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A B S T R A C T   

The SARS-CoV-2 Hydra with many heads (variants) has been causing the COVID-19 pandemic for 3 years. The 
appearance of every new head (SARS-CoV-2 variant) causes a new pandemic wave. The last in the series is the 
XBB.1.5 “Kraken” variant. In the general public (social media) and in the scientific community (scientific 
journals), during the last several weeks since the variant has appeared, the question was raised of whether the 
infectivity of the new variant will be greater. This article attempts to provide the answer. Analysis of thermo-
dynamic driving forces of binding and biosynthesis leads to the conclusion that infectivity of the XBB.1.5 variant 
could be increased to a certain extent. The pathogenicity of the XBB.1.5 variant seems to be unchanged compared 
to the other Omicron variants.   

1. Introduction 

SARS-CoV-2 is a real creature, which associates of the mythical 
creature Hydra. In the myth, Hydra is a monster with multiple heads. 
When one of Hydra’s heads is cut off, two more appear. SARS-CoV-2 
virus has appeared in the human population in 2019, as the Hu-1 wild 
type and caused the first wave of the COVID-19 pandemic. SARS-CoV-2 
has jumped the inter-species barrier (Popovic, 2022e). By cutting off the 
head of Hu-1, new variants appeared through time, which were labeled 
using the Greek alphabet. During the last 3 years, we used up the entire 
Greek alphabet on various strains of SARS-CoV-2. The last in the series is 
the XBB.1.5 variant, known as the Kraken. Newer variants have caused 
pandemic waves and suppressed the old variants. The appearance of 
new variants and new pandemic waves have caused fear in the popu-
lation and governments of all countries. Every time a new strain appears, 
the question is raised of whether it will be more infective and pathogenic 
than the previous ones, as well as will it be able to avoid immune 
response (Stacy, 2023; Browne, 2023). The situation is similar with the 
Omicron XBB.1.5 variant. 

With appearance of the COVID-19 pandemic, a great effort was made 
by scientists to follow the time evolution of SARS-CoV-2, as well as to 
develop antiviral medicines and vaccines (Tang et al., 2020; Phan, 2020; 
Singh and Yi, 2021). The XBB.1.5 variant has been spreading fast during 
the last weeks in America, Europe and Far East. In the literature, 
dissociation equilibrium constants were reported for the variants that 
are in circulation (Yue et al., 2023). The study found that the 

transmissibility of XBB.1.5 is increased, due to the contribution of strong 
ACE2 binding and immune evasion (Yue et al., 2023). 

The binding of the spike glycoprotein to the ACE2 receptor repre-
sents a chemical reaction similar to protein-ligand interactions (Du 
et al., 2016; Popovic and Popovic, 2022). This is why the 
antigen-receptor binding rate depends on the driving force of the reac-
tion, according to the phenomenological equation (Popovic, 2022a; 
2022b; Demirel, 2014); Balmer, 2010). The driving force for the reaction 
of antigen-receptor binding is Gibbs energy of binding (Popovic, 2022c; 
2022d; Gale, 2022, 2020, 2019, 2018) . Gibbs energies of binding have 
been reported for all SARS-CoV-2 variants (Popovic and Popovic, 2022; 
Popovic, 2022a; 2022b; 2022c; 2022d; 2022e; 2022g; 2022h; 2022i). 
The great entry rate of viruses into host cells indicates the level of 
infectivity. Infectivity also depends on concentration of virus particles in 
the air (Guallar et al., 2020; Van Damme et al., 2021; Spinelli et al., 
2021). The concentration of virus particles in the air is greater in closed 
spaces. This is why infection is more likely in closed spaces than in open 
spaces. The concentration of virus particles in space also depends on 
production and excretion of particles by the infected person. This is why 
infectivity cannot be estimated solely using binding affinity, nor even 
Gibbs energy of binding. Infectivity also depends on the rate of 
biosynthesis of virus components, and self-assembly of virus compo-
nents into new virions and their excretion. Fast multiplication of the 
virus followed by excretion leads to increase in virus concentration in 
closed spaces and greater infectivity. 

The multiplication rate of the virus also influences pathogenicity. A 
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greater rate of virus biosynthesis (multiplication, which includes repli-
cation, transcription, translation, self-assembly and maturation) leads to 
greater damage to cells and tissues, which corresponds to greater 
pathogenicity. 

Since all SARS-CoV-2 variants have been chemically and thermo-
dynamically characterized, it is possible to follow the time evolution of 
thermodynamic properties of the virus, infectivity and pathogenicity. 
Thermodynamic analysis shows that the reported trend in SARS-CoV-2 
evolution towards more negative Gibbs energy of binding and ten-
dency towards mildly negative Gibbs energy of bionsynthesis (Popovic, 
2022i). These changes in biothermodynamic properties are a conse-
quence of more frequent acquisition of mutations by SARS-CoV-2. 
Replacement of one nucleotide by another results in change in 
elemental composition (empirical formula) of the newly appeared 
variant (Popovic, 2022f; 2022i). Changes in empirical formula result in 
changes in Gibbs energy of the new variant (Popovic, 2022f; 2022i). 
Empirical formulas of SARS-CoV-2 have been reported in the literature 
(Şimşek et al., 2021; Degueldre, 2021). 

Elemental composition of virus particles can be determined using the 
atom counting method (Popovic, 2022j) or by experiment (Degueldre, 
20210). Atom counting method determines elemental composition of 
viruses based on their genetic and protein sequences, and morphology 
(Popovic, 2022j). It is highly accurate and should in theory be able to 
determine the structure within one atom accuracy (Popovic, 2022j). The 
results from the atom counting method were found to be in very good 
agreement with experimental results (Popovic, 2022j). Experimental 
methods for elemental analysis, such as ICP-MS, are among the most 
accurate chemical analysis methods available (Degueldre, 2021). More 
information about the accuracy of such methods and their applicability 
to viruses has been discussed by Degueldre (2021). Viruses consist of 
many copies of proteins, which are encoded by the viral nucleic acid 
(Şimşek et al., 2021). Changes in viral nucleic acid lead to changes in the 
protein sequences. The changes in protein sequences are amplified by 
the large number of protein copies in virus particles (Popovic, 2022j). 
Thus, the different protein sequences are reflected in different elemental 
composition of the virus particle and different relative masses (Popovic, 
2022j). 

Mutations can appear in the part of the viral genome that encodes the 
spike glycoprotein or the rest of the genome. Mutations of the part that 
encodes the spike glycoprotein lead to changes in binding affinity, 
binding constant, dissociation constant, as well as enthalpy, entropy and 
Gibbs energy of binding (Popovic, 2022g; 2022i). Mutations that appear 
on the rest of the viral nucleic acids, together with mutations on the 
spike encoding segments, lead to changes in Gibbs energy of biosyn-
thesis of the virus (Popovic, 2022f; 2022i). Changes in Gibbs energy, 
according to the phenomenological equations, lead to changes in ki-
netics (rate of antigen-receptor binding and rate of virus multiplication). 
It is not enough to use only the binding affinity (Kd) for estimating 
virus-host interactions at the membrane and in the cytoplasm. However, 
the virus strain characterized with a greater number of mutations, 
greater change in elemental composition, and more negative Gibbs en-
ergies of binding and biosynthesis exhibits greater infectivity. But, the 
spreading of the disease does not depend only on virus infectivity, but 
also on the immunization of the population, therapy and application of 
epidemiological measures. Spreading and pathogenesis of SARS-CoV-2 
has been discussed from biothermodynamic perspective (Lucia et al., 
2021, 2020a; 2022b; Kaniadakis et al., 2020; Nadi and Özilgen, 2021; 
Özilgen and Yilmaz, 2021; Yilmaz et al., 2020; Head et al., 2022). 

The goal of this paper is to perform a chemical and thermodynamic 
characterization of the XBB.1.5 Kraken variant of SARS-CoV-2, to esti-
mate the risk that the new variant could represent for the population. 
This will be achieved by applying the atom counting method for 
determining the empirical formula of the variant (Popovic, 2022j). 
Based on the elemental composition, growth reactions will be formu-
lated, based on which thermodynamic properties of formation and 
biosynthesis will be calculated, using predictive biothermodynamic 

models. Moreover, Gibbs energy of SGP-ACE2 binding will be calculated 
for the XBB.1.5 variant. The calculated thermodynamic properties will 
be applied for thermodynamic analysis and implications on infectivity 
and pathogenicity of the XBB.1.5 variant. 

2. Methods 

2.1. Data sources 

Genetic sequences of isolates of the XBB.1.5 “Kraken” variant of 
SARS-CoV-2 were taken from GISAID, the global data science initiative 
(Khare et al., 2021; Elbe and Buckland-Merrett, 2017; Shu and 
McCauley, 2017; GISAID, 2023). The genetic sequence of the XBB.1.5 
isolate from Chile can be found under the accession code EPI_-
ISL_16370682 and is labeled hCoV-19/Chile/RM-137638/2022. It was 
isolated on December 18, 2022, in Las Condes, in the Region Metro-
politana de Santiago. The genetic sequence of the XBB.1.5 isolate from 
India can be found under the accession code EPI_ISL_16378695 and is 
labeled hCoV-19/India/TG-CDFD-MMG-504/2022. It was isolated on 
December 31, 2022, in Hyderabad, in the state of Telangana. The genetic 
sequence of the XBB.1.5 isolate from Netherlands can be found under the 
accession code EPI_ISL_16446510 and is labeled hCoV-19/Netherlands/ 
OV-RIVM-122353/2022. It was isolated on December 15, 2022, in the 
province of Overijssel. The genetic sequence of the XBB.1.5 isolate from 
Scotland can be found under the accession code EPI_ISL_16457174 and 
is labeled hCoV-19/Scotland/QEUH-3266AE29/2022. It was isolated on 
December 20, 2022, by a lab from Glasgow. The genetic sequence of the 
XBB.1.5 isolate from USA can be found under the accession code EPI_-
ISL_16454254 and is labeled hCoV-19/USA/TX-HMH-MCoV- 
121261/2022. It was isolated on December 27, 2022, in Houston, 
Texas. Therefore, the findings of this study are based on metadata 
associated with 5 sequences available on GISAID up to January 17, 
2023, and accessible at https://doi.org/10.55876/gis8.230117yo More 
information about the genetic sequences can be found in the Supple-
mentary Material. 

The sequence of the nucleocapsid phosphoprotein of SARS-CoV-2 
was obtained from the NCBI database (Sayers et al., 2022; National 
Center for Biotechnology Information, 2022), under the accession ID: 
UKQ14424.1. The number of copies of the nucleocapsid phosphoprotein 
in virus particle was taken from (Neuman and Buchmeier, 2016; Neu-
man et al., 2011; Neuman et al., 2006). 

The dissociation equilibrium constants, Kd, of the BQ.1.1, XBB/ 
XBB.1, XBB.1.5 and BA.2.75 variants of SARS-CoV-2 were taken from 
(Yue et al., 2023). They were measured at 25 ◦C, using surface plasmon 
resonance (Yue et al., 2023). 

2.2. Empirical formulas and biosynthesis reactions 

The genetic and protein sequences were used to find empirical for-
mulas of nucleocapsids of the BA.5.2 and BF.7 variants of SARS-CoV-2. 
This was done using the atom counting method (Popovic, 2022j). The 
atom counting method is implemented using a computer program 
(Popovic, 2022j). The input are genetic and protein sequences of the 
virus of interest, as well as the number of copies of proteins in the virus 
particle and the virus particle size (Popovic, 2022j). The program goes 
along the nucleic acid and protein sequences and adds atoms coming 
from each residue in the sequence, to find the number of atoms 
contributed by that macromolecule to the virus particle (Popovic, 
2022j). The contributions of viral proteins are multiplied by their copy 
numbers, since proteins are present in multiple copies in virus particles 
(Popovic, 2022j). The output of the program is elemental composition of 
virus particles, in the form of empirical formulas, and molar masses of 
virus particles (Popovic, 2022j). The advantage of the atom counting 
method is that it can provide the empirical formulas of virus particles, 
based on widely available data on genetic and protein sequences 
(Popovic, 2022j). The atom counting method was shown to give results 
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in good agreement with experimental results (Popovic, 2022j). 
The empirical formulas of virus particles were used to construct 

biosynthesis reactions, summarizing conversion of nutrients into new 
live matter (von Stockar, 2013a, 2013b; Battley, 1998). The biosynthesis 
reaction for virus particles has the general form.  

(Amino acid) + O2 + HPO4
2- + HCO3

- → (Bio) + SO4
2- + H2O + H2CO3 (1) 

where (Bio) represents new live matter, described by an empirical 
formula given by the atom counting method (Popovic,2022b; 2022c; 
2022f). (Amino acid) represents a mixture of amino acids with the 
empirical formula CH1.798O0.4831N0.2247S0.022472 (expressed per mole of 
carbon), representing the source of energy, carbon, nitrogen and sulfur 
(Popovic, 2022b; 2022c; 2022f). O2 is the electron acceptor (Popovic, 
2022b; 2022c; 2022f). HPO4

2- is the source of phosphorus (Popovic, 
2022b;2022c; 2022f). HCO3

- is a part of the bicarbonate buffer that takes 
excess H+ ions that are generated during biosynthesis (Popovic, 2022b; 
2022c; 2022f). SO4

2- is an additional metabolic product that takes excess 
sulfur atoms (Popovic, 2022b; 2022c; 2022f). H2CO3 takes the oxidized 
carbon atoms and is also a part of the bicarbonate buffer (Popovic, 
2022b; 2022c; 2022f). 

2.3. Thermodynamic properties of live matter and biosynthesis 

Empirical formulas of virus nucleocapsids were used to find standard 
thermodynamic properties of their live matter, using predictive bio-
thermodynamic models: the Patel-Erickson and Battley equations (Patel 
and Erickson 1981; Battley 1999, 1998, 1992; Battley and Stone 2000). 
The Patel-Erickson equation was used to find enthalpy of live matter, 
based on its elemental composition. The Patel-Erickson equation gives 
standard enthalpy of combustion, ΔCH⁰, of live matter 

ΔCH0(bio) = − 111.14
kJ

C − mol
• E (2)  

where E is number of electrons transferred to oxygen during combustion 
(Patel and Erickson, 1981; Battley, 1998, 1992). E can be calculated 
from the empirical formula of live matter 

E = 4nC + nH − 2nO − 0nN + 5nP + 6nS (3)  

where nC, nH, nO, nN, nP and nS represent the numbers of C, H, O, N, P and 
S atoms in the live matter empirical formula, respectively (Patel and 
Erickson, 1981; Battley, 1998, 1992). Once calculated using the 
Patel-Erickson equation, ΔCH⁰ can be converted into standard enthalpy 
of formation, ΔfH⁰, of live matter. ΔCH⁰ is the enthalpy change of the 
reaction of complete combustion of live matter.  

CnCHnHOnONnNPnPSnS + (nC + ¼ nH + 1¼ nP + 1½ nS - ½ nO) O2 → nC CO2 
+ ½ nH H2O + ½ nN N2 + ¼ nP P4O10 + nS SO3                                (4) 

This means that ΔCH⁰ can be used to find ΔfH⁰ of live matter using the 
equation (Popovic, 2022b; 2022c; 2022f; Atkins and de Paula, 2011, 
2014). 

Δf H0(bio) =nCΔf H0(CO2)+
nH

2
Δf H0(H2O)+

nP

4
Δf H0(P4O10)

+ nSΔf H0(SO3) − ΔCH0
(5) 

The Battley equation gives standard molar entropy of live matter, 
S⁰m, based on its empirical formula 

S0
m(bio) = 0.187

∑

J

S0
m(J)
aJ

nJ (6)  

where nJ is the number of atoms of element J in the empirical formula of 
live matter (Battley, 1999; Battley and Stone, 2000). S⁰m and aJ are 
standard molar entropy and number of atoms per formula unit of 
element J in its standard state elemental form (Battley, 1999; Battley 
and Stone, 2000). The Battley equation can be modified to give standard 

entropy of formation, ΔfS⁰, of live matter (Battley, 1999; Battley and 
Stone, 2000). 

Δf S0(bio) = − 0.813
∑

J

S0
m(J)
aJ

nJ (7) 

Finally, ΔfH⁰ and ΔfS⁰ are combined to give standard Gibbs energy of 
formation of live matter, ΔfG⁰. 

Δf G0(bio) = Δf H0(bio) − TΔf S0(bio) (8) 

Once live matter is characterized by finding its ΔfH⁰, S⁰m and ΔfG⁰, 
these properties can be combined with biosynthesis reactions to find 
standard thermodynamic properties of biosynthesis. Standard thermo-
dynamic properties of biosynthesis include standard enthalpy of 
biosynthesis, ΔbsH⁰, standard entropy of biosynthesis, ΔbsS⁰, and stan-
dard Gibbs energy of biosynthesis, ΔbsG⁰. These properties are found by 
applying the Hess’s law to biosynthesis reactions 

ΔbsH0 =
∑

products
νΔf H0 −

∑

reactants
νΔf H0 (9)  

ΔbsS0 =
∑

products
νSo

m −
∑

reactants
νSo

m (10)  

ΔbsG0 =
∑

products
νΔf G0 −

∑

reactants
νΔf G0 (11)  

where ν represents a stoichiometric coefficient (Popovic, 2022b; 2022c; 
2022f; Atkins and de Paula, 2011, 2014; von Stockar, 2013a, 2013b; 
Battley, 1998). The most important of these three properties is standard 
Gibbs energy of biosynthesis, which represents the thermodynamic 
driving force for (von Stockar, 2013a, 2013b; von Stockar and Liu, 
1999), including viruses (Popovic, 2022b; 2022c; 2022f; 2022i). 

2.4. Thermodynamic properties of antigen-receptor binding 

In order to multiply inside the cytoplasm, a virus must first enter its 
host cell. The first step in this process is binding of the virus antigen to 
the host cell receptor. The antigen of SARS-CoV-2 is the spike glyco-
protein trimer (SGP) (Duan et al., 2020), while the host cell receptor is 
angiotensin-converting enzyme 2 (ACE2) (Scialo et al., 2020). The 
process of antigen-receptor binding is, in its essence, a chemical reac-
tion, similar to protein-ligand interactions (Du et al., 2016; Popovic and 
Popovic, 2022). Thus, the binding of SGP to ACE2 can be described 
through the chemical reaction. 

(An) +(Re) =(An-Re). 
where (An) represents the virus antigen (SGP in the case of SARS- 

CoV-2), (Re) represents the host cell receptor (ACE2 for SARS-CoV-2), 
while (An-Re) represents the antigen-receptor complex (Du et al., 
2016; Popovic and Popovic, 2022). 

Like for all other chemical reactions, laws of chemical thermody-
namics apply and the process of antigen-receptor binding can be 
described through several thermodynamic parameters. The dissociation 
equilibrium constant, Kd, is defined as 

Kd =
[An][Re]
[An − Re]

(12)  

where [An] is the concentration of the virus antigen, [Re] the concen-
tration of the host receptor and [An-Re] the concentration of the antigen- 
receptor complex (Du et al., 2016; Popovic and Popovic, 2022). The 
reciprocal of Kd is the binding equilibrium constant, KB, (Du et al., 2016; 
Popovic and Popovic, 2022). 

KB =
1

Kd
(13) 

The binding equilibrium constant can be used to find standard Gibbs 
energy of binding, ΔBG⁰, through the equation 
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ΔBG0 = − RTlnKB (14)  

Where T is temperature and R is the universal gas constant (Du et al., 
2016; Popovic and Popovic, 2022). 

3. Results 

Based on dissociation equilibrium constants, Kd, reported in the 
literature (Yue et al., 2023), standard thermodynamic properties of 
binding were calculated. These include the binding equilibrium con-
stant, KB, and standard Gibbs energy of binding, ΔBG⁰, and are reported 
in Table 1. For the BQ.1.1 variant, the binding equilibrium constant is 
1.23 × 108 M− 1, and standard Gibbs energy of binding is 
− 46.18 kJ/mol. For the XBB/XBB.1 variant, the binding equilibrium 
constant is 5.26 × 107 M− 1, and standard Gibbs energy of binding is 
− 44.07 kJ/mol. For the XBB.1.5 variant, the binding equilibrium con-
stant is 2.94 × 108 M− 1, and standard Gibbs energy of binding is 
− 48.34 kJ/mol. For the BA.2.75 variant, the binding equilibrium con-
stant is 5.56 × 108 M− 1, and standard Gibbs energy of binding is 
− 49.91 kJ/mol. 

Based on the genetic and protein sequences reported in the literature 
[REF], elemental composition of nucleocapsids of the XBB.1.5 variant 
isolates from 5 countries were calculated for the first time, using the 
atom counting method (Popovic, 2022j). They are reported in form of 
empirical formulas in Table 2. The empirical formula of the nucleo-
capsid of the XBB.1.5 isolate from Chile is CH1.573540O0.342703 
N0.312374P0.00603S0.00336. The molar mass of the empirical formula is 
23.7495 g/C-mol, while the molar mass of the nucleocapsid is 117.22 
MDa. The empirical formula of the nucleocapsid of the XBB.1.5 isolate 
from India is CH1.573611O0.342616N0.312358P0.00601S0.00336. The molar 
mass of the empirical formula is 23.7474 g/C-mol, while the molar mass 
of the nucleocapsid is 117.18 MDa. The empirical formula of the 
nucleocapsid of the XBB.1.5 isolate from Netherlands is 
CH1.573562O0.342674N0.312371P0.00602S0.00336. The molar mass of the 
empirical formula is 23.7488 g/C-mol, while the molar mass of the 
nucleocapsid is 117.21 MDa. The empirical formula of the nucleocapsid 
of the XBB.1.5 isolate from Scotland is CH1.573562O0.342673N0.312371 
P0.00602S0.00336. The molar mass of the empirical formula is 
23.7488 g/C-mol, while the molar mass of the nucleocapsid is 117.21 
MDa. The empirical formula of the nucleocapsid of the XBB.1.5 isolate 
from USA is CH1.573529O0.342714N0.312379P0.00603S0.00336. The molar 
mass of the empirical formula is 23.7499 g/C-mol, while the molar mass 
of the nucleocapsid is 117.22 MDa. These formulas were used to 
construct biosynthesis reactions, which are given in Table 3. 

Table 4 gives standard thermodynamic properties of live matter of 
nucleocapsid of the XBB.1.5 variant of SARS-CoV-2. Starting from 
elemental composition data in Table 2, predictive biothermodynamic 
models (Patel-Erickson and Battley) were used to find standard ther-
modynamic properties of live matter for the nucleocapsid of XBB.1.5 
variant. They are given in Table 5 and include standard enthalpy of 
formation, ΔfH⁰, standard molar entropy, S⁰m, and standard Gibbs en-
ergy of formation, ΔfG⁰. For the nucleocapsid of the XBB.1.5 isolate from 
Chile, standard enthalpy of formation is − 75.40 kJ/C-mol, standard 

molar entropy is 32.49 J/C-mol K, and standard Gibbs energy of for-
mation is − 33.28 kJ/C-mol. For the nucleocapsid of the XBB.1.5 isolate 
from India, standard enthalpy of formation is − 75.38 kJ/C-mol, stan-
dard molar entropy is 32.49 J/C-mol K, and standard Gibbs energy of 
formation is − 33.26 kJ/C-mol. For the nucleocapsid of the XBB.1.5 
isolate from Netherlands, standard enthalpy of formation is − 75.39 kJ/ 
C-mol, standard molar entropy is 32.49 J/C-mol K, and standard Gibbs 
energy of formation is − 33.27 kJ/C-mol. For the nucleocapsid of the 
XBB.1.5 isolate from Scotland, standard enthalpy of formation is 
− 75.39 kJ/C-mol, standard molar entropy is 32.49 J/C-mol K, and 
standard Gibbs energy of formation is − 33.27 kJ/C-mol. For the 
nucleocapsid of the XBB.1.5 isolate from USA, standard enthalpy of 
formation is − 75.40 kJ/C-mol, standard molar entropy is 32.49 J/C- 
mol K, and standard Gibbs energy of formation is − 33.28 kJ/C-mol. 

Table 5 gives standard thermodynamic properties of biosynthesis of 
the nucleocapsid of the XBB.1.5 variant of SARS-CoV-2. Biosynthesis 
stoichiometry data from Table 3 were combined with standard ther-
modynamic properties of live matter from Table 4, to find for the first 
time standard thermodynamic properties of biosynthesis. These are 
presented in Table 5 and include standard enthalpy of biosynthesis, 
ΔbsH⁰, standard entropy of biosynthesis, ΔbsS⁰, and standard Gibbs en-
ergy of biosynthesis, ΔbsG⁰. For the nucleocapsid of the XBB.1.5 isolate 
from Chile, standard enthalpy of biosynthesis is − 232.33 kJ/C-mol, 
standard entropy of biosynthesis is − 37.34 J/C-mol K, and standard 
Gibbs energy of biosynthesis is − 221.23 kJ/C-mol. For the nucleo-
capsid of the XBB.1.5 isolate from India, standard enthalpy of biosyn-
thesis is − 232.27 kJ/C-mol, standard entropy of biosynthesis is 
− 37.33 J/C-mol K, and standard Gibbs energy of biosynthesis is 
− 221.18 kJ/C-mol. For the nucleocapsid of the XBB.1.5 isolate from 
Netherlands, standard enthalpy of biosynthesis is − 232.32 kJ/C-mol, 
standard entropy of biosynthesis is − 37.34 J/C-mol K, and standard 
Gibbs energy of biosynthesis is − 221.22 kJ/C-mol. For the nucleo-
capsid of the XBB.1.5 isolate from Scotland, standard enthalpy of 
biosynthesis is − 232.32 kJ/C-mol, standard entropy of biosynthesis is 
− 37.34 J/C-mol K, and standard Gibbs energy of biosynthesis is 
− 221.22 kJ/C-mol. For the nucleocapsid of the XBB.1.5 isolate from 
USA, standard enthalpy of biosynthesis is − 232.34 kJ/C-mol, standard 
entropy of biosynthesis is − 37.34 J/C-mol K, and standard Gibbs en-
ergy of biosynthesis is − 221.25 kJ/C-mol. 

4. Discussion 

The Omicron XBB.1.5 variant represents the latest step in the evo-
lution of SARS-CoV-2. It is characterized by a specific empirical formula, 
different from those of all other SARS-CoV-2 variants. The difference in 
empirical formulas originates from new mutations, which make it 
different from other variants. The differences in empirical formulas lead 
to differences in thermodynamic properties of formation and biosyn-
thesis. Moreover, mutations in the RNA segment encoding the spike 
glycoprotein cause changes in binding affinity, thermodynamic prop-
erties of binding and clinical properties – infectivity. Furthermore, they 
lead to changes in kinetic properties – binding rate and multiplication 
rate of the virus (Popovic, 2022i). 

The Omicron XBB.1.5 variant is in co-circulation with other variants, 
present in various countries throughout the world. The XBB.1.5 variant 
competes with other variants. In the public, a question is raised of 
whether the XBB.1.5 variant will be able to outcompete the other vari-
ants, suppress them and cause another pandemic wave (WHO, 2023). 
Competition of viruses and virus variants has been described in the 
literature (Popovic and Minceva, 2021a). Through the procedure 
described in the methodology section, using the atom counting method, 
the empirical formula of the XBB.1.5 variant was calculated. Table 2 
gives empirical formulas of different isolates of the XBB.1.5 variant 
taken from different components. The results given in Table 2 show that 
isolates taken from the same continent exhibit similarity. On the other 
hand, isolates taken from different continents exhibit greater 

Table 1 
Standard Gibbs energies of binding of SARS-CoV-2 variants. This table gives data 
on dissociation equilibrium constants, Kd, binding equilibrium constants, KB, 
and standard Gibbs energies of binding, ΔBG⁰, of SARS-CoV-2 variants. The 
analyzed SARS-CoV-2 variants are: BQ.1.1, XBB/XBB.1, XBB.1.5 and BA.2.75. 
All the data are at 25 ◦C. The Kd data were taken from Yue et al. (2023).  

Name Kd (M) KB (M− 1) ΔBG⁰ (kJ/mol) 

BQ.1.1 8.10E-09 1.23E+ 08 -46.18 
XBB/XBB.1 1.90E-08 5.26E+ 07 -44.07 
XBB.1.5 3.40E-09 2.94E+ 08 -48.34 
BA.2.75 1.80E-09 5.56E+ 08 -49.91  

M.E. Popovic                                                                                                                                                                                                                                     



Microbiological Research 270 (2023) 127337

5

differences. Since differences appear as a consequence of replacement of 
nucleotides that appear due to mutations, we can conclude that the 
XBB.1.5 variant also exhibits a tendency to mutate and that in the future 
new variants are likely to appear. 

Based on the empirical formula and biosynthesis reactions, Gibbs 
energy of biosynthesis of the XBB.1.5 isolates was calculated. Gibbs 
energy of biosynthesis indicates the multiplication rate, since it repre-
sents the driving force for virus multiplication (Popovic, 2022f; 2022i). 
More negative Gibbs energy of biosynthesis indicates a greater rate of 
reactions of replication, transcription and translation. A greater rate of 
virus multiplication leads to greater damage of host cells and greater 
excretion of newly synthetized virions into the environment, which in-
fluences the inoculation dose. The inoculation dose is expressed through 
the number of virions per cm3 of air. Infectivity is also influenced by 
Gibbs energy of antigen-receptor binding. The mutated receptor of the 

XBB.1.5 variant has led to changes in affinity (dissociation constant). 
Changes in dissociation constant lead to changes in Gibbs energy of 
binding, according to the binding phenomenological equation (Popovic 
and Popovic, 2022; Popovic, 2022b; 2022g). The increased rate of 
binding leads to increased infectivity. Standard Gibbs energy of binding 
of the XBB.1.5 variant is − 48.34 kJ/mol. Standard Gibbs energies of 
binding of the other variants are: − 46.18 kJ/mol for BQ.1.1, 
− 44.07 kJ/mol for XBB/XBB.1, and − 49.91 kJ/mol for BA.2.75. Thus, 
XBB.1.5 has a standard Gibbs energy of binding more negative than 
those of the BQ.1.1 and XBB/XBB.1 variants, but less negative than that 
of the BA.2.75 variant. This leads to the conclusion that the rate of 
antigen-receptor binding of the XBB.1.5 variant will be lower than that 
of the Omicron BA.2.75 variant. In that case, the infectivity of XBB.1.5 
should be lower. Thus, even though there are reasons for being careful, it 
seems that the thermodynamic driving force of binding does not indicate 
a greater danger in terms of infectivity than for the case of BA.2.75 
variant. However, infectivity depends on the concentration of virus 
particles in the air and excretion. These depend on the virus multipli-
cation rate. The virus multiplication rate depends on Gibbs energy of 
biosynthesis, since it represents the driving force for multiplication. 
Gibbs energy of biosynthesis for that variant is very similar to the other 
Omicron variants: − 221.18 kJ/C-mol for BQ.1.1 (Popovic, 2022h), 
− 221.25 kJ/C-mol for XBB (Popovic, 2022h), − 221.19 for XBB.1 
(Popovic, 2022h), and − 221.18 kJ/C-mol for BA.2.75 (Popovic, 2022f). 
Thus, Gibbs energy of biosynthesis deviates very little for various vari-
ants of SARS-CoV-2. This implies that the rate of multiplication of the 
XBB.1.5 variant will be very similar to the multiplication rate of the 
other variants. The degree of damage to cells and tissues, as well as virus 
excretion, will be similar for all the Omicron variants. This implies that 
the mutations that appeared in the Omicron variants have influenced 
more the antigen-receptor binding rate, than the virus multiplication 
rate. 

5. Conclusions 

The XBB.1.5 isolates from Europe (Scotland and Netherlands) exhibit 
the greatest similarity in elemental composition and thermodynamic 
properties. This indicates the very similar mutations in the two Euro-
pean isolates. However, the isolates from other continents - South 
America (Chile), Asia (India) and North America (USA) exhibit differ-
ences in elemental composition and thermodynamic properties. It seems 

Table 2 
Empirical formulas of the nucleocapsid of XBB.1.5 variant of SARS-CoV-2. This table gives elemental composition in form of empirical formulas. The general empirical 
formula has the form CnCHnHOnONnNPnPSnS. The table gives data for XBB.1.5 isolates from 5 countries. In addition, molar masses were reported for the empirical 
formulas, Mr, and for entire nucleocapsids, Mr(nc).  

Name C H O N P S Mr (g/C-mol) Mr (nc) (MDa) 

XBB.1.5 - Chile  1  1.573540  0.342703  0.312374  0.00603  0.00336  23.7495  117.22 
XBB.1.5 - India  1  1.573611  0.342616  0.312358  0.00601  0.00336  23.7474  117.18 
XBB.1.5 - Netherlands  1  1.573562  0.342674  0.312371  0.00602  0.00336  23.7488  117.21 
XBB.1.5 - Scotland  1  1.573562  0.342673  0.312371  0.00602  0.00336  23.7488  117.21 
XBB.1.5 - USA  1  1.573529  0.342714  0.312379  0.00603  0.00336  23.7499  117.22  

Table 3 
Biosynthesis stoichiometry of the nucleocapsid XBB.1.5 variant of SARS-CoV-2. The general biosynthesis reaction has the form: (Amino acids) + O2 + HPO4

2- 
+ HCO3

- 

→ (Bio) + SO4
2- + H2O + H2CO3, where (Bio) denotes the empirical formula of live matter from Table 1. The stoichiometric coefficients for the biosynthesis reactions 

are given in this table.  

Name Reactants → Products 

Amino acid O2 HPO4
2- HCO3

- Bio SO4
2- H2O H2CO3 

XBB.1.5 - Chile  1.3901  0.4913  0.0060  0.0437 →  1  0.0279  0.0538  0.4338 
XBB.1.5 - India  1.3900  0.4911  0.0060  0.0437 →  1  0.0279  0.0538  0.4337 
XBB.1.5 - Netherlands  1.3901  0.4912  0.0060  0.0437 →  1  0.0279  0.0538  0.4338 
XBB.1.5 - Scotland  1.3901  0.4912  0.0060  0.0437 →  1  0.0279  0.0538  0.4338 
XBB.1.5 - USA  1.3901  0.4913  0.0060  0.0437 →  1  0.0279  0.0538  0.4338  

Table 4 
Standard thermodynamic properties of live matter for the nucleocapsid of 
XBB.1.5 variant of SARS-CoV-2. This table gives data on standard enthalpies of 
formation, ΔfH⁰, standard molar entropies, S⁰m, and standard Gibbs energies of 
formation, ΔfG⁰.  

Name ΔfH⁰ (kJ/C-mol) S⁰m (J/C-mol K) ΔfG⁰ (kJ/C-mol) 

XBB.1.5 - Chile -75.40 32.49 -33.28 
XBB.1.5 - India -75.38 32.49 -33.26 
XBB.1.5 - Netherlands -75.39 32.49 -33.27 
XBB.1.5 - Scotland -75.39 32.49 -33.27 
XBB.1.5 - USA -75.40 32.49 -33.28  

Table 5 
Standard thermodynamic properties of biosynthesis of the nucleocapsid of the 
XBB.1.5 variant of SARS-CoV-2. This table gives data on standard enthalpies of 
biosynthesis, ΔbsH⁰, standard entropies of biosynthesis, ΔbsS⁰, and standard 
Gibbs energies of biosynthesis, ΔbsG⁰.  

Name ΔbsH⁰ (kJ/C- 
mol) 

ΔbsS⁰ (J/C-mol 
K) 

ΔbsG⁰ (kJ/C- 
mol) 

XBB.1.5 - Chile -232.33 -37.34 -221.23 
XBB.1.5 - India -232.27 -37.33 -221.18 
XBB.1.5 - 

Netherlands 
-232.32 -37.34 -221.22 

XBB.1.5 - Scotland -232.32 -37.34 -221.22 
XBB.1.5 - USA -232.34 -37.34 -221.25  
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that the XBB.1.5 variant exhibits further tendency towards mutation. 
Gibbs energies of biosynthesis of the XBB.1.5 variant is similar to 

those of other Omicron variants. Thus, we can expect the pathogenicity 
of these variants to be equal. 

Gibbs energy of binding of the XBB.1.5 variant is more negative than 
those of most of the other Omicron variants (BQ.1.1 and XBB/XBB.1). 
However, it is not more negative than that of the BA.2.75. Thus, we can 
expect the infectivity of the XBB.1.5 should be lower than that of the 
BA.2.75. 
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