development23,24 and SSRP1, a FACT complex component, which 
modifies the chromatin structure at the promoters of muscle-specific 
genes, activating them25 (Extended Data Fig. 5b). The expression of the 
NOTCH ligand JAG1 was also increased in cl-6 and cl-8, in agreement 
with previous in vitro analysis26 (Extended Data Fig. 5c). Differentiation 

into mature ASM states seems to occur in cl-12 and cl-13 and is illus-
trated by increased expression of ACTA2, TAGLN and MYH11 (ref. 2) 
(Extended Data Fig. 5a, module 7). NR4A1, a negative regulator of 
vascular smooth muscle27 proliferation, was among the most highly 
upregulated TFs in the mature ASM cells (cl-13) (Extended Data Fig. 
5b). HHIP, a target and inhibitor of HH-signalling28, and the secreted 
BMP-inhibitor GREM2 (ref. 29) were enriched in the more mature ASM 
cluster (Extended Data Figs. 4a and 5d: modules −7 and −9), implicating 
regulation of these pathways during ASM differentiation.
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Spatial analysis localized most clusters of this trajectory in dis-
tinct positions along the developing airways (Fig. 2d,e), indicating 
a link between the ASM maturation states and their topology, with 
most immature states located peripherally and the mature ones being 
closer to proximal airways, as in mouse lung15. Mesenchymal cl-0 and 
cl-2 were dispersed in the parenchyma (Fig. 1d and Extended Data 
Fig. 4b) and highly expressed WNT2 and RSPO2 (Extended Data Fig. 
5a,d). This is consistent with defects in ASM differentiation caused by 
WNT2 inactivation in mice30. This suggests that precursors are evenly 
distributed in the peripheral parenchyma and begin to differentiate 
close to the bud tips.

Two differentiation trajectories of lung fibroblasts
To complement the mesenchymal cell analysis, we focused on the two 
suggested fibroblast trajectories, based on the relation of the involved 
clusters (cl-4, cl-5, cl-16, cl-9 and cl-10) in PAGA plot (Fig. 2a and Extended 
Data Fig. 5e,f). ST analysis showed that cl-16 is localized around the air-
ways, as early as 6 PCW (Fig. 2b (6)). This cluster is negative for ACTA2 
but expresses markers of other adult stromal cell types, such as ASPN 
for myofibroblasts, SERPINF1 for AdvFs2 and COL13A1 characterizing a 
recently described lung fibroblast type found in human and mouse31–33 
(Extended Data Fig. 4a). Its unique profile and close proximity to the 
ASM layer (Fig. 2e,f) argued that cl-16 corresponds to an undescribed 
mesenchymal cell type, which we named ‘airway fibroblast (AF)’. On 
the other hand, AdvFs were localized in bronchovascular bundles, at 
greater distance from the airways than AFs (Fig. 2b (5)).

scVelo and Slingshot analyses (Extended Data Fig. 5e,f) indicated 
that the immature fibroblasts of cl-4 either transit to immature AF2 
(cl-5) and then to the mature AFs (cl-16) or produce the immature AdvFs 
(cl-9), which mature to the cl-10. WNT2 and FGF10 were expressed in 
the immature fibroblasts, similarly to the other immature mesenchy-
mal clusters (Extended Data Fig. 5d) but the Netrin-receptor DCC is 
more selective for all three immature mesenchymal clusters and espe-
cially cl-4, suggesting a decline as differentiation proceeds (Extended 
Data Fig. 5g and Supplementary Table 1 (5)). Similarly, immature cells 
expressed DACH1 and ZBTB16, whereas MECOM was gradually increased 
along the AF trajectory and the BMP-signalling targets ID1 and ID3 (ref. 
34) along the adventitial one (Extended Data Fig. 5h). Different secreted 
ECM proteins such asTNC, ASPN and collagens were differentially 
expressed along the trajectories (Extended Data Fig. 5i). This suggests 
distinct roles of the embryonic lung fibroblast types in the creation of 
the ‘scaffolding’ substrates for resident lung cells.

AF interactions with smooth muscle
Focusing on the AF trajectory, there was a gradual increase of markers 
such as COL13A1 and SEMA3E35 in mature cl-16 (Extended Data Fig. 4a). 
Spatial analyses showed that AFs surround the ASMs, with cl-16 located 
most proximal to ASM (Fig. 2e,f) and the more immature AF state (cl-5) 
in more peripheral positions (Fig. 2e). To explore potential commu-
nication routes between AF and ASM, we focused on signalling path-
ways emanating from the one and targeting the other (Extended Data 

Fig. 6a,b). IGF, WNT and BMP pathways were among the most promi-
nent ones (Extended Data Fig. 6c–e). The IGF1 was mainly expressed 
in immature ASM2 (mes cl-12), as early as 5 PCW and increased over 
time (Extended Data Fig. 6f,g). The expression of the corresponding 
receptor, IGF1R was also evident at that stage, in immature AFs (mes 
cl-5) showing relatively stable expression until 14 PCW. The predicted 
IGF1-target gene, LUM, was expressed by AFs (Fig. 2g and Extended Data 
Fig. 6c) and may facilitate the alignment and formation of collagen 
bundles around proximal airways, as previously reported36. WNT5A was 
produced by ASM cells and targeted AFs through the FZD1 receptor, 
in a communication pattern that intensifies overtime, as indicated by 
the gradually elevated expression of both proteins (Extended Data Fig. 
6d,g,h). Our computational predictions suggested BMP4 as a WNT5A 
target (Extended Data Fig. 6d), in agreement with previous in vitro 
experiments37. BMP4 is in turn predicted to upregulate ACTA2 expres-
sion in ASM38, suggesting a positive feedback loop, between adjacent 
AFs and ASM (Extended Data Fig. 6e). Our results identify AFs as an 
undescribed cell type in contact with ASM and suggest their mutual 
signalling interactions.

SCPs produce lung parasympathetic neurons
The trachea and lungs are innervated by the vagus nerve, containing 
sympathetic, parasympathetic and sensory neurons. These fibres 
comprise a pre-ganglionic and a post-ganglionic compartment39,40. 
Only parasympathetic ganglia are localized inside the lung, close to 
the airways, containing the somata of post-ganglionic neurons that 
innervate the ASM41 and regulate bronchoconstriction40. The source 
for parasympathetic neurons in mice42,43 is the neural crest-derived 
Schwann cell precursors (SCPs), which migrate towards trunk and 
cephalic ganglionic positions to differentiate into neurons, in an 
ASCL1-dependent process42.

Subclustering of neuronal cells revealed eight cell states, which 
can be ordered into one main differentiation trajectory, resembling 
the transition of SCPs to neurons (Fig. 3a,b). The dataset also con-
tains proliferating SCPs (cl-1, cl-5 and cl-7) (Extended Data Fig. 7a and 
Supplementary Table 1 (6)). The neuronal cl-0 and cl-3 gradually lose 
SCP-marker expression while increasing ASCL1, suggesting transient 
states from SCPs to neurons. cl-2 and cl-6 expressed the neuronal 
markers PRPH, NRG1 and PHOX2B (Extended Data Fig. 7a), together 
with the acetylcholine receptors M2 and M3 (CHRM2 and CHRM3) 
and the nicotinic acetylcholine receptor subunits α3 and α7 (CHRNA3 
and CHRNA7). This suggested that they can respond to acetylcholine. 
Similarly, they expressed acetylcholinesterase (ACHE) and SLC5A7, 
encoding the high-affinity choline transporter for intraneuronal ace-
tylcholine synthesis44 (Extended Data Fig. 7b). However, the lack NOS1 
and VIP (Extended Data Fig. 7a) suggests that they are still immature 
parasympathetic neurons.

Stereoscope analysis detected the collective signature of both 
SCPs and neuronal cells in the trachea at 6 PCW (Fig. 3c). Intra-lobar 
signal was first detected close to the trachea at 7 PCW (Fig. 3d, aster-
isk). At later timepoints the signal was detected more centrally, within 

Fig. 2 | Analysis of mesenchymal cells. a, PAGA plot of the analysed 138,000 
mesenchymal cells, from all 17 analysed donors, superimposed on their UMAP 
plot. Line thickness indicates the probability of the cluster connections. 
Colours indicate the 21 suggested clusters. ASM, airway smooth muscle; prol, 
proliferating; imm, immature; adv, adventitial; AF, airway fibroblast; fibro, 
fibroblast. b, Stereoscope analysis, based on ST data, showing the spatial 
distribution of the developing (1) mesothelial cells (cl-19), (2) pericytes (cl-14), 
(3) chondroblasts (cl-18), (4) ASM (cl-13), (5) AdvFs (cl-10) and (6) AFs (cl-16), in 
6, 8.5 and 11.5 PCW lung sections. Red numbers: the highest percentage value 
of the indicated cell type. Dark red, high; grey, 0%. Tissue structure is shown by 
H&E staining. Scale bar, 400 µm. arw, airway; tr, trachea; prox, proximal; pcw, 
post conception week; br-v bundle, bronchovascular bundle. c, Pseudotime 
analysis of the ASM cells, with Slingshot showing the proliferation (cl-20) and 

maturation (cl-12 and cl-13) trajectories. Same colours as in a. d, As in b for the 
ASM trajectory, in a 6 PCW lung section. e, Spatial localization of the ASM and 
AF clusters, in a 6 PCW lung section, using probabilistic cell typing (pciSeq) with 
HybISS data. The pie charts show the percentage of the indicated cell identities. f, 
Representative image of one out of six distal epithelial bud tips for a 6 PCW whole 
lung section, showing the MYH11 (red), IGF1 (green) and COL13A1 (blue) detected 
mRNAs (HybISS) around the same airway, as in e. Data can be accessed at https://
hdca-sweden.scilifelab.se/tissues-overview/lung/. g, Single-plane, confocal-
microscopy image of immunofluorescence for COL13A1 (magenta), LUM (yellow) 
and ACTA2 (cyan), to show AFs and ASM, respectively, in an 8.5 PCW proximal 
airway (left). Square bracket indicates the area of the images on the right. Nuclear 
DAPI, grey. Scale bar, 20 µm.
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the bronchovascular bundle interstitium19, coinciding with a distinct 
haematoxylin and eosin (H&E) staining pattern (Fig. 3e) that overlaps 
with the protein expression of the SCP and neuronal markers PHOX2B, 
DLL3 and NEFM (Fig. 3f). This suggests that the SCPs, presumably deriv-
ing from neural crest, enter the lung and mature to parasympathetic 
neurons in ganglia embedded in the bronchial interstitium.

To explore the cellular composition and differentiation states in 
the proposed embryonic ganglia we first stained for PHOX2B (SCPs 
and neurons), DLL3 (differentiating neurons45) and NF-M (mature 
neuron projections) (Fig. 3g,h). At 8.5 PCW, we found several clusters 
of PHOX2Bpos cells in NF-Mpos domains, that contained some DLL3pos 
cells, which would correspond to differentiating neurons. We further 
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explored this by analysing the characteristic TFs SOX10, ASCL1 and 
ISL1, which are sequentially activated along the trajectory (Extended 
Data Fig. 7c–e). We detected SOX10pos SCPs, SOX10pos-ASCL1pos neuronal 
precursors and ISL1pos neurons, consistent with the differentiation 
steps proposed by the pseudotime analysis. The selective expression 
of ASCL1 and DLL3 in subclusters of the ganglionic cells prompted us 
to interrogate the expression of NOTCH-signalling pathway genes in 
the clusters (Fig. 3i). The selective expression of JAG1 in SCPs suggested 
that it activates NOTCH signalling in parasympathetic ganglia, similarly 
to its role in mouse limb nerves, which also derive from neural crest46.

Early developmental trajectories of epithelial differentiation
We subclustered epithelial cells into 15 groups (Fig. 4a) and annotated 
them on the basis of known markers (Extended Data Fig. 8a and Sup-
plementary Table 1 (7)), spatial distribution (Fig. 4b and Extended Data 
Fig. 8b) and their trajectory relationships illustrated by PAGA plot and 
scVelo analyses (Extended Data Fig. 8c,d). We detected four distal cell 
identities (cl-10, cl-2, cl-3 and cl-9) and seven proximal ones, corre-
sponding to ciliated (cl-14), secretory (cl-0), neuroendocrine (NE) cells 
(cl-11 and cl-12) and their progenitors (cl-6, cl-7 and cl-4). We also found 
an intermediately located population (cl-1) and three proliferating cell 
states (cl-8, cl-13 and cl-5), which were preferentially localized in distal 
airways (Extended Data Fig. 8b). Surprisingly, we did not detect any 
cluster with characteristic basal cell features but only a few TP63pos 
cells within cl-7, being negative for typical embryonic47 or adult2 basal 
markers (Extended Data Fig. 8e,f). Similar to the scRNA-seq analysis, 
immunofluorescence of 8.5 and 14 PCW lung sections showed TP63pos 
cells in large airways with only a small fraction being KRT5pos at only 
14 PCW (Extended Data Fig. 8g). This suggests that basal cells begin 
to differentiate at 14 PCW in the intra-lobar airways.

In distal airways, epithelial cl-2, cl-3, cl-9 and cl-10 were posi-
tive for SOX9 and ETV5 (refs. 6,48) (Extended Data Fig. 8a,b and Fig. 
4b,c). Among them, cl-2 and cl-10 cells highly expressed SOX9 and 

were located in the most distal part of the bud tips. Trajectory analy-
ses (Extended Data Fig. 8c,d) and their topology suggested that they 
function as the source of the remaining two distal clusters, which 
were predominantly composed of later-timepoint cells (>10 PCW) 
(Extended Data Fig. 9a). Accordingly, cl-9 included SFTPChigh cells 
co-expressing ACSL3, which participates in lipid metabolism49, a pre-
requisite for surfactant biosynthesis50 (Extended Data Fig. 9b,c). By 
contrast, cl-3 cells were found scattered in the distal epithelium as 
early as 5 PCW (Extended Data Fig. 8b) and expressed elevated CTGF 
levels (Extended Data Fig. 9d), a growth factor implicated in mouse 
alveolar development51 and in stimulation of fibroblasts during mouse 
lung fibrosis52. Immunofluorescence for KRT17, another cl-3 selective 
marker (Extended Data Fig. 8e) confirmed the existence of sparsely 
distributed Ecadpos KRT17pos cells in the 14 PCW distal airway epithelium 
(Fig. 4d). Overall, these cells share gene expression similarities with 
‘basaloid’ cells (Extended Data Fig. 9f,g and Supplementary Table 1 (8)), 
a pathogenic cell state in interstitial pulmonary fibrosis4,53. However, 
the embryonic clusters are distinguished by marked differences, as 
they are TP63neg and are localized in the luminal rather than basal part 
of the epithelium (Fig. 4d).

Cell communication patterns in the distal lung compartment
We utilized the definitions of cell neighbourhoods (Fig. 1c) to explore 
candidate cell communication pathways in the distal lung compart-
ment (Viewer: CellChat). FGF signalling was among the most prominent 
predictions (Fig. 4e) with FGF10 being mainly expressed in scattered 
mesenchymal cells (cl-0) around the epithelium (Fig. 4f and Extended 
Data Fig. 4b). This expression pattern differs in the mouse embryonic 
lungs, where FGF10 is focally expressed at the bud tips to induce branch-
ing54. This difference might explain why FGF10 induces cyst formation 
instead of branching in human explants55. Additional FGF-ligand genes 
(Fig. 4f,g) were detected in the distal epithelium, defining both mesen-
chymal and epithelial cells as sources. For example, FGF18 and FGF20 

Fig. 3 | Parasympathetic neuron development in the embryonic lung. a, PAGA 
plot of the analysed 752 neuronal cells, from 10 analysed donors (Methods), 
superimposed on their UMAP plot. Line thickness indicates the probability 
of the cluster connections. Colours indicate the eight suggested clusters. b, 
scVelo-analysis on the neuronal cells. Colours as in a, and direction of arrows 
shows the future state of the cells. c–e, Stereoscope neuronal score on 6 (c), 7 
(d) and 11.5 (e) PCW lung sections. Top: high-resolution H&E images. Bottom: 
stereoscope score of neuronal cells (SCPs and neurons, together). Arrows: ST 
spots with high percentage of neuronal cells, possibly corresponding to ganglia. 
Asterisk: possible ganglion, within lung. Dark red, high; grey, 0%. ‘arw’, airway; ‘tr’, 
trachea; ‘v’, vessel; ‘c’, cartilage rings. Interactive inspection of the presented data 
can be accessed at https://hdca-sweden.scilifelab.se/tissues-overview/lung/. 
f, (i) Low-magnification image of immunofluorescence for the PHOX2B (cyan), 
DLL3 (magenta) and NF-M (yellow) on an 8.5 PCW lung section. Nuclei: DAPI 
(grey). Parasympathetic ganglia were detected around an airway. (ii) Magnified 
area designated by square bracket in (i). Arrowheads: positive ganglia for the 

analysed markers. arw, airway. (iii) H&E staining of the same tissue section, after 
immunofluorescence and image acquisition. (iv) Magnified area corresponding 
to the square bracket in ‘(iii)’. The arrowheads indicate the same positions as in 
‘(ii)’, showing that the structures with intense H&E staining correspond to ganglia. 
Scale bar, 50 µm. g, UMAP plots of PHOX2B (SCPs and neurons), DLL3 (developing 
neurons) and NEFM (NF-M, mature neurons). Expression levels: log2(normalized 
UMI counts + 1) (library size, normalized to 10.000). h, Immunofluorescence of 
PHOX2B (cyan), DLL3 (magenta) and NF-M (yellow). Nuclei: DAPI (grey). Scale 
bar, 20 µm. Hashes: PHOX2Bpos DLL3pos NF-Mneg SCPs. Arrows: PHOX2Bpos DLL3pos 
NF-Mneg immature neurons. Arrowhead: PHOX2Bpos DLL3pos NF-Mpos neuron. DLL3 
staining pattern agrees with its previously reported localization in cis-Golgi, to 
sequester unprocessed NOTCH1-protein and render cells insensitive to NOTCH 
signalling74. i, Balloon plot of NOTCH-signalling gene expression in neuronal 
clusters, including receptors, targets, ligands, transducers and inhibitors75. 
Brackets highlight JAG1 and DLL3. Balloon size: percentage of positive cells. 
Colour intensity: scaled expression. Blue, high; grey, low.

Fig. 4 | Epithelial diversity in developing human lungs. a, UMAP plot of 10,940 
epithelial cells, from all 17 analysed donors. Colours indicate the 15 suggested 
clusters. Dotted outlines: main cell groups of proximal (magenta), proliferating 
(grey) and distal cells (black). b, Heat map showing the spatial correlation of the 
indicated clusters, based on stereoscope scores (ST data). Positive correlations, 
red; negative correlations, blue. Brackets: distal, intermediate and proximal main 
patterns. c, Region of interest (ROI) showing a 14 PCW distal airway, analysed 
with SCRINSHOT. SOX2 (cyan), SOX9 (red), ETV5 (yellow), SFTPC (grey), NKX2-1 
(grey, not shown in merge image) and DAPI (blue). Scale bar, 40 µm. d, Single-
plane confocal-microscopy image of immunofluorescence for the characteristic 
basaloid marker KRT17 (magenta) in addition to Ecad (cyan), showing KRT17pos 
Ecadpos cells in a 14 PCW lung section. DAPI, blue. Scale bar, 10 µm. e, CellChat 
heat map showing the sender, receiver, mediator and influencer roles of the 

different epithelial clusters described in a for the FGF-signalling pathway. 
Colour intensity shows the importance of the cluster contribution to each role. 
Dark red, high; white, low importance. All identified communication patterns 
can be accessed at https://cellchat.serve.scilifelab.se/. f, Balloon plot of FGF 
ligands, receptors and target expression levels, in distal lung clusters. Epithelial 
intermediate (cl-0) and ASM (cl-13): control cell states (not in the specific 
neighbourhood, with grey shadow). Balloon size: percentage of positive cells. 
Colour intensity: scaled expression. Blue, high; grey, low. g, HybISS in situ 
validation of FGF-pathway genes. DAPI, nuclei (top left). Top: general epithelial 
marker EPCAM, FGF18 and FGF20 ligands. Middle: FGFR1-4 receptors. Bottom: 
ETS1, ETV3, ETV5 and SPRY2 targets. Scale bar, 500 µm. Data can be accessed at 
https://hdca-sweden.scilifelab.se/tissues-overview/lung/.
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were detected in distal epithelium by both scRNA-seq (cl-2, cl-3, cl-9 
and cl-10) and HybISS. The localized expression of FGFR2, FGFR3 and 
FGFR4 agreed with an independent study55. Potential FGFR downstream 
targets, such as ETV5 (ref. 56) and SPRY2 (ref. 57), were detected in distal 

epithelium, suggesting a potential epithelial-intrinsic function for FGF 
signalling (Fig. 4f,g). Another prominent predicted target of epithelial 
FGFR activation is SOX9 (Extended Data Fig. 9h), consistent with its 
reported regulation by FGF/Kras48,55.
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Distinct steps in proximal airway cell differentiation
The secretory (cl-0 and cl-4), ciliated (cl-14) and NE (cl-11 and cl-12) clus-
ters were located in the most proximal airway positions. However, their 
putative progenitors (cl-6 and cl-7) were found in slightly more distal 
positions (Fig. 4b, Viewer: HybISS). The FOXJ1pos cl-14 cells expressed 
only early ciliogenesis genes, suggesting an early differentiation state 
(Extended Data Fig. 9i and Supplementary Table 1 (24)). The major dif-
ference between secretory cl-0 and cl-4 was the high levels of HOPX and 
KRT17 in cl-4 (Extended Data Fig. 8a), which also expressed activated 
epithelial markers (Extended Data Fig. 9g), similar to the distal epithelial 
cl-3. These cl-0 and cl-4 cells showed similar spatial distribution (Fig. 4b 
and Extended Data Fig. 8b), but cl-4 was enriched for migration-related 
genes (Extended Data Fig. 9j and Supplementary Table 1 (25)). Thus, 
cl-4 may correspond to a transient progenitor state giving rise to the 
‘default’, static airway secretory cl-0. PAGA plot (Extended Data Fig. 
8c) and pseudotime (Fig. 5a,b) analyses suggested that cl-6 cells can 
function as a source for either secretory cl-0 or NE-progenitor cl-7 
cells, which further progresses towards the NE cl-12 and cl-11 states. 
Differential expression analysis along the two trajectories identified 
569 genes that were grouped in nine modules (Supplementary Table 
1 (18), top 10, and Fig. 5c). Among the earliest activated genes in the 
secretory trajectory, we detected YAP1 and the WNT extracellular 
inhibitor GPC5 (Fig. 5c, module 6) (refs. 58,59). These were followed 
by increased levels of the characteristic secretory marker SCGB3A2 
and the NOTCH-signalling targets HES1 and HES4 (Fig. 5c, module 9), 
further arguing for an evolutionary conserved role of NOTCH-signalling 
in airway secretory cell differentiation60 and maintenance61.

Distinct topologies and possible functions of NE identities
In the NE trajectory, cl-7 probably represents a progenitor expressing 
low levels of ASCL1, a critical factor in NE cell differentiation62 (Fig. 5c, 
module 4). The differentially expressed TFs along the secretory and 
NE trajectories included the direct ASCL1-target, MYCL63, which was 
transiently expressed along the NE trajectory (Fig. 5d and Extended 
Data Fig. 9k). The NE progenitor cl-7 was connected by few cells with the 
NE2 (cl-12), creating a stalk that splits in two directions, one towards the 
remaining NE2-cells and the other towards NE1-cells (cl-11) (Fig. 5a). In 
this part, gene module 4 contained ASCL1, its direct target IGFBP5 (ref. 
64), together with HES6 (ref. 65) (Fig. 5c). Finally, at the part towards NE1 
cells, module 1 contained NEUROD1 (Extended Data Fig. 9l), its target 
HNF4G63 (Fig. 5c, module 1, and Extended Data Fig. 9m) and SSTR2 (Fig. 
5c, module 1). Gene expression comparison between cl-11 and cl-12 
(Extended Data Fig. 9n and Supplementary Table 1 (9)) showed that cl-12 
produces the characteristic pulmonary neuropeptides GRP and CALCA 
together with SST, whereas cl-11 expresses GHRL and CRH. Gene Ontol-
ogy (GO) analysis for enriched biological processes suggested hormone 
secretion (GO:0030072) and neuronal axon guidance (GO:0007411), as 
characteristic terms for cl-11 compared with cl-12 (Extended Data Fig. 
9o,p and Supplementary Table 1 (26, 27)). The NE1 cells (cl-11) resemble 
a recently identified NE cell type in human embryos7.

To investigate the spatial arrangement of NE clusters, we used 
SCRINSHOT to detect a panel of 31 genes, encompassing NE, epithelial 

and mesenchymal markers (Extended Data Fig. 10a–d). We defined 
NE-specific patterns by segmenting the sections in hexagonal bins 
(7 μm width), approximating the size of epithelial cells. Among 20,351 
bins expressing general epithelial and characteristic NE genes (Meth-
ods), we found three main NE-associated categories, corresponding to 
NE-progenitors, GRPpos and GHRLpos NE-cells in situ (Extended Data Fig. 
10e,f). These expression patterns match the ones of scRNA-seq analysis. 
GHRLpos NE-cells were located exclusively in the most proximal airways, 
while NE progenitors and GRPpos NE-cells were less restricted in their 
location along the airway proximal–distal axis (Extended Data Fig. 
10d,g). Immunofluorescence analysis confirmed that GRPpos and GHRL-
pos NE cells are differentially distributed along the airways (Extended 
Data Fig. 10h).

As different levels of graded NOTCH-signalling activation are 
required for NE and non-NE cell-fate specification in the airway epi-
thelium66, we interrogated the proximal clusters for the expression 
of NOTCH-signalling genes (Fig. 5e). Both NE clusters (cl-11 and cl-12) 
expressed HES6 (a pathway target and inhibitor65). However, cl-12 
expressed higher levels of JAG1 and DLL3 (a NOTCH cell-autonomous 
inhibitor67), in addition to low levels of JAG2 and DLL1. This suggests 
that cl-12 cells are a source of NOTCH signalling and that they are less 
capable of receiving it. The downregulation of DLL3 might be permis-
sive for lower NOTCH-signalling activation, contributing to the cl-11 
gene-expression programme defined by the NEUROD1, RFX6, HNF4G 
and NKX2-2 TFs (Fig. 5d and Extended Data Fig. 9l,m). Upstream, in the 
trajectory, at the bifurcation of secretory (cl-6) and NE-progenitor (cl-7) 
states, the repressor REST68 and the receptor NOTCH2 showed similar 
expression levels, but HES6 and NOTCH1 were higher expressed in the 
NE-progenitor cluster, suggesting differences in strength or duration 
of NOTCH signalling69,70. NOTCH2 activation in proximal progeni-
tors (cl-6) is expected to be more potent69,70, promoting the secretory 
differentiation.

Overall, the pseudotime analysis suggests two sequential but dis-
tinct NOTCH-signalling events, utilizing different ligands and intracel-
lular effectors: one promotes secretory differentiation, and the other 
controls the transition of cl-12 to cl-11 (Fig. 5f). Further interactome 
analysis revealed another unique communication pattern between the 
two NE clusters involving somatostatin (SST) expressed by cl-12 and its 
receptor SSTR2 in cl-11 (Fig. 5g,h).

In summary, we mapped the distinct topologies and develop-
mental trajectories of airway secretory and NE identities from naïve 
epithelial cells in the embryonic lung. Each trajectory contains distinct 
candidate regulators of NOTCH signalling for the respective cell-state 
transitions.

Mesenchymal cell zonation patterns along two airway axes
Stromal cell populations in fully grown lungs show distinct distribu-
tions along the proximal–distal axis of the airways2. They also show 
specialized radial arrangements surrounding each major airway, with 
ASM adjacent to the epithelium (centre) and AdvFs and chondroblasts 
positioned more peripherally. To explore the spatial organization of 
different mesenchymal trajectories (AF, ASM and AdvF) relative to the 

Fig. 5 | Analysis of developmental trajectories in proximal epithelium. a, 
UMAP plot of proximal clusters and pseudotime of secretory and NE trajectories, 
estimated by Slingshot, containing cells from all 17 analysed donors,. Colours 
as in Fig. 4a. Asterisk: bifurcation point of the two NE clusters. b, scVelo analysis 
on the proximal epithelial cells. Colours as in a, and direction of arrows shows 
the future state of the cells. c, Heat map of the top-ten markers of each stable 
gene module of the 569 differentially expressed genes (Supplementary Data 
3) (bootstrap values module 1: 0.60, module 2: 0.69, module 3: 0.84, module 4: 
0.57, module 5: 0.80, module 6: 0.73, module 7: 0.61, module 8: 0.55, module 
9: 0.85) along the two trajectories, shown in a, according to tradeSeq. Colour 
intensity: scaled expression. Dark red, high; grey, low. d, Balloon plot of the 
top-ten selective TFs in the proximal epithelial secretory and NE clusters. The 
top-20 TF genes (based on average log2 fold change) were sorted according to the 

percentage of positive cells, and the top-10 TFs were plotted. Gene order follows 
the cluster order. e, Balloon plot of NOTCH-signalling components75, in addition 
to the neuronal gene inhibitor REST68, the TF YAP1, the secretory marker SCGB3A2 
and the NE markers MYCL, ASCL1, GRP, NEUROD1 and GHRL. In all balloon plots, 
balloon size: percent of positive cells; colour intensity: scaled expression. Blue, 
high; grey, zero. f, Schematic representation of the suggested NOTCH-signalling 
function on secretory and NE cell specification. g, CellChat hierarchical plot 
of SST-–SSTR2 communication pattern between the two NE cell states. h, 
Single-plane confocal-microscopy image of immunofluorescence for the SST 
(cyan), SSTR2 (magenta) and NE1 (cl-11) marker GHRL (yellow) to validate the 
communication pattern between the two NE-cell SSTR2pos GHRLpos cells with the 
adjacent SSTpos NE2 (cl-12) cells. Cyan arrows: SSTpos cells. Yellow arrows: GHRLpos 
SSTR2pos cells. Scale bar, 5 µm.
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growing airways on the tissue level, we defined two axes. A proximal–
distal one, which was defined by the graded expression of proximal 
(SOX2 and SCGB3A2) and distal (ETV5 and TPPP3) epithelial genes, 
validated by HybISS (Methods) and a radial one, extending from the 
airway centre towards peripheral positions in the mesenchyme. We 
positioned the ST spots and HybISS-annotated cells corresponding to 
immature and differentiated states of AdvFs (mes cl-10), ASM (mes cl-13) 
and AFs (mes cl-16) relative to these two airway-dependent axes (Fig. 
6 and Methods). This analysis revealed that the immature cell states 

occupy predominantly distal and peripheral positions relatively to the 
airway branches. By contrast, the more mature mesenchymal clusters 
are found proximally and centrally located. In particular, the most 
immature ASM clusters (cl-0, cl-2 and cl-6) were the most peripheral. 
More differentiated clusters (cl-8, cl-20 and cl-12) were found closer to 
the airways and in more proximal positions, whereas the most mature 
ASM (cl-13) was found proximal and tightly associated with the airways. 
At all three consecutive timepoints (6, 8.5 and 11.5 PCW), the immature 
fibroblast (mes cl-4) was consistently found more proximal compared 
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with the ASM progenitor clusters (viewer: ST). This argues for the pres-
ence of a peripheral central zone of mesenchymal progenitors giving 
rise to AdvFs, AFs and chondroblasts and reveals an early origin of 
radial patterning in the mesoderm. We suggest that undifferentiated 

cells from the distinct progenitor regions proliferate and continu-
ously differentiate while migrating radially towards the centre and 
their functional positions, similarly to the model of the mesenchymal 
progenitor niche in the mouse lung15.
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Fig. 6 | Assessing the molecular complexity of embryonic human airways. 
a, Left: schematic representation of the radial and proximal–distal airway-
dependent axes. Right: spatial maps of the radial (top) and proximal–distal 
(bottom), scores of an 8.5 PCW lung section, analysed by ST. Colour indicates 
distance from epithelium (number of ST spots). Yellow, high; dark green, zero. 
Proximal–distal score as scaled aggregated expression of SOX2, SCGB3A2 
(proximal) and ETV5, TPPP3 (distal). Proximal, −1; distal, 1. b, Heat maps of ASM-, 

AF- and AdvF-related cluster-density scores along the two analysed axes. Colour 
indicates relative cell frequency in the indicated position. Yellow, high; black, zero. 
c, Proximal–distal axis score of the epithelium of a 13 PCW lung section, analysed 
by HybISS. DAPI, grey; proximal, red; distal, blue. Scale bar, 1,000 µm. d, Density 
maps of ASM and AF clusters, showing their distribution along proximal–distal 
axis (y axis) and their distance from the epithelium (x axis), as in a and b. Colour 
indicates relative cell frequency in the indicated position. Yellow, high; black, zero.
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Fig. 7 | Synopsis of the spatial organization and communication in the 
developing human lung. a, Spatial cell-type maps of distal (left), intermediate 
(middle) and proximal (right) airways. Segmented nuclei are coloured according 
to the most probable, predicted cell type according to PciSeq, using HybISS 
data. Colours as in Fig. 1a. b, Scheme of the cellular and molecular complexity 
in developing lung. The included cell types were identified via scRNA-seq, 

and their spatial context was defined by spatial methods. CellChat-predicted 
communication patterns: curved arrows. NicheNet-predicted ligands (black) 
and corresponding target genes or outcome: cyan text. Bottom: description of 
all involved cell types and sensory neurons (not found in scRNA-seq). Spatial and 
interactome analyses data can be accessed at https://hdca-sweden.scilifelab.se/
tissues-overview/lung/.
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Cell heterogeneity and possible communication patterns
The spatial probabilistic methods (PciSeq71 and Tangram) generated 
systematic spatial maps of several stages, showing the cellular composi-
tion of distinct organ compartments over time (Fig. 7a). On the tissue 
level, this allows the definition of spatial rules of tissue organization 
and estimation of developmental origins by interrogating the relative 
positions of pseudotime trajectories. A graphical representation of 
the developing lung shows a summary of mature and intermediate cell 
states, localized in distinct tissue positions, creating cell ‘neighbour-
hoods’ with specific communication patterns (Fig. 7b).

We integrated our scRNA-seq data with the HybISS, ST and SCRIN-
SHOT spatial analyses, together with the CellChat results in the TissUU-
maps viewing tool (https://hdca-sweden.scilifelab.se/tissues-overview/
lung/). This portal provides an open interactive atlas of early lung 
development that directly facilitates exploration, sharing and hypoth-
esis building.

Discussion
We have generated a systematic topographic atlas of the developing 
human lung, combining gene expression profiling by scRNA-seq with 
spatially resolved transcriptomics on intact tissue sections. We identi-
fied 83 cell states and inferred developmental trajectories leading to a 
remarkable heterogeneity reflecting the structural and functional com-
plexity of the lung. Although we present an extensive analysis of weekly 
intervals during the first trimester, our data have a few limitations. Our 
first datapoint is at 5 PCW and we analysed only about 180,000 cells. 
Earlier and broader sampling is likely to uncover additional diversity 
and infer more precise trajectories than the proposed ones. We aimed 
to collect and analyse freshly dissociated cells, omitting tracheas, 
without enrichment for specific populations. The lack of enrichment 
may have hampered detection of rare, fragile or difficult-to-dissociate 
cells. Indeed, we detected chondroblasts and mesothelial cells only in 
the samples deriving from earlier timepoints. We performed iterative 
clustering, where a conservative first clustering was followed by sub-
clustering of the major populations. Although most of the subclusters 
showed distinct topologies and gene expression profiles, some of the 
cell states may result from overclustering, which is difficult to define 
because of the presence of immature but committed states of distinct 
cell types. Finally, we have described the spatial diversity of the develop-
ing lung mainly at the messenger RNA level, relating this diversity to the 
proteome and further to physiological functions remains a future task.

We suggest that the diversity of gene expression patterns in the 
developing human lung can be explained at distinct but hierarchically 
coupled levels. First, the major cell classes of epithelial, endothelial, 
immune, stromal and neuronal cells are characterized by distinct 
gene expression programmes of their ancestries from distinct germ 
layers: endoderm, mesoderm and ectoderm. We show several levels 
of subdivisions in each of these classes, during the first trimester. For 
example, within the endothelial group there are lymphatic, venous, 
arterial, bronchial and capillary clusters characterized by distinct 
regulatory and functional gene-expression profiles (Supplementary 
Note 1). Second, some cell clusters show region-specific gene expres-
sion profiles, presumably reflecting their developmental history. This is 
exemplified by the separation of proximal and distal compartments in 
the epithelium. The SOX2pos-proximal and the SOX9pos-distal domains 
are specified earlier and are maintained during the glandular stages. 
This suggests that transcriptional networks are conveyed into the 
later diversification of more specialized cell states specific to each 
region. Our spatial analysis illustrates this by the striking correlation of 
characteristically different radial arrangements of AFs and ASM states 
along different positions of the epithelial proximal–distal axis. This 
suggests that the different values of the proximal–distal axis intersect 
with distinct values of a radial axis visualized by the organization of 
surrounding smooth muscle and fibroblast states. The potential regu-
latory relationships between these axes are unknown. A third level of 

diversification results from cell communication patterns within local 
environments reflecting inducible or transient regulation of gene 
modules. The integration of single-cell sequencing with ST data defined 
specific neighbourhoods for most of the cell states. Our curated inter-
actome analyses predicted several known and new examples of this 
organization level. They include the activation of NOTCH signalling 
between the SCP and neuronal states46, within parasympathetic ganglia.

Lung diseases are major causes of death worldwide72. An outstand-
ing challenge for medical research is to define deviation points from 
normal cellular trajectories at the start and during the advancement of 
lung pathologies and to analyse cellular responses after treatments73. 
Our atlas of early human lung development revealed several distinct 
cell states and proposed their interactions with neighbours and pro-
gression along differentiation trajectories.

As single-cell analysis technologies are increasingly used in the 
description of detailed cell-state trajectories in disease, we believe 
that our integrated scRNA-seq data, with spatially resolved transcrip-
tomics and local interactome analyses in an open, interactive portal 
will provide a useful resource towards understanding and reversal of 
pulmonary disease progression.
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Methods
Human lungs
The tissue donors were recruited among pregnant women after their 
decision to terminate their pregnancy. The referral to hospitals was 
done by a central office for all abortion clinics in the Stockholm region, 
and according to our information it was random. The recruitments were 
done by midwifes who were not involved in the conducted research. 
Thus, there was no bias regarding which women were recruited. Inclu-
sion criteria: 18 years of age or older and fluent in Swedish. Exclusion 
criteria: abortions performed for any medical reasons, by socially 
compromised women and/or by women showing any signs that the 
consent may not be informed. All women provided written consent for 
tissue usage for research purposes and for their ability to withdraw their 
consent at any time. There was no compensation to the tissue donors.

The use of human foetal material from the elective routine abor-
tions was approved by the Swedish National Board of Health and Wel-
fare and the analysis using this material was approved by the Swedish 
Ethical Review Authority (2018/769-31). After the clinical staff acquired 
the informed written consent by the donor, the retrieved tissue was 
transferred to the research prenatal material. The lung samples were 
retrieved from foetuses between 5 and 14 PCW.

Tissue treatment for spatial analyses
One of the two lungs (preferentially the left), from each donor, was snap 
frozen in cryomatrix and further used for histological analyses. We 
cut 10–12-μm-thick tissue sections with a cryostat (Leica CM3050S or 
analogue) and collected them onto poly-lysine-coated slides (VWR cat. 
no. 631-0107) for SCRINSHOT and immunofluorescence or Superfrost 
Plus (VWR cat. no. 48311-703) for in situ sequencing (ISS). Sections were 
left to dry in a container with silica gel or at 37 °C for 15 min and then 
stored at −80 °C until usage.

Tissue dissociation of human embryonic lungs
For tissue dissociation, tracheas were removed and lungs were finely 
minced. For later timepoints, lobes were first dissected into smaller 
pieces. Then, they were digested in 4 U ml−1 Elastase (Worthington, cat 
no. LS002292), 1 mg ml−1 of DNase (Worthington, cat. no. LK003170) in 
Hanks’ balanced salt solution (HBSS) (Gibco, cat. no. 14170) at 37 °C rang-
ing between 30 min and 3 h depending on age (older timepoints require 
longer digestion times). HBSS supplemented with 2% fetal calf serum 
(FCS) (Gibco, cat. no. 10500064) was used for the whole procedure. The 
tissues were triturated with glass Pasteur pipettes every 15–20 min to 
enhance dissociation. After digestion, the cell suspension was filtered 
in a 15 ml Falcon tube using a 30 μm cell strainer (CellTrics, Sysmex), to 
remove clumps and debris. The cell suspension was kept ice cold and 
was diluted (roughly 1:2) with ice-cold HBSS. The filtered cells were 
pelleted at 200g for 5 min at 4 °C and the pellet resuspended in a small 
volume of calcium- and magnesium-free HBSS (Gibco, cat. no. 14170) 
and transferred to 1.5 ml Eppendorf tubes pre-coated with 30% BSA 
(A9576, Sigma-Aldrich). A Bürker chamber was used for cell counting.

scRNA-seq of human embryonic lung cells
scRNA-seq was carried out with the Chromium Single Cell 3′ Reagent Kit 
v2 and v3. Cell suspensions were counted and diluted to concentrations 
of 800–1,200 cells μl−1 for a target recovery of 5,000 cells on the Chro-
mium platform. Downstream procedures including cDNA synthesis, 
library preparation and sequencing were performed according to the 
manufacturer’s instructions (10X Genomics). Libraries were sequenced 
on an Illumina NovaSeq 6000 (Illumina). We aimed to obtain 75,000 
and 200,000 sequencing reads per cell for the v2 and v3 libraries, 
respectively, to match the different performances of the Chromium 
Single Cell 3′ Reagent v2 and v3 Kits and to achieve sufficient sequenc-
ing saturation. Across all 39 libraries we obtained an average of 187,242 
reads per cell. Reads were aligned to the human reference genome 
GRCh38-3.0.0 and libraries were demultiplexed and aligned with the 

10X Genomics pipeline CellRanger (version 3.0.2). Loom files were 
generated for each sample by running Velocyto (0.17.17) (ref. 76) to 
map molecules to unspliced and spliced transcripts.

Bioinformatic analysis for scRNA-seq
All *.loom files were imported to R as ‘Seurat objects’, using the ‘con-
nect’ function of the loomR package and the ‘as.Seurat’ function 
of SeuratDisk for *.loom files >3.0.0 (refs. 77,78). The counts were 
obtained using the ‘ReadVelocity’ function of SeuratWrappers pack-
age and we created objects with ‘merged’, ‘spliced’, ‘unspliced’ and 
‘ambiguous’ counts.

The scRNA-seq datasets from the same donor that were sequenced 
in the same sequencing run were merged to create donor-specific 
objects. The only exception was the cells of donor 17 that were ana-
lysed as two individual datasets because 10 × 256 was sequenced after 
10 × 253, but we identified no ‘batch effect’ separating its cells from the 
others of the same donor (‘10 × 253’ and ‘10 × 256’ in Viewer).

The individual donor datasets were analysed separately using Seu-
rat package in R, to inspect their quality. Firstly, we removed the cells 
with low and high number of detected genes, based on their histogram 
distribution (likely cell fragments and multiplets, respectively). Next, 
we ran the DoubletFinder package79 to identify and remove possibly 
cell multiplets, considering that 4% of the analysed cells are multiplets.

To integrate the resulting datasets of 163,000 cells, we used the 
SCTranform function in Seurat, with 5,000 variable genes. We used 
5,000 integration features for the dataset integration, setting as ref-
erence dataset the donor 17 that corresponds to the oldest timepoint 
of our analysis (14 PCW). We observed no profound clustering of the 
cells according to the examined technical covariates, like the utilized 
10X Genomics chemistry or the donor identity, especially for those of 
the same age (Viewer).

The principal component analysis (PCA) was based on the first 100 
top principal components (PCs). For definition of the neighbourhood 
graph and the clusters, we used the default settings of ‘FindNeighbors’ 
and ‘FindClusters’ functions of Seurat77,78, with 100 PCs. For identifica-
tion of cluster selective markers, we used the ‘FindAllMarkers’ func-
tion77,78, with MAST80 statistical test and maximum cell number/cluster 
set to 126, which corresponds to the smallest suggested cluster. To 
accept a gene as a cluster marker, it had to be expressed in at least 25% 
of the cells in the cluster, have 0.1 logarithmic fold increase and be 
expressed in at least 10% more cells in the cluster than the remaining 
dataset. We also selected the statistically significant markers (adjusted P 
value <0.001, after Bonferroni correction) for all downstream analyses.

For the analysis of (1) epithelial, (2) endothelial and (3) immune 
cells, we selected the corresponding clusters of the 163,000 cell dataset 
and harmonized the cells according to the donor parameter, using the 
‘PrepSCTIntegration’ function in Seurat with default settings and 5,000 
features (genes) and regressing out stress-related genes (‘AddModule-
Score’ function in Seurat)81,82, that have been previously shown to get 
induced by enzymatic tissue dissociation at 37 °C (ref. 83). Because of 
the large size of mesenchymal cell subset (>138,000 cells), we used 
donor 17 as a reference dataset for the harmonization of the different 
donor datasets. Especially for the analysis of the neuronal cells, we 
selected the donor datasets with more than 29 cells, that facilitated their 
decent integration (5 PCW: 49 cells, 5.5 PCW: 187 cells, 6 PCW: 169 cells, 
7 PCW: 227 cells, 8 PCW: 38 cells, 8.5 PCW: 52 cells and 14 PCW: 30 cells). 
The selected 752 cells were further processed as all other categories.

For dimension reduction and clustering of the above main cell-type 
categories, we applied the same approach as with whole dataset but 
with the first 50 PCs.

To further filter the cells for possible multiplets, we firstly normal-
ized the counts to 10,000 and then we removed possible red-blood 
contaminants, setting expression of HBA1 <4, when necessary. For each 
of the epithelial, endothelial and immune datasets, we detected a clus-
ter that expressed mesenchymal cell markers. Taking into account that 
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(1) mesenchymal cell number is 12 times larger than epithelial, 21 times 
larger than endothelial and 33 times larger than immune cell number 
and (2) it is unlikely for immune cells to express mesenchymal cells 
markers, we considered these clusters doublets and removed them.

For trajectory inference analysis of complex multicellular develop-
mental tissue architecture, we guided our analysis towards understand-
ing key lineage branching points inspired by the graph abstraction 
concept. We used the cell–cell unweighted shared nearest neighbour 
graph (G∈ {0,1}cDaN × N) and their assigned one-hot clusters (O∈ {0,1} 
N × k) to compute for each cluster k the number of edges shared with 
all clusters (E∈ℜk × k), including itself.

E = (GO)TO

The number of cluster shared edges was then element-wise nor-
malized by its total number of edges (Hadamard division), resulting 
in transition probabilities (P∈ [0,1] k × k) that range between 0 and 1 
for each cluster, representing the proportion of connections shared 
between each cluster, where J∈{1} k × k is a square all-ones matrix.

P = E⊘ (E ⋅ J)

Spurious weak connections with transition probabilities below 10−4 
were filtered out by setting its value to zero. Edges were then projected 
onto the cluster centroids on the UMAP embedding for visualiza-
tion. Cluster transition probabilities on existing edges (p ij > 0) were 
converted to graph weights (w ij) defined by the inverse of transition 
probabilities:

w ij = 1/ (p ij)

and optimal paths from immature (that is, root) to mature cell states 
were calculated using Dijkstra’s shortest path algorithm implemented 
in the igraph package84. The indicated clusters, for distinct trajecto-
ries, were selected and re-analysed to create a new UMAP plot with 
‘RunUMAP’ function in Seurat77,78. The Slingshot package was used for 
pseudotime analysis. Firstly, we set the root and the end-point clusters 
with ‘getLineages’ function, and then we calculated the principal curves 
(‘getCurves’ function), the pseudotime estimates (‘slingPseudotime’ 
function) and the lineage assignment weights (‘slingCurveWeights’ 
function). To identify differentially expressed genes along the trajecto-
ries, we used the ‘fitGAM’ function of tradeSeq. ‘patternTest’ was used 
for the analyses of two trajectories and the ‘associationTest’ function 
for the differential expression analysis along one trajectory. The differ-
entially expressed genes were ordered on the basis of the hierarchical 
clustering ward.D2 method, using ‘hclust’ function in fastcluster pack-
age85 and plotted using a custom script. The ‘clusterboot’ function of 
fpc package86 was used to calculate stability values of gene modules. 
For the RNA-velocity analyses, we transformed the Seurat objects to 
*.h5ad with SeuratWrappers and used scVelo pipeline, filtering for 50 
‘shared counts’ and 5,000 ‘top genes’. As described in the pipeline, the 
analyses used the packages scvelo, cellrank87 loompy, matplotlib88, 
numpy89, pandas90 and scanpy91.

For the analyses of aberrant basaloid4 gene expression pro-
grammes in the scRNA-seq dataset, we used the ‘AddModuleScore’ 
function in Seurat77,78 to calculate the aggregated gene-expression 
scores of their characteristic markers, as they have been defined in the 
corresponding studies.

For the identification of TFs and co-factors, between the differen-
tially expressed genes, we used the AnimalTFDB 3.0 database92. The 
Human Protein Atlas was used for screening of secreted and surface 
(CD) proteins93, and Neuropedia database was used to find differen-
tially expressed neuropeptides94. Statistically significant (adjusted 
P value <0.001, average logarithmic fold change >0.25) genes were 
used in Toppgene suite95, for GO analyses, with default settings. Their 

P values were calculated according to the hypergeometric probability 
mass function, and the top-ten biological processes were plotted with 
GraphPad Prism 9 (GraphPad Software, LLC).

ST
The capture areas of Visium arrays contain 55-µm-diameter spots, with 
barcoded oligo-dT anchors (unique for each spot) that allow hybridiza-
tion of the mRNA molecules in a tissue section that are released through 
its digestion. The anchors are used as primers to facilitate cDNA syn-
thesis and the produced libraries are sequenced. The unique barcodes 
for each spot allow the spatial resolution of the detected mRNA-species 
back the tissue, using the spot coordinates.

ST library preparation
Spatial gene expression libraries (n = 9) (6–13 PCW) were generated 
with the Visium Spatial Gene Expression Slide & Reagent kit (PN-
1000184; 10X Genomics), according to manufacturer’s protocol. Before 
the analyses, RNA integrity numbers (RIN) were obtained for all samples 
to assess the quality of the RNA.

Depending on the size of each section, one or more sections of 
the same sample were placed in each capture area (6.5 × 6.5 mm) of 
the Visium arrays. The sections were first fixed for 10 min in acetone, 
stained with Mayer’s H&E Y and imaged with a Zeiss Imager.Z2 Micro-
scope (Carl Zeiss Microscopy GmbH), using the Metafer5 software 
MetaSystems Hard & Software GmbH). Depending on the age of the 
lung, the tissue sections were permeabilized for 8–20 min to capture 
the mRNA molecules. The optimal fixative and permeabilization time 
for developing lung samples was determined before the Visium experi-
ments using a Visium Spatial Tissue Optimization Slide & Reagent Kit 
(PN1000193; 10X Genomics). The cDNA synthesis and library prepara-
tion were done according to manufacturer’s protocol (PN-1000184 and 
PN-1000215; 10X Genomics). Sufficient amount of 2–4 nM concentra-
tion libraries was used for sequencing for Illumina platform, following 
the manufacturer’s instructions.

ST data analysis
Sequenced ST libraries were processed using Space Ranger 1.0.0 
Pipeline (10X Genomics). Reads were aligned to the human reference 
genome to obtain an expression matrix. The count matrix was filtered 
for all mitochondrial, ribosomal and non-coding genes. Spots with 
fewer than 300 unique molecular identifier (UMIs), fewer than 100 
genes and genes detected in fewer than five spots were excluded from 
the analysis. After filtering, a total of 18,125 features were retained for 
final analysis across 66,626 spots (6 PCW: 1,439, 7 PCW: 2,692, 8 PCW: 
1,840, 8.5 PCW: 1,882, 9 PCW: 3,284, 10 PCW: 11,720, 11 PCW: 15,534, 
12 PCW: 13,287 and 13 PCW: 14,948).

Normalization and dimension reduction were performed using 
the Seurat and STUtility packages (version 0.1.0, https://ludvigla.
github.io/STUtility_web_site/Installation.html). Technical variability 
across samples was reduced with RunSCT and RunHarmony (version 
1.0, https://github.com/immunogenomics/harmony) functions. PCA 
was used to select the most important components and a total of 30 
principal components were used in downstream analyses, in all cases.

Integration of scRNA-Seq and ST data
For the integration between scRNA-seq and Visium data, we used the 
Python package stereoscope (v.03). This method uses scRNA-seq data 
to characterize the expression profile of each cluster and then find 
the combination of the clusters that best explains the detected gene 
mRNAs in every ST spot, using a probabilistic model. Thus, it pro-
duces a matrix with ST spots as rows and percentages of each cluster 
as columns.

Raw counts from the scRNA-seq and Visium data were used as 
input, along with the scRNA-seq cluster labels. For the scRNA-seq 
data from each donor, we used the top 5,000 most variable genes as 
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input, obtained by the ‘VariableFeatures’ function in Seurat77,78. Ste-
reoscope was run with 25,000 epochs with default parameters (more 
details in the ‘README’ file in package github page). For the integrated 
scRNA-seq, that is, all age groups, the entire set of scRNA-seq was used 
as input to each Visium sample individually and stereoscope was run 
with 20,000 epochs. For visualization, the output matrix was imported 
into R and the stereoscope proportion values for each ST spot were 
plotted as features with the STUtility R package (v.1.0) (ref. 96).

Interactome analyses of spatially related cell identities
For the definition of cell neighbourhoods, that include cell identities 
being consistently found with high percentage in the same ST spots, we 
used the stereoscope data and performed Pearson correlation analysis 
comparing the frequencies of the different cell types in the analysed ST 
spots, across all samples and timepoints. We further proceeded with 
the pairwise connections, that had Pearson’s r higher than 0.04. The 
interactome analyses were based on (1) CellChat because of its ability 
to identify cell communications based on the interactions between 
ligands, receptors and co-factors and (2) Nichenet, which predicts 
cell communications by estimating ligand–target links, based on their 
expression levels in the interrogated cells, to identify signalling path-
ways that facilitate cell communications. We initially kept the genes 
with average gene expression >0.3 log2(normalized UMI counts + 1) 
in any of the analysed clusters and then used default settings for the 
downstream analyses. To analyse the predicted target genes of spe-
cific ligands, we used the ligand–target score matrix of NicheNet and 
selected the same genes as for CellChat, applying an extra filter by keep-
ing the expressed genes in at least 25% of any of the clusters and have 
10% increase in the number of positive cells and in the logarithmic fold 
change. Then, we used Seurat to plot the top-predicted genes, using 
‘Dotplot’ function. The ligand and the identified by CellChat receptors 
were also included at the beginning of the plot.

HybISS
ISS is a targeted method for detecting RNA species on tissue sec-
tions97,98. It utilizes padlock probes that upon specific hybridization 
to the targeted RNA molecule and enzymatically ligated to become 
circular. Rolling cycle amplification (RCA) is used to produce large 
DNA molecules of hundreds of complementary repeats of the pad-
lock probe, that provides high signal-to-noise ratios. Multiplexing 
is achieved with a four-digit barcode approach that decodes distinct 
combinations of fluorescence of a given RCA product to the initial tar-
geted RNA species, allowing for spatial expression analysis of several 
tenths of different genes.

Gene panel selection
The HybISS gene panel was selected on the basis of two independent 
criteria: gene potential to be markers of the different identified popula-
tions and their role in different key signalling pathways. To select the 
minimum amount of marker genes needed to uncover the cell type of 
every cell in the analysed samples, an initial list of candidate marker 
genes was generated by selecting the top four markers of the main 
clusters found when analysing individually four samples from differ-
ent timepoints (5 PCW, 8.5 PCW, 13 PCW and 14 PCW), based on their 
δpct (difference in the percentage of positives in the cluster against all 
other cells). This list was curated by assessing the importance of every 
gene in accurately predicting the different cell types (https://github.
com/Moldia/Tools/tree/master/Gene_selection). For this, ISS data-
sets were simulated by randomly distributing cells in a bidimensional 
space, assigning a cell type to each cell and simulating the expression 
of each gene by sampling in a negative binomial distribution with r 
being the mean expression of a certain gene in a certain cell type. Then, 
probabilistic cell typing by ISS (pciSeq) was used to assess the cell type 
of each simulated cell, obtaining the contribution of each gene to pre-
dict correctly each cell type. Top-five genes contributing to correctly 

predict each cell type were kept, and further simulations were run, 
obtaining a final list of 72 genes that were able to predict correctly all 
the cell types on simulated datasets. For the pathway gene selection, 
we interrogated the above four scRNA-seq datasets for the expression 
of WNT, SHH, NOTCH and RTK pathway components, such as ligands, 
receptors, transducers, inhibitors and targets. We further proceeded 
with those that showed non-ubiquitous expression patterns. The final 
gene panel of 147 markers was sent to CARTANA with accompanying 
customized ID sequences for in-house HybISS chemistry detection.

HybISS mRNA detection
The HybISS experiments were performed by the ISS facility at Science for 
Life Laboratories (SciLifeLab) following the manufacturer’s instructions 
of CARTANA’s High-Sensitivity library preparation kit, using custom-
ized backbones, as described in ref. 97 (probe sequences are provided 
in Supplementary Table 1 (28–30)). After fixation, the tissue sections 
were overnight incubated with the probe mix, in a hybridization buffer, 
followed by stringent washing. Then, they were incubated with ligation 
mix. After washes, RCA was performed overnight. Finally, labelling for 
detection was performed as described in <protocols.io> (https://doi.
org/10.17504/protocols.io.xy4fpyw). Twelve detection cycles were per-
formed on each sample to avoid optical crowding. Therefore, detected 
genes were divided in three groups, and their four cycle-based barcode 
was detected in either detection cycles 1–4, 5–8 or 9–12.

Imaging of HybISS detection cycles
Imaging was performed using a Zeiss Axio Imager.Z2 epifluores-
cence microscope (Carl Zeiss Microscopy, GmbH), with a Zeiss 
Plan-Apochromat 20×/0.8 objective (Carl Zeiss Microscopy, GmbH, 
420650-9901) and an automatic multi-slide stage (PILine, M-686K011) 
to allow re-call of coordinates for the regions of interest, facilitating 
repetitive cycle imaging. The system was equipped with a Lumencor 
SPECTRA X light engine LED source (Lumencor), having the 395/25, 
438/29, 470/24, 555/28, 635/22 and 730/40 filter paddles. The filters, 
for wavelength separation, included the quad band Chroma 89402 
(DAPI, Cy3, Cy5), the quad band Chroma 89403 (AlexaFluor750) and 
the single band Zeiss 38HE (AlexaFluor488). Images were obtained 
with an ORCA-Flash4.0 LT Plus sCMOS camera (2,048 × 2,048, 16-bit, 
Hamamatsu Photonics K. K.).

HybISS image processing
Imaging data were processed with an in-house pipeline based on MAT-
LAB (https://github.com/Moldia/iss_starfish). Maximum intensity pro-
jection was performed on each field of view to obtain a two-dimensional 
representation of each tile. Then, stitching of tiles was performed using 
a MATLAB implementation of MIST algorithm, obtaining, after export-
ing, different *.tiff images corresponding to each channel and round. 
Then, data were retiled and formatted to fit the Starfish required input. 
As genes can be either detected in 1–4, 5–8 or 9–12 detection cycles, 
each group was then decoded independently. Using Starfish tools, 
individual tiles were registered across cycles and a top hat filter was 
applied on each channel to get rid of the background noise. Channel 
intensities were also normalized, and spots were detected. Finally, 
decoding was performed on each tile using MetricDistance, obtaining 
the identity of all the detected RCA products.

HybISS data analysis
Two different yet complementary strategies were followed to charac-
terize the cellular heterogeneity within the ISS datasets. Probabilistic 
cell typing for in situ sequencing (PciSeq) was performed to identify 
the identity of every cell in the tissue. For this, cells were segmented 
on the basis of DAPI using a watershed segmentation, and reads were 
assigned to cells as described in ref. 71. In addition, Tangram was used 
to couple the scRNA-seq with the HybISS datasets, functioning simi-
larly to stereoscope. Gene expression imputation was performed as 
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described in ref. 99. In 5 PCW sections, where nuclear segmentation 
was not possible, hexagonal binning was used to segment the tissue. 
In this case, the expression of each hexagonal bin was used as input for 
probabilistic cell typing and Tangram.

SCRINSHOT
SCRINSHOT is also a targeted method of RNA-species in situ detection 
that utilizes padlock probes for signal amplification, similarly to ISS. 
Its major difference is the usage of SplintR-ligase for padlock probe 
circularization and the simplest detection approach that assigns a 
fluorophore to a distinct gene, in each detection cycle. The different 
chemistry and the omission of decoding results in better sensitivity 
than ISS. However, it has reduced multiplexity (three to five genes per 
detection cycle), being more laborious than ISS.

Gene selection, padlock probe design and mRNA detection
For spatial analysis of the two identified NE-cell identities, we used the 
highly expressed GRP and GHRL, for easy identification of epi cl-12 and 
epi cl-11, respectively. Then, we selected markers that are expressed 
in intermediate and low levels, focusing mainly on TFs, such as ASCL1, 
RFX6, NKX2-2, ARX and PROX1. Markers such as SCGB3A2, FOXJ1 and 
TP63 were used to identify the non-NE cells. The SCGB1A1, SFTPC, 
ETV5, FOXJ1, AGER, SOX2 and SOX9 padlock probes were designed as 
in SCRINSHOT original publication. For the rest, a unique barcode was 
inserted in the backbone of all probes that recognize the same mRNA, 
that allowed their detection by only one detection oligo, reducing 
substantially the cost (all sequences are found in Supplementary Table 
1 (31)). All the reactions were done according to the original SCRINSHOT 
protocol, except for an increase of the detection-oligo hybridization 
temperature to 30 °C.

Imaging of SCRINSHOT signals on tissue sections
For signal acquisition we did 13 detection cycles, using a Zeiss Axio 
Observer Z.2 fluorescent microscope (Carl Zeiss Microscopy, GmbH) 
with a Colibri 7 LED light source (Carl Zeiss Microscopy, GmbH, 423052-
9770-000), equipped with a Zeiss 20×/0.75 Plan-Apochromat, a Zeiss 
AxioCam 506 Mono digital camera and an automated stage, that 
allowed imaging of the same regions in every cycle. For signal detec-
tion, we used the following Chroma filters: DAPI (49000), FITC (49003), 
Cy3 (49304), Cy5 (49307), Texas Red (49310) and Atto740 (49007).

SCRINSHOT image analysis
The nuclear staining was used to align the images of the same areas 
between the hybridizations, using Zen2.5 (Carl Zeiss Microscopy 
GmbH). The images were analysed as 16-bit *.tiff files, without compres-
sion or scaling. Images were tiled using a custom script in Fiji100,101. The 
signal dots were counted using Cell-Profiler 4.13 (ref. 102), Fiji100,101 and 
R-RStudio103–107 custom scripts. The identified signal-dot coordinates 
were used to project the signals on DAPI images, using TisUUmaps108.

For the analysis of the 11.5 PCW SCRINSHOT dataset, nuclei images 
were segmented into hexagonal bins of 7 µm radius. Only bins with a 
clear proximal epithelial component (SOX2 dots >3, EPCAM dots >3) 
were further processed. To maintain NE-related bins, we used the ana-
lysed genes that were specifically expressed in NE cells according to 
scRNA-seq (ARX, NKX2-2, GHRL, ACSL1, CALCA, GRP, RFX6, CFC1, PCSK1 
and ASCL1). Bins with a presence of at least 12 signals of the above genes 
were further processed. We also kept bins containing more than ten 
ASCL1 dots, which was found to be expressed by NE progenitors. We 
created AnnData objects with the counts for each gene in every bin, in 
addition to the bin coordinates. We used Scanpy to perform Leiden clus-
tering with 0.1 resolution and represented those clusters using UMAP 
plots. We further assessed the correlation in expression between the dif-
ferent NE genes and represented the Pearson’s correlation results as heat 
map. Finally, the suggested clusters were annotated on the basis of the 
combination of different NE markers, according to the scRNA-seq data.

Exploration of the zonation patterns in the developing lung 
using ISS
To calculate the relative position of distinct cell types in the proximal–
distal and radial axis, analysed tissues with HybISS were segmented into 
bins (radius 20 µm). Only bins with more than three detected EPCAM 
mRNAs were considered to be airway related. We calculated the dis-
tance of each bin in the tissue to the closest identified airway-related 
bin, defining the first axis explored (radial axis considering the airway 
as the centre). Cells with a radial distance higher than 140 µm were 
excluded from the analysis. To define the second axis, we explored the 
diversity within airway-related bins and, by UMAP-dimension reduc-
tion, we identified that the first dimension recapitulated the proximal–
distal typical patterning, based on the expression of known markers. 
We used that value as pseudotime to assign a proximal–distal value to 
each of the detected bins. These values served as the second axis of the 
analysis, considering the proximal–distal value of the closest epithelial 
bin as the proximal–distal value of the analysed mesenchymal cells. The 
distribution of the cells analysed was represented using kernel density 
estimation (KDE)-based heat maps.

Exploration of the zonation patterns in the developing lung 
using ST
To explore the zonation of mesenchymal populations present in the 
developing lung with ST datasets, we analysed sections from 8.5 PCW. 
We identified ST spots containing airways by looking at the expression 
top ten differentially expressed epithelial markers (Extended Data 
Fig. 2g). Cells containing more than eight UMIs were considered as 
airway-related ST spots. To define the radial axis, each ST spot was given 
a value depending on its distance from its closer airway-related ST spot. 
The proximal–distal axis was calculated on the basis of the compared 
relative expression levels of known proximal (SOX2 and SCGB3A2) and 
distal (ETV5 and TPPP3) epithelial markers. On the basis of the relative 
expression of proximal and distal markers, every epithelial ST spot 
was given a value between −1 (proximal) and 1 (distal). ST spots that 
were not airway related were given the proximal–distal score of their 
closest airway-related ST spot. After rounding the proximal–distal 
scores of every ST spot, the frequency of every cluster detected using 
stereoscope was then computed by averaging ST spots with the same 
proximal–distal and radial coordinates.

Immunofluorescence
Tissue sections were prepared, using the same protocol as SCRIN-
SHOT. Fresh frozen material was fixed with 4% PFA for 10 min at 
room temperature, and slides were washed three times for 5 min 
with phosphate-buffered saline (PBS) 1× (pH 7.4). We incubated the 
sections with 5% donkey serum ( Jackson ImmunoResearch, 017-000-
121) in PBS 1× (pH 7.4) with 0.1% Triton X100 (blocking buffer) for 1 h 
at room temperature, and then they were incubated with primary 
antibodies in blocking buffer overnight at 4 °C. Slides were washed 
with PBS 1× (pH 7.4) three times for 5 min and incubated with second-
ary antibodies in 2% donkey serum in PBS 1× (pH 7.4) with 0.1% Triton 
X100 for 1 h at room temperature. After three washes with PBS 1× 
(pH 7.4) for 10 min each, nuclei were counterstained with 0.5 µg ml−1 
DAPI (Biolegend, 422801) in PBS 1× (pH 7.4) in 0.1% Triton X100 and 
slides were mounted with ProLong Diamond Antifade Mountant  
(Thermo, P36961).

Sections treated with anti-PHOX2B goat, anti-DLL3 rabbit, 
anti-COL13A1 rabbit and Cy3 anti-Actin, α-Smooth Muscle (ACTA2) 
mouse monoclonal antibodies were incubated in TE buffer (10 mM Tris 
and 1 mM EDTA pH 9.0) for 30 min, at 80 °C in a waterbath and cooled 
on ice for 30 min to facilitate antigen retrieval and washed three times 
for 5 min with PBS 1× (pH 7.4), before incubation with the blocking 
solution. Sections treated with anti-Krt5 chicken and anti-p63a rab-
bit antibodies were incubated in sodium citrate (10 mM pH 6.0) and 
processed as above.

http://www.nature.com/naturecellbiology
https://www.uniprot.org/uniprot/P36961


Nature Cell Biology

Resource https://doi.org/10.1038/s41556-022-01064-x

Image acquisition for immunofluorescence
Image acquisition was initially done as in SCRINSHOT, with a 10× lens, 
allowing the identification of informative regions of interest. For 
high-resolution images, we used a Zeiss LSM800 confocal microscope, 
equipped with a Plan-Apochromat 40×/1.30 oil lens or a Zeiss LSM780 
confocal microscope, equipped with a Plan-Apochromat 63×/1.40 oil 
DIC M27 objective. Optimal resolution settings were used and images 
were acquired as optical stacks. For imaging of the ACSL1-CGRP-CDH1 
stainings, we used a Leica DMI8 microscope (Leica Microsystems, 
11090148013000), with a SOLA light engine light source (Lumen-
cor,16740), equipped with a 40×/ 0.80 HC Fluotar, a Hamamatsu cam-
era (2,048 × 2,048, 16-bit, C13440-20C-CL-301201) and an automated 
stage (ITK Hydra XY). For the signal detection, we used the following 
Chroma filters: QUAD-S filter set: DFTC (DC: 425; 505; 575; 660). Imag-
ing was done via the LASX software (Leica Microsystems), and images 
were analysed with Fiji100,101.

Browser-based interactive visualization of the scRNA-seq, 
spatial and interactome analyses
For the browser-based representation of our data, we used the TissUU-
maps tool109. In the presented version, we have modified TissUUmaps 
for accelerated GPU-based rendering, enabling real-time interac-
tive multiscale viewing of millions of data points directly via a web 
browser. Furthermore, we have added functionality so that ST data 
and single-cell pciSeq data from ISS can be presented as pie charts 
for efficient viewing of spatial heterogeneity. TissUUmaps supports 
FAIR sharing of data by allowing users to select regions of interest and 
directly download raw data in a flexible *.csv format, enabling further 
exploration and analysis, of all datasets. We based the interactome 
browser in the Cell Chat shiny app, described in ref. 10.

Statistics and reproducibility
No statistical method was used to pre-determine sample size. No data 
were excluded from the analyses. The experiments were not rand-
omized, and the investigators were not blinded to allocation during 
experiments and outcome assessment. For differential expression 
analyses of scRNA-seq datasets, MAST package was used in Seurat, 
and when it is mentioned in figure legends, the results were filtered 
according to the adjusted P value that was based on Bonferroni cor-
rection using all features in the datasets.

For scRNA-seq experiments, we analysed one 5 PCW lung, one 
5.5 PCW lung, two 6 PCW lungs, two 7 PCW lungs (twins), one 8 PCW 
lung, two 8.5 PCW lung, one 10 PCW lung, two 11.5 PCW lungs, two 
12 PCW lungs, two 13 PCW lung and one 14 PCW lung. All attempts at 
replication with the provided scripts were successful.

For ST experiments, we analysed four sections of 6 PCW lungs, 
(Figs. 1b, 2b,d and 3c and Extended Data Fig. 4c), eight sections of 7 PCW 
lungs (Fig. 3d), four sections of 8–8.5 PCW lungs (Figs. 2b and 6a and 
Extended Data Fig. 4c) and four sections of 11.5 lungs (Figs. 2b and 3e 
and Extended Data Fig. 4c). Sections of each stage were processed in 
at least two independent experiments with similar results.

For HybISS experiments, we analysed three sections of 5.5 PCW 
lungs, (Extended Data Figs. 4d, 6g and 8b), two sections of 6 PCW lungs 
(Figs. 1e, 2e,f and 4g and Extended Data Fig. 2h) and two sections of 
13 PCW lungs (Figs. 6c and 7a and Extended Data Figs. 6g and 8b). Sec-
tions of each stage were processed in two independent experiments 
with similar results.

For SCRINSHOT experiments, we analysed one section of a 6 PCW 
lung, one section of an 8.5 PCW lung, one section of an 11 PCW lung 
(Extended Data Fig. 10g) and one section of a 14 PCW lung (Fig. 4c and 
Extended Data Fig. 10d). The sections were processed in two independ-
ent experiments, showing similar distal tip (>500 cases) and NE cell 
patterns (>100 cases).

For LUM COL13A1 ACTA2 immunofluorescence, we analysed four 
8.5 PCW lung sections and one 12 PCW lung section in two experiments. 

More than ten patterns similar to those shown in Fig. 2g were found in 
each section. For ACTA2 Ecad MKI67 immunofluorescence, we ana-
lysed three 8.5 PCW, two 12 PCW and one 14 PCW lung sections, in two 
independent experiments with similar results. Extended Data Fig. 4e 
contains representative images of large airways (8.5 PCW: >20, 12 PCW: 
>40 and 14 PCW: >50), of airway stalks with tips (8.5 PCW: >20, 12 PCW: 
>50 and 14 PCW: >50) and of distal tips (8.5 PCW: >20, 12 PCW: >50 and 
14 PCW: >50). For the DLL3 NF-M PHOX2B stainings in Fig. 3f–h, we 
stained three 8.5 PCW and one 12 PCW lung sections in two independent 
experiments. One 8.5 PCW and one 12 PCW lung sections were inde-
pendently processed for H&E staining. In both stainings, the different 
tissues gave similar results. For the SOX10 ASCL1 ISL1 immunofluores-
cence (Extended Data Fig. 7e), we analysed two 8.5 PCW, two 12 PCW 
and one 14 PCW lung sections, in two independent experiments, with 
similar results. For the KRT17 Ecad immunofluorescence (Fig. 4d), we 
stained two 12 PCW and one 14 PCW in two independent experiments 
with similar results. For TP63 KRT5 Ecad immunofluorescence, we 
stained two 8.5 PCW and two 14 PCW lung sections in two independ-
ent experiments with similar results (Extended Data Fig. 8g). For the 
SST SSTR2 GHRL staining, we analysed four 8.5 PCW and one 12 PCW 
lung sections, in three independent experiments with similar results. 
For GRP GHRL immunofluorescence four 8.5 PCW and one 12 PCW 
lung sections were analysed, in three independent experiments with 
similar results.

For all spatial methods, we acquired images of whole lung sec-
tions. Representative areas of interest were identified, imaged and 
used in the figures.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the cur-
rent study are available at GEO (GSE215898), comprising single-cell 
data (GSE215895) and ST data (GSE215897). The scRNA-seq data 
can be additionally accessed in https://hdca-sweden.scilifelab.se/
tissues-overview/lung/ and https://cells.ucsc.edu/?ds=lung-dev. 
scRNA-seq datasets of individual donors can be accessed at https://
doi.org/10.5281/zenodo.6386452. The used scRNA-seq datasets, 
containing subsets of the whole dataset and of the mesenchymal 
cell dataset are available at https://doi.org/10.5281/zenodo.7143999. 
The raw data of the fluorescence images can be accessed at https://
doi.org/10.1101/2022.01.11.475631 and https://doi.org/10.5281/
zenodo.6673650. ST raw data can be accessed at https://doi.
org/10.5281/zenodo.6661019. scVelo datasets and analysis files can 
be accessed at https://doi.org/10.5281/zenodo.6673667. Raw-image 
datasets of HybISS (180 GB) and SCRINSHOT (683 GB) are available 
from the corresponding authors on reasonable request because of 
data size limitations.

Code availability
The scripts for all analyses can be accessed at https://doi.org/10.5281/
zenodo.7143091.
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Extended Data Fig. 1 | Quality controls (QC) of the scRNA-Seq datasets 
from all analyzed donors. (a) Violin plot of XIST expression levels for sex 
determination of the donors. ♀-female: XISTpos and ♂-male: XISTneg. Expression 
levels: log2(normalized UMI-counts+1) (library size was normalized to 10.000). 
(b-g) UMAP-plots of all cells, labeled according to the (B) age, (C) donor-identity, 
(D) 10X Chromium version (E) percentage of mitochondrial genes, (F) number 

of detected genes and (G) sequencing-batch. (h) Histograms of detected gene 
numbers and percent of mitochondrial genes in the analyzed datasets, before 
application of QC-criteria. Additional QC-information and gene expression 
levels, in the whole dataset can be accessed at https://hdca-sweden.scilifelab.se/
tissues-overview/lung/.
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Extended Data Fig. 2 | Initial scRNA-Seq analysis suggests six main cell 
categories, with distinct gene-expression profiles. (a) Whole-dataset 
UMAP-plot of the 6 main cell categories, from the 17 donors. ‘n’: number 
of cells/category. The arrows indicate two clusters of doublets (top) and 
epithelial ciliated cells (bottom), which have been moved from their original 
position, in the UMAP-plot and placed in inserts. (b-f ) UMAP-plots showing 
the expression of known markers: mesenchymal (COL1A22, ACTA22, PDGFRB110) 
(B), epithelial (EPCAM, ASCL1111, FOXJ1112) (C), immune and erythroblasts/
erythrocytes (PTPRC113, GYPA, TUBB181) (D), endothelial (CDH582, PROX1114,115) 
(E) and proliferation (MKI67116) (F). Expression levels: log2(normalized UMI-
counts+1) (library size was normalized to 10.000). Blue: high, Gray: zero. (g) 

Balloon-plot showing the expression of known cell-type markers together with 
the top-10 most selective category markers (adjusted p-value < 0.001, MAST, 
Bonferroni corrected using all features)). The top-20 genes (log2 fold-change) 
were sorted according to positive cells number in the cluster and the top-10 were 
plotted. Balloon-size: percent of positive cells in cluster. Color intensity: scaled 
expression. Blue: high, Gray: low. Gene order follows the cell-category order. (h) 
Single-gene images of the projection in Fig. 1e, showing the mRNAs of WNT7B, 
FZD1, FZD2, FZD7, LEF1, NKD1 MYH11, detected by HybISS, Interactive inspection 
of the data is available through the https://hdca-sweden.scilifelab.se/tissues-
overview/lung/.
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Extended Data Fig. 3 | Top selective markers of the 83 identified cell states. 
Balloon-plot of the top-3, most selective genes for each of the 83 suggested 
clusters of the whole dataset that contains all analysed donors. Clusters of same 
main cell categories were placed together. Colored boxes indicate the main cell 
categories. Characteristic genes are shown on the left (adjusted p-value < 0.001, 

MAST Bonferroni corrected using all features), The top-6 genes (log2 fold-
change) were sorted according to positive cell numbers in the cluster and the top-
3 markers were plotted. Balloon size: percent of positive cells. Color intensity: 
scaled expression. Blue: high, Gray: low. Gene order follows the cluster order. All 
genes and clusters of the plot are included in the Supplementary Table 1–14.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Analysis of mesenchymal cell heterogeneity. (a) 
Balloon-plot of known mesenchymal markers (COL1A2-COL14A1), together with 
the top-5 cluster markers of the mesenchymal dataset (17 donors). General: 
COL1A22, TBX415, immature: RSPO2117, Smooth Muscle (SM): TAGLN, ACTA22, 
Chondroblast: COL2A1, SOX9, SOX6118,119, Pericyte: PDGFRB105, Mesothelial: WT1120, 
MSLN121, Proliferating: MKI67114, PCNA122, Lipofibroblast: APOE, FST, PLIN22, 
Adventitial-fibroblast: SERPINF1, SFRP22, Alveolar-fibroblast: GPC3, SPINT22, 
Myofibroblast: ASPN, WIF12, Fibromyocyte: SCX, LGR62, COL13A1pos-fibroblast: 
COL13A131 and COL14A1pos-fibroblast: COL14A131. From the differentially 
expressed genes (adjusted p-value < 0.001, MAST, Bonferroni corrected), the 
top-10 (log2 fold-change) were sorted according to proportion of positive 
cells in the cluster and the top-5 of these were plotted. (b) Stereoscope 
assigned distribution of (i) mesechymal1 (cl-0), (ii) mesenchymal2 (cl-2) and 
(iii) mesenchymal5 (cl-6) cells in three timepoints. Red numbers: the highest 
percent of the indicated cell-state. Dark red: high, gray: zero. H&E staining: 

tissue structure. Scale-bar: 400 µm. (c) scVelo-analysis, using a dataset subset 
(441 cells/cluster) from all donors. Arrow direction: future state, arrow size: 
transition possibility. (d) HybISS analysis of a 5 pcw lung section showing the 
mesothelial marker WT1 mRNA expression in tissue periphery120,121 (top) and the 
prediction of mesothelial-cell spatial distribution, according to PciSeq (bottom). 
Representative data in: https://hdca-sweden.scilifelab.se/tissues-overview/lung/ 
(e) Immunofluorescence for α-SMA (cyan, SM), Ecad (magenta, epithelium) and 
MKI67 (yellow, proliferating cells) on 8.5 (left), 12 (middle) and 14 (right) pcw 
lungs, in proximal-large (top), stalk (middle) and distal (bottom) airways. Nuclei 
(blue, DAPI). Scale-bars: 50 µm. (f) scVelo-analysis of the proliferation (cl-20) and 
maturation (cl-12 and −13) airway SM-trajectories. Colors as in ‘B’. (g) Balloon-plot 
of ACTA2 and TAGLN (SM), COL9A1, MATN2, FBLN7, FBN2 and FBN3 (extracellular 
matrix) and MKI67 and PCNA (proliferation). In Balloon-plots, size: percent of 
positives. Color intensity: scaled expression. Blue: high, Gray: low. ‘arw’: airway, 
‘prox.’: proximal, ‘tr’: trachea, br-v bundle: bronchovascular bundle.
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Extended Data Fig. 5 | Analysis of mesenchymal trajectories. (a) Heatmap 
of the top-100 differentially expressed genes along the airway smooth muscle 
(ASM) maturation trajectory, based on tradeSeq21. Numbers: stable gene-
modules (Bootstrap values module-1: 0.88, module-2: 0.84, module-3: 0.81, 
module-4: 0.73, module-5: 0.75, module-6: 0.76, module-7: 0.83, module-8’ 0.62, 
module-9: 0.87). Color intensity: scaled expression. Dark red: high, Gray: low. 
(b–d) Balloon-plots of the top-5 transcription factors (TFs) (B), NOTCH-signaling 
components (C) and secreted (D) proteins, identified by differential expression 
analysis of the indicated clusters, along the ASM maturation-trajectory. (e) 
scVelo-analysis on the mesenchymal fibroblast clusters. Colors as in Fig. 2a. The 
direction of arrows shows the progression towards more differentiated states. (f ) 
UMAP-plot of the mesenchymal fibroblast clusters and pseudotime trajectories, 

estimated by Slingshot. Colors as in Fig. 2a. A randomly selected subset of 441 
cells/cluster from all donors was used in ‘E’ and ‘F’. (g–i) Balloon-plots of the top-5 
markers (G), transcription factors (TFs) (H) and secreted proteins (H), identified 
by differential expression analysis of the indicated clusters. Gene order follows 
the cluster order. In all Balloon-plots, balloon size: percent of positive cells. Color 
intensity: scaled expression (B-D) or log2(normalized UMI-counts+1) (library size 
was normalized to 10.000) (G-I). Blue: high. Gray: zero. In all Top-5 plots, from the 
statistically significant genes (adjusted p-value < 0.001, MAST with Bonferroni 
correction using all features), the top-10 genes (log2 fold-change) were sorted 
according to the percent of positive cells and the top-5 markers were plotted. 
Gene order follows the cluster order. The ‘*’ indicate commended genes.
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Extended Data Fig. 6 | Exploration of interactions between mesenchymal 
cell-types. (a, b) Heatmaps of CellChat predictions of outgoing (A) and incoming 
(B) signaling patterns between the analyzed ASM and AFs. Bars represent 
the outgoing/incoming overall potential of each cluster (top) and pathway 
(right). Color intensity shows the relative strength of cluster contribution to 
the communication pattern. Dark green: high, White: low importance. (c, e) 
Balloon-plots of the top-20 NicheNet-predicted IGF1 (C), WNT5A (D) and BMP4 
(E) -target genes, expressed in the ASM and AF clusters. Ligands (l-): blue. 

Receptors (r-): magenta. Balloon size: percent of positive cells. Color intensity: 
scaled expression. Blue: high, Gray: low. (f ) Violin-plots of the IGF1-ligands and its 
receptor (IGF1R) in the indicated clusters, at 5–5.5, 8–8.5, 10, 12 and 14 pcw cells. 
Expression levels: log2(normalized UMI-counts+1) (library size was normalized 
to 10.000). (g) HybISS spatial validation of IGF1 (white), WNT5A (green) and 
its predicted receptors FZD1 (magenta) and FZD7 (cyan) on 5 and 13 pcw lung 
sections. MYH11 (orange): airway smooth muscle. DAPI (gray): nuclei. Scale-bars: 
50 µm. (h) As in ‘F’ for WNT5A, FZD1 and FZD7. The ‘*’ indicate commended genes.
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Extended Data Fig. 7 | Signaling pathways involved in neuronal cell 
communications. (a) Balloon-plot of known neuronal and glial cell markers 
(SOX10-MKI67). Progenitor: SOX10123, FOXD3124, ASCL142, Neuronal: PHOX2B125, 
PRPH126, NRG1127, TUBB3128, Sympathetic neurons: DBH, TH129, Parasympathetic 
neurons: NOS1, VIP130, Sensory neurons: PRDM12, P2RY1, TRPV1131,132, Schwann Cell 
Progenitors (SCPs): CDH19, MPZ, PLP1133, Glial cells: GFAP, S100B134,135, Chromaffin 
cells: PNMT, PENK, CARTPT136 and Proliferating cells: MKI67114, PCNA120. The 
remaining genes correspond to the top-5, most selective genes for each cluster. 
From the statistically significant genes (adjusted p-value < 0.001, MAST with 
Bonferroni correction using all features), the top-10 (log2 fold-change) were 
sorted according to the percent of positive cells and the top-5 were plotted. 
Gene order follows the cluster order. Balloon size: percent of positive cells. 
Color intensity: scaled expression. Blue: high, Gray: low. (b) Balloon-plot of the 

detected cholinergic-synapse pathway genes (KEGG id: 217716). Balloon size: 
percent of positive cells. Color intensity: log2(normalized UMI-counts+1) (library 
size was normalized to 10.000) expression. Blue: high, Gray: low. (c) Heatmap 
of differentially expressed transcription factors (TFs) along the SCP-neuronal 
trajectory, according to tradeSeq21. Stars: analyzed genes in ‘D-E’. Color intensity: 
scaled expression. Dark red: high, Gray: low. (d) UMAP-plots of SOX10, ASCL1 
and ISL1 TFs. Expression levels: log2(normalized UMI-counts+1) (library size 
was normalized to 10.000). Blue: high. Gray: zero. (e) Confocal-microscopy 
image of an 8.5 pcw ganglion, showing SOX10, ASCL1 and ISL1 expression, 
detected with immunofluorescence. Dashed outlines: manually segmented 
nuclei. SOX10pos SCPs (arrows), SOX10pos ASCL1pos transitioning SCPs (asterisks), 
ASCL1pos SOX10neg immature neurons (hashes), ISL1pos ASCL1neg mature neurons 
(arrowheads). Scale-bar: 5 µm.
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Extended Data Fig. 8 | Analysis of epithelial cell heterogeneity. (a) Balloon-
plot of known epithelial markers in the clusters of Fig. 4a, using data from all 
analyzed donors. General: EPCAM, CDH1, Proximal: SOX26, Ciliated: FOXJ1107, 
Neuroendocrine: CHGA, ASCL1106, Basal: TP63, KRT5137, Club cells: SCGB1A1, 
SCGB3A2138, Distal: SOX96, FGF20, Alveolar Type 1 (AT1): HOPX, PDPN, AQP56, 
AT2: SFPTC, ETV5139 and Proliferating: MKI67114, PCNA120 together with the top-5 
identified selective markers (adjusted p-value <0.001, MAST, Bonferroni 
corrected). The top-10 (log2 fold-change) were selected according to the 
percentage of positive cells in the cluster. The top-5 were plotted. Gene order 
follows the cluster order. (b) Annotation of segmented airway areas with PciSeq, 
using HybISS data in 5.5 pcw (left) and 13 pcw (right) airways. Distal clusters: 
cross, proliferating: inverted triangle and proximal: circle. Gray arrows: prox. 
progenitor2 (cl-4), magenta arrowheads: CTGFhigh distal (cl-3). ‘prox.’: proximal, 

‘arw’: airway. (c) PAGA-plot of the analyzed epithelial cells, superimposed on the 
Fig. 4a UMAP-plot. Line thickness: cluster-connection probability. (d) Epithelial-
cell scVelo-analysis. Arrow direction: future cell-state, arrow size: transition 
possibility. (e) Balloon-plot of known embryonic basal-cell markers47. (f ) Balloon-
plot of the top-20 adult basal-cell markers2, together with TP63 expression in 
our dataset (blue) shows minimal expression of typical adult basal-cell markers 
in epithelial cells. (g) Single-plane confocal-microscopy immunofluorescence 
images for TP63 (magenta), KRT5 (cyan) and E-cadherin (yellow) on 8.5 (top) and 
14 (bottom) pcw lung sections. TP63pos cells were mainly localized in proximal 
airways, with a very small portion being KRT5pos. Nuclear DAPI: gray. Scale-bar: 
10 µm. In Balloon-plots, balloon size: percent of positive cells. Color intensity: 
scaled expression. Blue: high, Gray: low.
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Extended Data Fig. 9 | Exploring the diversity within airway neighborhoods. 
(a) Heatmap of proportions of donor ages in epithelial clusters. To avoid bias, 
we normalized according to cell numbers in each stage. Dark blue: high, White: 
zero. (b–e) Violin plots of SFTPC (B), ACSL3 (C), CTGF (D) and KRT17 (E) expression 
levels in the distal epithelial clusters. (f ) All epithelial-cell UMAP-plot (left) and 
Violin-plot (right) of the activated-epithelial score, according to the aggregate 
expression of 96 basaloid4 selective markers (see Supplementary Table 1–8). 
Blue: high, orange: low. (g) Balloon-plot of epithelial cell-clusters, showing 20 
selected basaloid-cell markers. (h) Balloon-plot of the top-20 predicted FGF9-
target genes (by NicheNet). (i) p-value bar-plot of the top-10 biological processes 
in ciliated cells (epi cl-14). ( j) As in ‘I’ for the proximal progenitor cells (epi cl-4) 
compared to the proximal secretory (epi cl-0). (k–m) Violin-plots of the MYCL 

(K), NEUROD1 (L) and HNF4G (M) in all epithelial clusters. (n) Balloon-plot of 
NE-cluster markers. The top-50 markers (log2 fold-change, adjusted p-value 
<0.001, MAST, Bonferroni corrected) were sorted according to the number of 
positive cells in each cluster and the top-25 were plotted (o) p-value bar-plot 
of the top-10 biological process in epi cl-11 compared to epi cl-12, using its 
upregulated genes (adjusted p-value <0.001, calculated by MAST). (p) as in ‘O’ 
for epi cl-12, compared to epi cl-11. The p-values of enriched biological processes 
were calculated according to the Hypergeometric Probability Mass Function of 
https://toppgene.cchmc.org/, using default settings. In Balloon-plots, balloon 
size: percent of positive cells. Color intensity: scaled expression. Blue: high, Gray: 
low. In ‘B-D’ and ‘K-M’, expression levels: log2(normalized UMI-counts+1) (library 
size was normalized to 10.000). All donors were included in the analyses.

http://www.nature.com/naturecellbiology
https://toppgene.cchmc.org/


Nature Cell Biology

Resource https://doi.org/10.1038/s41556-022-01064-x

Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Spatial distribution of neuroendocrine cell identities. 
(a) Balloon-plot of the expression of the selected 31 genes for SCRINSHOT 
analysis. i) general NE-markers (PROX1, DPP10), ii) cl-12 markers (ASCL1, GRP, 
SST and CALCA), iii) cl-11 markers (GHRL, ACSL1, RFX6, ARX, CFC1, VSTM2L, 
PCSK1 and NKX2-2), together with epithelial and mesenchymal markers (EPCAM, 
NKX2-1, SOX2, SCGB3A2, SCGB1A1, FOXJ1, TP63, SOX9, ETV5, SFTPC, HIVEP2, 
MSLN, AGER, PIEZO2, COL1A2, TAGLN and CLDN5). (b) Balloon-plot showing 
NE-marker expression changes over time in cl-12 cells and (c) in cl-11 cells. In 
‘A-C’, the whole epithelial scRNA-Seq dataset (17 donors) was used. Balloon size: 
percent of positives. Color intensity: log2(normalized UMI-counts+1) (library 
size was normalized to 10.000). Blue: high, Gray: zero. (d) Images of a 14 pcw 
lung proximal (top) and a distal (bottom) airway, analyzed by SCRINSHOT. CFC1 
(orange), GHRL (green), RFX6 (blue), GRP (red), CALCA (magenta) and ASCL1 

(gray). Scale-bar: 10 µm. Data are available in: https://hdca-sweden.scilifelab.se/
tissues-overview/lung/ (e) UMAP-plots of neuroendocrine-assigned bins (see 
Methods) showing the suggested clusters and the ASCL1, GHRL and GRP detected 
mRNAs. Color-scale: log2(detected mRNAs of the indicated gene + 1). Yellow: 
high, Dark-blue: zero. NE-progenitor (cl-7), NE1 (cl-12) and NE2 (cl-11) resemble 
epithelial clusters −7, −12 and −11, respectively. (f ) Correlation heatmap of the 
detected mRNAs for the indicated NE-markers. Red: positive, Blue: negative 
correlation. ‘E’ and ‘F’ are based on the 11.5 pcw analyzed lung section of ‘G’. (g) A 
spatial map for the indicated NE-populations. DAPI: gray, NE-progenitor: orange, 
NE1: cyan, NE2: magenta. Magnified (G´) proximal and (G´´) distal airways of the 
squares in ‘G’. (h–i) Confocal-microscopy images of immunofluorescence for 
GRP (epi cl-12 marker: magenta) and GHRL (epi cl-11 marker: green), on 12 pcw 
proximal (H) and distal (I) lung airways. Nuclear DAPI: gray. Scale-bar: 10 µm.
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