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A B S T R A C T   

Few studies have used individual-level data to explore the association between COVID-19 risk with multiple 
environmental exposures and housing conditions. Using individual-level data collected with GPS-tracking 
smartphones, mobile air-pollutant and noise sensors, an activity-travel diary, and a questionnaire from two 
typical neighborhoods in a dense and well-developed city (i.e., Hong Kong), this study seeks to examine 1) the 
associations between multiple environmental exposures (i.e., different types of greenspace, PM2.5, and noise) and 
housing conditions (i.e., housing types, ownership, and overcrowding) with individuals’ COVID-19 risk both in 
residential neighborhoods and along daily mobility trajectories; 2) which social groups are disadvantaged in 
COVID-19 risk through the perspective of the neighborhood effect averaging problem (NEAP). Using separate 
multiple linear regression and logistical regression models, we found a significant negative association between 
COVID-19 risk with greenspace (i.e., NDVI) both in residential areas and along people’s daily mobility trajec
tories. Meanwhile, we also found that high open space and recreational land exposure and poor housing con
ditions were positively associated with COVID-19 risk in high-risk neighborhoods, and noise exposure was 
positively associated with COVID-19 risk in low-risk neighborhoods. Further, people with work places in high- 
risk areas and poor housing conditions were disadvantaged in COVID-19 risk.   

1. Introduction 

The COVID-19 pandemic has caused a huge burden of disease around 
the world. A growing body of studies suggested that the disease is un
equally transmitted over space in cities (Van Dorn, Cooney, & Sabin, 
2020; Chang et al., 2021; Albani et al., 2022). For instance, using contact 
tracing data from Hong Kong, Huang, Kwan, and Kan (2021) found that 
vulnerable communities located in the central area had both susceptible 
and superspreading characteristics due to their intense spatial in
teractions with other areas. The U.K. also reported a higher mortality 
rate for low-skilled people with limited ability to change their mobility 
during the pandemic (e.g., cannot work from home) (Windsor-Shellard 
& Kaur, 2020). These phenomena stimulated many researchers to 
investigate the roles of environmental factors and human mobility in the 
transmission risk of COVID-19 (Kan et al., 2021; Kim & Kwan, 2021a; 
Huang & Kwan, 2022a; Meng et al., 2022; Pan & Bardhan, 2022). 

One of the major assumptions underlying these studies is that 

people’s daily behaviors and immune systems are partially shaped by 
their environmental exposures, which can further influence the trans
mission of COVID-19 (Kwan et al., 2019; Huang et al., 2020). For 
instance, greenspace can significantly promote people’s outdoor phys
ical activities, and therefore reduce their face-to-face contact rates in 
indoor spaces and improve immune functioning, which could further 
reduce the transmission of COVID-19 (Jiang et al., 2022). In contrast to 
greenspace, air pollutants (e.g., particulate matter [PM]) have a 
destructive impact on people’s respiratory system and causes lung and 
cardiovascular diseases, which could further lead to severe COVID-19 
outcomes (Mehmood et al., 2021). Particulate matter (PM) could also 
be one of the possible means that carry the virus into the human body 
and result in an increased transmission risk of COVID-19 (Shao et al., 
2022). High levels of noise can weaken people’s immune systems since it 
could significantly worsen individuals’ mental health and disturb sleep 
cycles (Recio et al., 2016; 2017; Díaz et al., 2021). Besides, noise is also 
an indicator of human activity, which can be used to represent the 
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presence of people’s activities in venues or locations (Asensio et al., 
2020). Therefore, people would be susceptible to COVID-19 if they were 
exposed to a high level of noise. Apart from greenspace, air pollution, 
and noise exposure, poor housing conditions with limited maintenance 
would also lead to a high transmission risk of COVID-19 since the virus 
can spread vertically in these buildings through faulty drainage or 
sewage pipes (Wang et al., 2022). 

Along this line, previous studies have found significant associations 
between greenspace, air pollution, noise, and poor housing conditions 
with the transmission risk of COVID-19 by linking the incidence or 
mortality of the disease to specific environmental contexts using public 
spatially aggregated data (e.g., city, state, and county levels). For 
instance, using data aggregated at the authority level in England, 
Johnson et al. (2021) revealed that park use was associated with a low 
risk of COVID-19 transmission. Peng et al. (2022) reported a significant 
negative association between greenspace and COVID-19 incidence in 
China by using a dataset aggregated at the city level. Meanwhile, 
Klompmaker et al. (2021) and Grigsby-Toussaint and Shin (2022) re
ported a potential benefit of greenspace in reducing the incidence and 
mortality of COVID-19 based on a dataset aggregated at the county level 
in the U.S. Besides, using a dataset aggregated into ZIP code areas in 17 
states in the U.S., Spotswood et al. (2021) indicated that communities 
with high COVID-19 incidence also have little greenspace. 

With regard to air pollution (e.g., particulate matter [PM]) and noise, 
Ogen (2020) found that people’s long-term exposure to air pollution is 
one of the most important contributors to the mortality of COVID-19 
based on a dataset aggregated at the regional and administrative 
levels in four European countries (i.e., Italy, Spain, France, and Ger
many). A strong association between people’s exposure to air pollution 
and the incidence and mortality of COVID-19 was also observed in China 
(Zhu et al., 2020), the U.S. (Chakrabarty et al., 2021), Poland 
(Czwojdzińska et al., 2021), and South Korea (Lym & Kim, 2022). Be
sides, Díaz et al. (2021) reported a significant association between 
people’s noise exposure with the incidence of COVID-19 in the Province 
of Madrid. 

Recent studies have also found that people were exposed to a high 
COVID-19 transmission risk if they live in dense old buildings with 
limited maintenance (Gurney, 2021; Kim & Bostwick, 2020; Plümper & 
Neumayer, 2020). For instance, using a spatially aggregated dataset in 
Hong Kong, Huang, Kwan, and Kan (2021) found that neighborhoods 
with dense urban-renewal buildings and high housing costs were asso
ciated with a high transmission risk of COVID-19. Meanwhile, Wang 
et al. (2022) further reported that old buildings in Hong Kong have a 
high transmission risk. Ahmad et al. (2021) also found a higher inci
dence and mortality rate among people who have poor housing condi
tions (e.g., overcrowdedness and housing types) based on a dataset 
aggregated at the county level in the U.S. 

Notably, previous studies tend to use spatially aggregated data to 
examine the roles of environmental factors in COVID-19 transmission, 
which may generate misleading conclusions since most people travel 
beyond their residential areas to perform various daily activities and 
thus are exposed to different neighborhood contexts (Kwan, 2012, 
2018). For instance, Huang and Kwan (2022a) examined an important 
methodological issue in the assessment of COVID-19 risk: the neigh
borhood effect averaging problem (NEAP), which suggests that the 
assessment of individuals’ mobility-based COVID-19 risk would tend 
toward the average of the population when compared to their 
residence-based COVID-19 risk. The NEAP further implies that the ex
amination of socio-demographic disparities in individuals’ COVID-19 
risk might be erroneous if people’s daily mobility is ignored. Specif
ically, people’s daily mobility would reduce or amplify their COVID-19 
risk in residential areas. For instance, for people who live in high 
COVID-19-risk neighborhoods and travel to low COVID-19-risk neigh
borhoods in their daily life, their COVID-19 risk would be overestimated 
if their daily mobility is ignored, and verse vice (Huang & Kwan, 2022a). 
In this light, the NEAP underscored one particular phenomenon that has 

been largely ignored in previous studies: people would be doubly 
disadvantaged in COVID-19 risk if they live in a neighborhood with high 
COVID-19 risk and their mobility-based COVID-19 risk is higher than 
their residence-based COVID-19 risk (Huang & Kwan, 2022a). It should 
be noted that a similar phenomenon has been observed in the assessment 
of individuals’ exposure to air pollution and traffic congestion (Kim and 
Kwan, 2019, 2021b, 2021c). 

In addition, previous studies did not examine the combined re
lationships between individuals’ COVID-19 risk on one hand and mul
tiple environmental exposures and housing conditions on the other 
through individual-level data. Further, they did not examine who would 
be disadvantaged in COVID-19 risk through the perspective of the NEAP. 
Thus, this study seeks to bridge the research gaps by addressing the 
following two research questions: First, what are the associations be
tween individuals’ COVID-19 risk and multiple environmental expo
sures (i.e., greenspace, air pollution, and noise) and housing conditions 
(i.e., housing types, ownership, and over crowdedness), both in resi
dential areas and along people’s daily mobility trajectories? Second, 
who are disadvantaged in COVID-19 risk through the perspective of the 
NEAP? In other words, which social groups have a high level of COVID- 
19 risk in their residential areas while the COVID-19 risk in their daily 
mobility trajectories is equal to or higher than the risk in their resi
dential areas? Answering these questions will enrich our understanding 
of the complicated associations among individuals’ mobility, environ
mental factors, housing conditions, and COVID-19 risk. Further, the 
generated new knowledge will provide important insights for public 
health authorities to identify vulnerable groups during the COVID-19 
pandemic. 

2. Dataset and methods 

This study seeks to address the abovementioned research questions 
using individual-level survey data. Specifically, a survey was conducted 
in Sham Shui Po (i.e., a high COVID-19 risk neighborhood) and Tin Shui 
Wai (i.e., a low COVID-19 risk neighborhood) in Hong Kong during the 
pandemic. The survey used real-time GPS tracking, mobile air pollutant 
and noise sensors, an activity-travel diary, and a questionnaire to collect 
individual-level data, which include participants’ daily GPS trajectories, 
real-time PM2.5 and noise exposures, housing conditions (e.g., house 
type, homeownership), and socio-demographic attributes (e.g., gender, 
educational level, age, income). Besides, we also collected a COVID-19 
dataset, a Normalized Difference Vegetation Index (NDVI) layer, and a 
land-use dataset with four different types of greenspace (i.e., woodland, 
shrubland, open space, and recreational land and grassland) to evaluate 
COVID-19 risk and different types of greenspace environments in the 
city. Then, residence-based and mobility-based approaches were applied 
to measure participants’ COVID-19 risk and different types of green
space exposures both in their residential areas and along their daily 
mobility trajectories. We used separate regression models to examine 
the combined associations between individuals’ COVID-19 risk with 
multiple environmental exposures (i.e., PM2.5, noise, and different types 
of greenspace exposures) and housing conditions. Lastly, we identified 
people’s disadvantages in COVID-19 risk through the perspective of the 
NEAP and examined the associations between people’s disadvantages in 
COVID-19 risk with their socio-demographic attributes and housing 
conditions based on logistic models. The below sections describe the 
analytical methods in detail. 

2.1. Study area and data collection 

The study area of this work is Hong Kong, which consists of three 
major areas (i.e., the New Territories, Kowloon, and Hong Kong Island). 
The city has experienced five waves of COVID-19 outbreaks from 
January 2020 to March 2022. Note that the areas in Kowloon and Hong 
Kong Island have more serious COVID-19 transmission than the areas in 
New Territories. Besides, the high-risk areas for each outbreak in local 
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communities are spatially similar (Huang et al., 2020, 2021a). The Hong 
Kong Government persistently applied a “zero-COVID” strategy from 
January 2020 to March 2022. Specifically, the mitigation measures 
include border control, social distancing, and closure of clubs, bars, and 
public facilities (e.g., schools) (Huang, Kwan, & Kim, 2021). All these 
measures have succeeded in preventing large-scale COVID-19 outbreaks 
in local communities until the Omicron-variant outbreak in January 
2022. 

We conducted a survey in Sham Shui Po (SSP) and Tin Shui Wai 
(TSW) in the study area from April 2021 to September 2021. We selected 
these two neighborhoods to conduct the survey because they are two 
typical neighborhoods in Hong Kong in the early stage of the pandemic. 
Specifically, SSP is an old urban area (developed in the 1920s) located in 
the center of the city (i.e., Kowloon), while TSW is a new town (devel
oped in the 1980s) and located in the suburban area of Hong Kong (i.e., 
the New Territories). Besides, SSP has a higher level of COVID-19 
transmission risk than TSW due to its intense spatial interactions with 
other areas (Huang & Kwan, 2022b). A detailed introduction of the two 
neighborhoods can be found elsewhere (Kan et al., 2022; Huang & 
Kwan, 2022b). 

We recruited 221 participants from the two neighborhoods through a 
stratified sampling approach. The survey includes the following stages: 
(1) the participants registered for the survey through online social 
media, posters, or mass mail (2) eligible participants (i.e., aged from 18 
to 64 years old and can read and write Chinese) were invited to attend a 
face-to-face briefing section. In the briefing section, we first collected 
participants’ socio-demographic attributes (e.g., gender, age, educa
tional level, income, and so on) and housing conditions (e.g., house type, 
homeownership, and the number of family members) through a ques
tionnaire. Then, each participant was asked to carry a portable air 
pollutant sensor (logged at 1-s intervals) and a portable noise sensor 
(logged at 30-s intervals) and complete an activity-travel diary over two 
continuous survey days (i.e., one weekday and one weekend day). 
Participants were required to write down the time, locations, and travel 
modes of their daily activities in the activity-travel diaries. Meanwhile, 
each participant was also required to carry a GPS-tracking smartphone 
for one week (which includes the two survey days). Hence, the portable 
sensors, the smartphone, and the activity-travel diary were used 
together to collect participants’ real-time GPS trajectory data and the 
spatiotemporal data of their real-time exposures to PM2.5 and noise. 
Note that there are many tall buildings in Hong Kong, which may lead to 
the smartphones’ poor reception of satellite signals used in GPS posi
tioning (Huang & Kwan, 2022b). Therefore, GPS-tracking smartphones 
may provide inaccurate GPS data for the participants’ daily mobility 
trajectories. Thus, we used the activity-travel diary to evaluate the 
GPS-tracking data and made necessary corrections to ensure that the 
GPS data are accurate. Specifically, the participants’ GPS data were 
cleared based on two steps (see Table S1): (1) outliers were first 
removed; (2) the locations of points were then calibrated and validated 
according to the activity-travel diaries. The Survey and Behavioural 

Research Ethics Committee (SBRE) of the Chinese University of Hong 
Kong reviewed and approved the study protocol and survey instruments. 
In addition, we also obtained informed consent from all participants 
before the survey. 

2.2. COVID-19 and greenspace dataset 

We obtained a COVID-19 dataset from the Hong Kong Government’s 
open-data website (http://data.gov.hk) and used it to present the spatial 
distribution of COVID-19 risk in the city. The dataset includes historical 
activity locations and venues (i.e., the past 14 days) of all the local 
confirmed cases (Fig. 1a) from July 1, 2020 to May 31, 2021 in Hong 
Kong (i.e., the third and fourth waves). Using the COVID-19 dataset, the 
spatial distribution of COVID-19 risk was represented by density sur
faces derived based on a kernel density estimation (KDE) function, 
which estimates a density surface from the locations of a set of points 
using the kernel function and a predetermined search radius (i.e., spatial 
bandwidth). The spatial resolution is 100 m × 100 m and the search 
radius is 1 km in the KDE. We selected 1 km as the search radius because 
it represents a distance that can be reached easily by the participants by 
walking during the pandemic (Huang & Kwan, 2022a). We used the 
method to present the spatial distribution of COVID-19 risk based on the 
main mode of COVID-19 transmission: a high density of visits by 
confirmed cases means a high level of COVID-19 risk due to a higher risk 
of face-to-face contact with infected persons. In other words, this study 
uses a proxy that represents individual-level COVID-19 risk as the like
lihood of a person catching COVID-19 through face-to-face contact with 
dense infected individuals (Huang & Kwan, 2022a). 

In addition, we also collected two different types of data to represent 
different types of greenspace distribution in Hong Kong. We first ob
tained a Normalized Difference Vegetation Index (NDVI, Fig. 1b) layer 
with a spatial resolution of 6 m × 6 m, which has pixel values ranging 
from − 1 to 1 and higher values indicating a greater density of green
space. The NDVI layer was derived using SPOT-7 satellite images 
(2017). It should be noted that pixel values below 0 have been recoded 
as 0 since these values represent non-greenspace (e.g., roads and water 
bodies). Besides, a land-use dataset (Fig. 1c) was obtained from the Hong 
Kong Planning Department. The dataset includes the spatial distribu
tions of different types of green land (i.e., woodland, shrubland, and 
grassland) and open space and recreational land (i.e., parks, stadiums, 
playgrounds, and recreational facilities) in the city in 2020. Compared 
to the NDVI, greenspace in the land-use dataset is more associated with 
publicly accessible space (e.g., country parks and recreational space) for 
the residents. Dissimilar from the land-use dataset, the NDVI layer also 
contains private greenery (e.g., private gardens in buildings) and street 
greenery (e.g., trees along roads). 

Fig. 1. The spatial distribution of (a) Locations visited by confirmed COVID-19 cases, (b) the Normalized Difference Vegetation Index (NDVI), and (c) Land use data a 
land-use dataset obtained from the Hong Kong Planning Department. 
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2.3. Methods 

2.3.1. Measuring residence- and mobility-based COVID-19 risk and 
multiple environmental exposures 

Using the collected dataset, we first assessed participants’ COVID-19 
risk and different types of greenspace exposures (i.e., NDVI, open space 
and recreational land, grassland, shrubland, and woodland) using two 
different approaches (see Table S2): residence-based approach and 
mobility-based approach. The residence-based and mobility-based 
COVID-19 risk and NDVI exposures were assessed according to the 
mean value derived from a 100 m buffer around the participants’ home 
addresses and each GPS point. Specifically, we first used the average 
value of COVID-19 risk and the NDVI within a 100 m buffer around each 
GPS point to represent participants’ exposure to COVID-19 risk and the 
NDVI at each GPS location. After that, the mean values of participants’ 
COVID-19 risk and NDVI exposures in all GPS locations were calculated 
to assess the mobility-based COVID-19 risk and NDVI exposures. 
Meanwhile, the residence-based and mobility-based open space and 
recreational land, grassland, shrubland, and woodland exposures were 
measured based on the ratio of the area of each type of greenspace inside 
the participants’ home address and each GPS point. We selected 100 m 
as the buffer size for this purpose because it represents an area that the 
participant can easily reach in their daily life (see Mueller et al., 2020; 
Roberts & Helbich, 2021). 

Besides, we also assessed participants’ PM2.5 and noise exposures 
using data obtained through the portable air pollutant and noise sensors 
they carried during the survey. The portable sensors can simultaneously 
measure and record participants’ PM2.5 and noise exposures along their 
daily mobility trajectories at high spatiotemporal resolution (i.e., every 
second for PM2.5 and every 30th second for noise level). Note that the 
PM2.5 concentrations reported by the air pollutant sensors were adjusted 
to increase their accuracy based on a machine-learning calibration 
model developed earlier. A more elaborate description of the calibration 
model is provided in Huang et al. (2022). 

We also used a professional-grade CEM SC-05 Sound Level Calibrator 
to calibrate the portable noise sensors before the survey. The calibrated 
noise sensors meet IEC61672 Type 2 Sound Level Meter standards. 
Specifically, the calibrated noise sensors can measure the range of par
ticipants’ real-time ambient noise from 30 to 130 dBA with an accuracy 
of <1.5 dBA error. Then, the equivalent A-weighted sound pressure 
levels were further used to evaluate participants’ real-time ambient 
sound levels during the daytime (08:00 a.m.–08:00 p.m.). The A- 
weighted equivalent sound pressure level was widely used in previous 
studies to measure individuals’ noise exposures (Ma, Rao, et al., 2020; 
Tao et al., 2021). 

We applied the paired sample t-test to examine whether there is a 
significant difference between residence- and mobility-based COVID-19 
risk and different types of greenspace exposures in SSP and TSW. 
Meanwhile, we used the Spearman correlation analysis to examine the 
bivariate associations between participants’ residence- and mobility- 
based COVID-19 risk and multiple environmental exposures. 

2.3.2. Examining the associations between participants’ COVID-19 risk 
with their multiple environmental exposures and housing conditions 

We applied separate multiple linear regression models to examine 
the associations between participants’ COVID-19 risk and their multiple 
environmental exposures (i.e., different types of greenspace, PM2.5, and 
noise exposures) and housing conditions (i.e., house type, homeowner
ship, number of family members), both in their residential areas and 
along their daily mobility trajectories. Specifically, we first focused on 
SSP participants in Models 1–6, where residence-based COVID-19 risk 
was examined by Models 1–3 and mobility-based COVID-19 risk was 
assessed by Models 4–6. Then, we focused on TSW participants in 
Models 7–12, which include residence-based models (Models 7–9) and 
mobility-based models (Models 10–12). In Models 1, 4, 7, and 10, we 
examined the associations between individuals’ residence- and mobility- 

based COVID-19 risk and multiple environmental exposures. In Models 
2, 5, 8, and 11, we examined the associations between individuals’ 
residence- and mobility-based COVID-19 risk and their housing condi
tions. Finally, we included all variables in the full models (3, 6, 9, and 
12). All models were controlled for participants’ socio-demographic 
features (e.g., gender, age, income, and so on). Note that the results of 
the variance inflation factor (VIF) indicated no significant collinearity 
among the independent variables (i.e., all VIFs <8). 

2.3.3. Examining the associations between people’s disadvantage in 
COVID-19 risk with socio-demographic features and housing conditions 

We defined people’s disadvantages in COVID-19 risk through the 
perspective of the neighborhood effect averaging problem (NEAP) with 
the following conditions (i.e., DCOVID in Equation (1)), which have been 
applied in previous studies (Kim and Kwan, 2021b, 2021c; Ma, Li, et al., 
2020): (1) an individual’s residence-based COVID-19 risk level is rela
tively high; (2) the person’s mobility-based COVID-19 risk is higher than 
his/her residence-based COVID-19 risk. 

Di
COVID =

{
1, if Z

(
REi

COVID

)
≥ 0.5 and MEi

COVID > REi
COVID

0, otherwise
(1)  

where Di
COVID denotes if individual i is disadvantaged (=1; otherwise =

0) in COVID-19 risk. Next, we used two logistic regression models to 
examine the associations between people’s disadvantage in COVID-19 
risk and their socio-demographic features and housing conditions in 
SSP (i.e., Model 13) and TSW (i.e., Model 14). The dependent variables 
for Models 13 and 14 are individuals’ disadvantages in COVID-19 risk (i. 
e., DCOVID) in SSP and TSW. The independent variables include partici
pants’ socio-demographic features and housing conditions. In Models 13 
and 14, all VIFs were less than 5, indicating no significant collinearity 
among the independent variables. 

3. Results 

3.1. Results of measuring residence-based and mobility-based COVID-19 
risk and multiple environmental exposures 

After data cleaning, we excluded 5 participants with missing data in 
their activity-travel diaries (i.e., less than 6 activity records) and 
portable real-time sensor records (i.e., missing records of GPS points as 
well as air pollutant and noise levels). We finally have valid data from 
216 participants (108 in SSP, and 108 in TSW). Table 1 presents the 
participants’ socio-demographic and housing conditions in the two 
neighborhoods. Among the participants, the distribution of gender, age 
groups, household income, education status, employment status and 
marital status are comparable between the two neighborhoods. There 
are more female participants (56% in SSP and 53% in TSW) than male 
participants (44% in SSP and 47% in TSW). Most participants are 25–44 
years old (47% in SSP and 46% in TSW), have high education degrees (i. 
e., higher diploma or above, 64% in SSP and 65% in TSW), have full- 
time employment (67% in SSP and 60% in TSW), and are married 
(40% in SSP and 36% in TSW). Most SSP participants (45%) reported 
that their monthly household income is less than HK$20,000, while 29% 
of TSW participants reported that their monthly household income is 
less than HK$ 20,000. In terms of housing conditions, more than half of 
the participants live in rented housing (63% in SSP and 56% in TSW). 
Meanwhile, most of the participants live in public housing (45% in SSP 
and 85% in TSW). It should be noted that 28% of SSP participants live in 
tong lau and subdivided units, and no TSW participants live in tong lau 
and subdivided units. The detailed profiles of the two neighborhoods 
and samples are available elsewhere (please see Kan et al., 2022; Huang 
& Kwan, 2022b). 

We first measured participants’ residence- and mobility-based 
COVID-19 risk and multiple environmental exposures (i.e., different 
types of greenspace, PM2.5, and noise). Table 2 presents the descriptive 
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statistics. As expected, the results indicate that participants in SSP were 
exposed to a higher level of COVID-19 risk than participants in TSW both 
in residence- and mobility-based measurements. Meanwhile, we also 
found that using the NDVI and the land-use dataset to assess partici
pants’ greenspace exposures can generate different results: participants 
in SSP have lower levels of NDVI exposure than participants in TSW both 
in residence- and mobility-based measurements, while participants in 
SSP and TSW have similar levels of different types of greenspace expo
sures (i.e., open space and recreational land, grassland, shrubland, and 
woodland). The difference seems reasonable because TSW is a new town 
built in the 1980s with more private and street greenery than SSP, which 
would be simplified as other types of land use (e.g., transport or building 
land) in the land-use dataset. Therefore, using the land-use dataset to 
assess people’s greenspace in TSW would underestimate their green
space exposure. 

In addition, we also found that the pairwise differences between 

residence- and mobility-based exposure to COVID-19 risk and different 
types of greenspace are significant, except that the pairwise differences 
between residence- and mobility-based exposure to NDVI in TSW are 
insignificant (i.e., p-value >0.05). These results are consistent with 
previous studies, which indicated that using residence- and mobility- 
based approaches to assess individuals’ exposure to environmental ex
posures (e.g., PM2.5, COVID-19 risk, ozone, and traffic congestion) 
would generate different results (Ma, Li, et al., 2020; Kim & Kwan, 2019; 
Kim & Kwan, 2021b,c; Huang and Kwan, 2022). 

3.2. Bivariate analysis 

Fig. 2 shows the Spearman correlations among the residence- and 
mobility-based COVID-19 risk and multiple environmental exposures in 
SSP (Fig. 2a and b) and TSW (Fig. 2c and d). We found that COVID-19 
risk is significantly and negatively correlated with NDVI (r = − 0.50 to 
− 0.81, p < 0.05) in SPP and TSW for both residence- and mobility-based 
measurements. Meanwhile, in SSP, residence-based COVID-19 risk is 
significantly and negatively correlated with residence-based shrubland 
(r = − 0.19, p < 0.05), and mobility-based COVID-19 risk is significantly 
and negatively correlated with mobility-based open space and recrea
tional land (r = − 0.21, p < 0.05), grassland (r = − 0.45, p < 0.05), 
shrubland (r = − 0.20, p < 0.05), and woodland (r = − 0.22, p < 0.05). In 
TSW, residence-based COVID-19 risk has a significant negative corre
lation with open space and recreational land (r = − 0.27, p < 0.05), 
grassland (r = − 0.48, p < 0.05), and woodland (r = − 0.34, p < 0.05), 
and mobility-based COVID-19 risk has a significant negative correlation 
with shrubland (r = − 0.28, p < 0.05). 

Besides, correlations between PM2.5 and noise with COVID-19 risk 
and different types of greenspace are insignificant (i.e., p-value >0.05) 
in SSP, while PM2.5 has a significant negative correlation (r = − 0.22, p 
< 0.05) with COVID-19 risk in TSW. Meanwhile, the exposure of TSW 
participants to PM2.5 has a significant negative correlation with grass
land (r = − 0.20, p < 0.05), shrubland (r = − 0.34, p < 0.05), and 
woodland (r = − 0.20, p < 0.05) exposures. Noise (r = 0.21, p < 0.05) is 
significantly positively correlated with open space and recreational land 
exposure in TSW. 

3.3. The associations between participants’ exposure to COVID-19 risk 
with multiple environmental exposures and housing conditions 

We examined the associations between individual COVID-19 risk and 
multiple environmental exposures (i.e., different types of greenspace, 
PM2.5, and noise exposures) and housing conditions (i.e., housing type, 
number of family members, and home ownership) using separate mul
tiple linear regression models. Table 3 presents the results of Models 
1–6, which focus on SSP participants. The results indicated that NDVI 
had significant negative associations (Coef. = -0.52, SE. = 0.14, Model 
6) with COVID-19 risk for both residence- and mobility-based models (i. 

Table 1 
Sociodemographic characteristics of Sham Shui Po (SSP) and Tin Shui Wai 
(TSW) participants.    

SSP (n =
108) 

TSW (n =
108) 

N (%) N (%) 

Gender Male 47 (44%) 51(47%) 
Female 61 (56%) 57 (53%) 

Age group 18–24 years 18 (17%) 24 (22%) 
25–44 years 51 (47%) 50 (46%) 
45–65 years 39 (36%) 34 (32%) 

Education status With a high education 
degree 

69 (64%) 70 (65%) 

without a high 
education degree 

39 (36%) 38 (35%) 

Monthly household income 
level (HKD) 

Less than 20,000 49 (45%) 31 (29%) 
20,000–39,999 34 (32%) 47 (43%) 
40,000 or over 25 (23%) 30 (28%) 

Employment status Housewife 10 (9%) 13 (12%) 
Employed (full-time 72 (67%) 65 (60%) 
Employed (part-time) 16 (15%) 16 (15%) 
Student 10 (9%) 14 (13%) 

Marital status Married 43 (40%) 39 (36%) 
Single, widowed, or 
divorced 

65 (60%) 69 (64%) 

Homeownership Rented 68 (63%) 60 (56%) 
Owned 40 (37%) 48 (44%) 

House type Public housing 49 (45%) 92 (85%) 
Private housing 29 (27%) 16 (15%) 
Tang lau and subdivided 
units 

30 (28%) 0 (0%) 

Number of family members Mean (SD) 2.6 (1.35) 3.5 (1.08)  

Table 2 
COVID-19 risk and multiple environmental exposure measurements among surveyed participants in Sham Shui Po (SSP) and Tin Shui Wai (TSW).   

SSP TSW 

Residential-based Mobility-based p-value Residential-based Mobility-based p-value 

M (SD) M (SD) M (SD) M (SD) 

COVID-19 Risk 4713.41 (1736.49) 4166.45 (1460.09) <0.001*** 969.31 (332.11) 1155.07 (483.45) <0.001*** 
NDVI 0.19 (0.07) 0.21 (0.07) 0.004** 0.24 (0.04) 0.25 (0.04) 0.201 
Open space and recreational land 0.05 (0.08) 0.07 (0.08) 0.003** 0.04 (0.09) 0.07 (0.07) <0.001*** 
Grassland 0.01 (0.02) 0.01 (0.03) <0.001*** 0.01 (0.01) 0.01 (0.02) <0.001*** 
Shrubland 0.00 (0.00) 0.01 (0.02) 0.006** 0.00 (0.00) 0.00 (0.01) <0.001*** 
Woodland 0.00 (0.00) 0.02 (0.04) <0.001*** 0.00 (0.00) 0.01 (0.02) <0.001*** 
PM2.5 (ug/m3) – 12.39 (5.53) – – 12.74 (5.72) – 
Noise (dBA) – 64.86 (6.53) – – 62.80 (6.53) – 

** Represents statistically significant at the p < 0.01 level. 
*** Represents statistically significant at the p < 0.001 level. 
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e., Models 1, 3, 4, and 6). Residence-based exposure to open space and 
recreational land was significantly and positively associated (Coef. =
0.19, SE. = 0.08, Model 3) with COVID-19 risk. PM2.5 and noise were not 
significantly associated with COVID-19 risk in any of the models. In 

Models 2 and 5, living in public housing had a significant positive as
sociation (Coef. = 0.53, SE. = 0.23, Model 5) with COVID-19 risk. In the 
full Models 3 and 6, the significant association between living in public 
housing with COVID-19 risk was rendered nonsignificant. Meanwhile, 

Fig. 2. Correlation matrices of residence- and mobility-based COVID-19 risk and multiple environmental exposures based on Spearman correlation coefficients: (a)– 
(b) residence- and mobility-based measurements in Sham Shui Po (SSP); (c)–(d) residence- and mobility-based measurements in Tin Shui Wai (TSW). OSRL refers to 
open space and recreational land. 

Table 3 
Results of the regression models on the association between SSP participants’ COVID-19 risk with their multiple environmental exposures and housing conditions.   

Residence-based Mobility-based 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Coef. (SE.) Coef. (SE.) Coef. (SE.) Coef. (SE.) Coef. (SE.) Coef. (SE.) 

Environmental exposures 

NDVI − 0.81*** (0.08)  − 0.59*** (0.11) − 0.73*** (0.12)  − 0.52 *** (0.14) 
Open space and recreational land 0.20* (0.08)  0.19* (0.08) 0.12 (0.09)  0.08 (0.09) 
Grassland 0.02 (0.11)  0.07 (0.10) − 0.21 (0.16)  − 0.15 (0.15) 
Shrubland − 0.01 (0.11)  0.03 (0.11) 0.06 (0.17)  − 0.05 (0.16) 
Woodland 0.06 (0.15)  0.04 (0.15) 0.21 (0.21)  0.17 (0.20) 
PM2.5 –  – 0.05 (0.08)  − 0.01 (0.08) 
Noise –  – − 0.03 (0.08)  − 0.07 (0.07) 

Housing conditions 

Public house  0.75*** (0.21) 0.39 (0.26)  0.53* (0.23) 0.14 (0.27) 
Tong lau or subdivided units  0.91*** (0.22) 0.57 ** (0.20)  0.81*** (0.23) 0.69 ** (0.20) 
Number of family members  − 0.05 (0.08) 0.01 (0.08)  − 0.09 (0.08) − 0.04 (0.07) 
Rented  − 0.09 (0.21) − 0.09 (0.20)  − 0.11 (0.22) − 0.13 (0.20) 

Intercept − 0.23 (0.36) 0.26 (0.41) 0.13 (0.38) − 0.29 (0.37) − 0.30 (0.44) − 0.16 (0.38) 

Adjusted R2 0.523 0.464 0.578 0.484 0.399 0.559 
AIC 244.83 256.62 235.99 254.97 268.94 233.2 

Notes: *** denotes p < 0.001. ** denotes p < 0.01. * denotes p < 0.05. Models were controlled for age, gender, educational level, marital status, working place, 
monthly household income level, employment status, and monthly household rent/mortgage payment. 
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living in tong lau or subdivided units had a significant positive associa
tion (Coef. = 0.69, SE. = 0.20, Model 6) with COVID-19 risk for both 
residence- and mobility-based models (i.e., Models 2, 3, 5, and 6). 

Table 4 presents the results of Models 7–12, which focus on TSW 
participants. The results also indicated that NDVI had significant nega
tive associations (Coef. = -0.52, SE. = 0.14, Model 12) with COVID-19 
risk for both residence- and mobility-based models (i.e., Models 7, 9, 
10, and 12). Besides, we found that noise had a significant positive as
sociation (Coef. = 0.16, SE. = 0.10) with COVID-19 risk in Model 10. 
After simultaneously considering individuals’ multiple environmental 
exposures and housing conditions in Model 12, noise was still signifi
cantly and positively associated (Coef. = 0.17, SE. = 0.10) with COVID- 
19 risk. PM2.5 and housing conditions were not significantly associated 
with COVID-19 risk in any of the models. 

3.4. The associations between people’s disadvantage in COVID-19 risk 
with socio-demographic features and housing conditions 

We examined how people’s disadvantage in COVID-19 risk is related 
to their socio-demographic attributes and housing conditions using lo
gistic models. According to the criteria mentioned in Section 2.3.3, we 
found that 77 participants (41 SSP and 36 in TSW) have a relatively high 
residence-based COVID-19 risk. Among these participants, 34 partici
pants (18 in SSP and 16 in TSW) were disadvantaged in COVID-19 risk. 

Table 5 presents the results of Models 13 and 14. The results indi
cated that working in Kowloon was significantly and positively associ
ated with the disadvantage in COVID-19 risk of SSP participants (OR =
7.54, 95% CI= (1.70–23.53)) and TSW participants (OR = 8.42, 95% 
CI= (1.77–27.89)). In TSW, working in Hong Kong Island was also 
significantly and positively associated with people’s disadvantage in 
COVID-19 risk (OR = 9.41, 95%= (1.93–39.05)). Besides, in SSP, living 
in public housing was significantly and positively associated with peo
ple’s disadvantage in COVID-19 risk (OR = 6.72, 95% CI =

(1.56–12.91)). 

4. Discussion 

4.1. Main findings and comparisons with previous studies 

This study seeks to examine the combined associations between in
dividuals’ COVID-19 risk with multiple environmental exposures and 
housing conditions using individual-level survey data. Besides, the study 

also examines which social groups are disadvantaged in COVID-19 risk 
through the perspective of the neighborhood effect averaging problem 
(NEAP). Using individual-level survey data collected from Sham Shui Po 
(SSP) and Tin Shui Wai (TSW) in Hong Kong, our regression models 
revealed significant associations between individuals’ COVID-19 risk 
with multiple environmental exposures and housing conditions. 

First, our findings suggest that a high level of exposure to NDVI has a 
significant negative association with people’s COVID-19 risk in their 
residential areas and along their daily mobility trajectories. In line with 
our results, recent studies also reported a significant negative 

Table 4 
Results of the regression models on the association between TSW participants’ COVID-19 risk with their multiple environmental exposures and housing conditions.   

Residence-based Mobility-based 

Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

Coef. (SE.) Coef. (SE.) Coef. (SE.) Coef. (SE.) Coef. (SE.) Coef. (SE.) 

Environmental exposures 

NDVI − 0.40** (0.12)  − 0.42** (0.13) − 0.49*** (0.14)  − 0.52*** (0.14) 
Open space and recreational land 0.04 (0.11)  0.07 (0.12) 0.05 (0.11)  0.03 (0.11) 
Grassland − 0.09 (0.11)  − 0.08 (0.11) − 0.09 (0.12)  − 0.08 (0.12) 
Shrubland –  – 0.09 (0.12)  0.14 (0.13) 
Woodland − 0.11 (0.11)  − 0.11 (0.11) 0.01 (0.15)  0.02 (0.15) 
PM2.5 –  – − 0.09 (0.10)  − 0.10 (0.10) 
Noise –  – 0.16* (0.10)  0.17* (0.10) 

Housing conditions 

Public house  0.38 (0.31) 0.01 (0.29)  0.09 (0.31) − 0.12 (0.29) 
Number of family members  0.14 (0.11) 0.08 (0.10)  − 0.03 (0.11) − 0.13 (0.11) 
Rented  0.12 (0.26) 0.31 (0.25)  0.01 (0.26) 0.03 (0.24) 

Intercept − 0.62 (0.48) − 1.27* (0.60) − 0.70 (0.58) − 0.24 (0.48) − 0.83 (0.61) − 0.22 (0.57) 

Adjusted R2 0.180 0.090 0.173 0.225 0.074 0.212 
AIC 242.39 328.3 307.44 300.3 332 304.27 

Notes: *** denotes p < 0.001. ** denotes p < 0.01. * denotes p < 0.05. Models were controlled for age, gender, educational level, marital status, working place, 
monthly household income level, employment status, and monthly household rent/mortgage payment. 

Table 5 
Results of the logistic regression models on the associations between the in
dividuals’ odds of being disadvantaged during the COVID-19 pandemic with 
their disadvantaged in multiple environmental exposures and housing 
conditions.   

SSP TSW 

Model 13 Model 14 

OR 95% CI OR 95% CI 

Housing conditions 

Public house 6.72 * 1.56–12.91 1.23 0.27–5.68 
Tong lau or subdivided units 1.40 0.15–7.89 – – 
Number of family members 0.80 0.40–1.60 0.84 0.50–1.42 
Rented 1.10 0.18–6.55 0.29 0.08–1.11 

Socio-demographic features 

Female 0.81 0.21–3.13 0.58 0.17–2.04 
Age group 1 (18–24) 0.35 0.04–3.37 0.27 0.07–0.62 
Age group 2 (25–44) 1.04 0.23–4.80 0.34 0.07–1.63 
High education 0.86 0.14–5.19 1.65 0.36–7.52 
Married 1.04 0.23–4.80 0.31 0.08–1.29 
Income 1 (<20,000 HKD) 0.90 0.09–8.69 1.82 0.55–4.50 
Income (20,000–40,000 HKD) 0.60 0.19–3.84 0.98 0.28–3.42 
Rent/Loan (1–4000 HKD) 2.19 0.54–8.85 2.52 0.67–9.39 
Rent/Loan (4000–10,000 HKD) 1.14 0.10–4.72 0.80 0.16–4.05 
Employment (full-time) 0.61 0.13–2.91 1.22 0.29–5.09 
Student 1.01 0.36–6.29 2.06 0.24–7.64 
Household wife 3.77 0.68–5.72 0.59 0.06–3.32 
Working place 1 (Kowloon) 7.54** 1.70–23.53 8.42* 1.77–27.89 
Working place 2 (Hong Kong 

Island) 
1.07 0.12–9.85 9.41* 1.93–39.05 

Nagelkerke R2 0.354 0.301 
AIC 121.13 125.92 

Notes: *** denotes p < 0.001. ** denotes p < 0.01. * denotes p < 0.05. 
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association between greenspace with COVID-19 incidence and mortality 
in the U.S. (Klompmaker et al., 2021; Russette et al., 2021), China (Peng 
et al., 2022), South Korea (Lee et al., 2022), and England (Johnson et al., 
2021). Existing evidence was mainly obtained based on spatially 
aggregated datasets that captured the effects of people’s residential 
neighborhood environment on health outcomes. In this study, we go 
beyond previous studies that typically rely on a residence-based 
approach and adopt a mobility-based approach to exposure assess
ment. Moreover, to the best of our knowledge, this is the first study to 
examine the association between individuals’ greenspace exposure with 
COVID-19 risk through an individual-level GPS-based real-time sensing 
dataset. Therefore, our findings provide strong evidence of the benefits 
of greenspace in the reduction of individual COVID-19 risk in people’s 
residential areas and along their daily trajectories. 

In contrast to NDVI, our results also suggested that a high level of 
exposure to open space and recreational land in a high-risk neighbor
hood (i.e., SSP) would significantly increase people’s COVID-19 risk in 
their residential neighborhoods. Note that previous studies have found 
mixed effects of open space and recreational land on COVID-19 risk: Pan 
et al. (2021) reported that highly connected open spaces and parks were 
associated with a high risk of COVID-19 transmission in London, while 
Liu (2021) suggested that increased open space was associated with 
reduced COVID-19 transmission risk in King County, Washington. One 
possible explanation for the difference include that Hong Kong and 
London are well-known high-density cities and have built environments 
with diversity, compactivity, and connectivity (Zhong et al., 2016; Sulis 
et al., 2018; Kwok et al., 2021), whereas King County has a built envi
ronment characterized by dispersion and lower densities (Liu et al., 
2021). Therefore, the open space and recreational land in Hong Kong 
would affect people’s face-to-face contact rates and thus increase 
COVID-19 transmission risk in high-risk and dense neighborhoods. Our 
findings highlight the need for future studies to control different types of 
greenspace in both residence-based and mobility-based approaches and 
to avoid incorrectly estimating the effect of a single type of greenspace 
exposure using the residence-based approach with a single data source. 

In addition to different types of greenspace, we also examined the 
associations between COVID-19 risk with PM2.5 and noise exposures. We 
did not observe any significant associations between COVID-19 risk and 
PM2.5 both in SSP and TSW. However, this result is inconsistent with 
findings from previous studies, which suggested a high level of PM2.5 
exposure was associated with high COVID-19 transmission risk (Curtis, 
2021; Meo et al., 2021; Marquès & Domingo, 2022). The differences 
may be attributed to how COVID-19 transmission risk was measured: 
our study uses a proxy that represents individual-level COVID-19 risk as 
the likelihood of a person catching COVID-19 through face-to-face 
contact with dense infected individuals, while previous studies used 
spatially aggregated COVID-19 incidence or mortality rate as the risk at 
the population level. Besides, we did observe a significant association 
between COVID-19 risk and noise exposure for TSW participants along 
their daily mobility trajectories. Our findings supplement previous 
research that has observed a significant association between COVID-19 
incidence and noise exposure in the Province of Madrid, Spain (Díaz 
et al., 2021). In this study, we made a novel contribution to the dis
cussion about the effects of noise exposure on COVID-19 risk as the first 
to consider individuals’ exposure to noise along their daily mobility 
trajectories. 

Our results also reported significant positive associations between 
public housing with COVID-19 risk in SSP. Meanwhile, our results 
further revealed that living in tong lau or subdivided units in SSP has a 
significant positive association with people’s COVID-19 risk both in the 
residential neighborhood and along their daily mobility trajectories. 
These findings are consistent with previous research that has reported a 
high COVID-19 transmission risk in old buildings or public housing in 
Hong Kong (Wang et al., 2022), the U.S. (Ahmad et al., 2020), India (Das 
et al., 2021), and Canada (Pirrie & Agarwal, 2021). We further observed 
that these people were exposed to high COVID-19 transmission risk 

along their daily mobility trajectories. It should be noted that we did not 
observe significant associations between public housing with COVID-19 
risk in TSW. The differences in SSP and TSW imply the spatial non
stationarity in the associations between housing conditions with 
COVID-19 risk: the effects of housing conditions on COVID-19 risk vary 
over space (Huang, Kwan, & Kan, 2021; Kwan, 2021). 

In terms of people’s disadvantaged in COVID-19 risk through the 
perspective of the neighborhood effect averaging problem (NEAP), we 
found that people working in high-risk areas (e.g., Kowloon and Hong 
Kong Island) have the highest odds of being disadvantaged in COVID-19 
risk. This result provides empirical evidence to strongly support the 
conclusions from previous studies (Huang and Kwan, 2022a, 2022b), 
which revealed an important mechanism of the NEAP in individual 
COVID-19 risk: people are disadvantaged if they live in low-risk 
neighborhoods but have to work in high-risk areas (e.g., living in TSW 
and working in Kowloon or Hong Kong Island) or live in high-risk 
neighborhoods but cannot reduce their COVID-19 risk through daily 
mobility (e.g., living in SSP and working in Kowloon). Further, we also 
found that living in public housing has higher odds of being disadvan
taged in COVID-19 risk than living in private housing in SSP. Our 
findings imply that people with workplaces in high-risk areas and poor 
housing conditions may be systematically disadvantaged in COVID-19 
risk due to their limited options to decide which trips to make or to 
forego. 

4.2. Significance and implications 

Our study has three main strengths. First, to our knowledge, the 
study is significant because it is the first study to quantitatively examine 
the combined associations between individuals’ COVID-19 risk with 
multiple environmental exposures and housing conditions both with a 
residence-based approach and a mobility-based approach using 
individual-level survey data. Second, the study used portable sensors 
(noise and air pollutant sensors and GPS-tracking smartphones) and 
activity-travel diary to simultaneously collect individuals’ real-time lo
cations and multiple environmental exposures data at a very fine scale, 
which enables us to expand the traditional residence-based approach to 
also include a mobility-based approach in geography and health 
research. Lastly, the use of residence- and mobility-based approaches 
allows us to identify the disadvantaged groups in COVID-19 risk through 
the perspective of the NEAP. In this way, the study is also one of the first 
studies that empirically investigates the NEAP in the evaluation of 
people’s disadvantages in COVID-19 risk. 

Further, the study is significant because it has several significant 
implications for public health based on our findings during the COVID- 
19 pandemic. First, our results provide empirical evidence to suggest the 
positive effects of greenspace exposure (e.g., NDVI) on the reduction of 
COVID-19 risk based on individual-level GPS data. Therefore, the study 
recommends policymakers to keep the country parks open and 
encourage people to visit them during the pandemic. In addition, we 
also found that people’s COVID-19 transmission risk might be increased 
via face-to-face contact with others if they frequently visit open spaces 
and recreational land (e.g., community parks) in dense and high-risk 
neighborhoods (e.g., Sham Shui Po) in Hong Kong. Hence, policy
makers can apply control measures (e.g., vaccination or testing pass
ports) to reduce the transmission risk of COVID-19 by restricting 
people’s access to open space and recreational land in dense and high- 
risk neighborhoods. 

Second, our findings reveal that people living in a high-risk neigh
borhood (e.g., Sham Shui Po) and having poor housing conditions were 
exposed to a higher level of COVID-19 transmission risk in their daily life 
compared to those living in a low-risk neighborhood (e.g., Tin Shui 
Wai). Therefore, our findings imply that policymakers should also 
consider spatial nonstationary (e.g., the varying association between 
COVID-19 risk and housing conditions over space) and spatially targeted 
measures when designing mitigation measures for the pandemic. For 
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instance, they could put more resources (e.g., vaccinations and testing 
centers) for people with poor housing conditions in high-risk neigh
borhoods to reduce their COVID-19 risk. 

Lastly, we also found that people with workplaces in high-risk areas 
and poor housing conditions may be systematically disadvantaged in the 
COVID-19 pandemic due to their limited ability to change their daily 
mobility (e.g., cannot work from home) through the perspective of 
neighborhood effect averaging problem (NEAP). In this light, our find
ings strongly suggest that policymakers should take the NEAP into ac
count to identify vulnerable groups when designing supporting 
measures for the pandemic. 

4.3. Limitations 

Our study also has a few limitations. First, one of the assumptions 
under the proxy of individuals’ COVID-19 risk in this study is that the 
disparities in people’s COVID-19 risk mainly arise from the differences 
in people’s behavior, which could influence individuals’ contact rates 
with COVID-19-infected persons. People’s physiological differences (e. 
g., immune system) were not considered in the COVID-19 risk mea
surement. Besides, our methods cannot precisely capture what people or 
objects the participants contact with in their daily life. 

Second, the COVID-19 dataset we used might not capture the whole 
picture of high-risk areas in the entire city across different periods (e.g., 
the fifth wave from December 2021 to April 2022). However, the results 
of individuals’ COVID-19 risk assessment are unlikely to be significantly 
affected because the results are influenced more by how different peo
ple’s daily mobility is captured than by the small errors in estimating the 
COVID-19 risk environment. 

Lastly, the small sample used in the study might limit the general
izability of our findings, although a strict strategy has been applied to 
select representative neighborhoods and recruit participants according 
to the census profiles of the general populations in the two neighbor
hoods during the pandemic. Meanwhile, the study did not consider 
neighborhood-level confounders such as neighborhood social-economic 
status since the variation in individuals’ COVID-19 risk between the two 
neighborhoods is insignificant (i.e., the intraclass correlation coefficient 
[ICC] < 0.05). Besides, the survey was conducted in a short-term period 
(i.e., from April to September 2021), which may not be able to capture 
the seasonal variations in human activities and their dynamic in
teractions with multiple environments. Future studies should try to 
obtain larger samples. 

5. Conclusion 

We found that high exposure to greenspace (i.e., NDVI) was associ
ated with low COVID-19 risk in Hong Kong. Meanwhile, high exposure 
to open space and recreational land and living in public housing, tong lau 
or subdivided units would increase individuals’ COVID-19 risk in high- 
risk neighborhoods, while high noise exposure would also increase in
dividuals’ COVID-19 risk in low-risk neighborhoods. Then, from the 
perspective of the neighborhood effect averaging problem (NEAP), we 
also found that people with workplaces in high-risk areas and poor 
housing conditions were disadvantaged in COVID-19 risk. Our findings 
have important implications for the health authorities to design effective 
mitigation measures during the COVID-19 pandemic. 
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Czwojdzińska, M., Terpińska, M., Kuźniarski, A., Płaczkowska, S., & Piwowar, A. (2021). 
Exposure to PM2. 5 and PM10 and COVID-19 infection rates and mortality: A one-year 
observational study in Poland. Biomedical Journal, 44(6), S25–S36. https://doi.org/ 
10.1016/j.bj.2021.11.006 

Das, A., Ghosh, S., Das, K., Basu, T., Dutta, I., & Das, M. (2021). Living environment 
matters: Unravelling the spatial clustering of COVID-19 hotspots in Kolkata 
megacity, India. Sustainable Cities and Society, 65, Article 102577. https://doi.org/ 
10.1016/j.scs.2020.102577 
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Mueller, W., Steinle, S., Pärkkä, J., Parmes, E., Liedes, H., Kuijpers, E., Pronk, A., 
Sarigiannis, D., Karakitsios, S., Chapizanis, D., & Maggos, T. (2020). Urban 
greenspace and the indoor environment: Pathways to health via indoor particulate 
matter, noise, and road noise annoyance. Environmental Research, 180, Article 
108850. https://doi.org/10.1016/j.envres.2019.108850 

Ogen, Y. (2020). Assessing nitrogen dioxide (NO2) levels as a contributing factor to 
coronavirus (COVID-19) fatality. Science of the Total Environment, 726, Article 
138605. https://doi.org/10.1016/j.scitotenv.2020.138605 

Pan, J., & Bardhan, R. (2022). Evaluating the risk of accessing green spaces in COVID-19 
pandemic: A model for public urban green spaces (pugs) in London. Urban Forestry 
and Urban Greening, 74, Article 127648. https://doi.org/10.1016/j. 
ufug.2022.127648 

Pan, J., Bardhan, R., & Jin, Y. (2021). Spatial distributive effects of public green space 
and COVID-19 infection in London. Urban Forestry and Urban Greening, 62, Article 
127182. https://doi.org/10.1016/j.ufug.2021.127182 

Peng, W., Dong, Y., Tian, M., Yuan, J., Kan, H., Jia, X., & Wang, W. (2022). City-level 
greenness exposure is associated with COVID-19 incidence in China. Environmental 
Research, 209, Article 112871. https://doi.org/10.1016/j.envres.2022.112871 

Pirrie, M., & Agarwal, G. (2021). Older adults living in social housing in Canada: The 
next COVID-19 hotspot? Canadian Journal of Public Health, 112(1), 4–7. https://doi. 
org/10.17269/s41997-020-00462-8 

Plümper, T., & Neumayer, E. (2020). The pandemic predominantly hits poor 
neighbourhoods? SARS-CoV-2 infections and COVID-19 fatalities in German 
districts. The European Journal of Public Health, 30(6), 1176–1180. https://doi.org/ 
10.1093/eurpub/ckaa168 

Recio, A., Linares, C., Banegas, J. R., & Díaz, J. (2016). Road traffic noise effects on 
cardiovascular, respiratory, and metabolic health: An integrative model of biological 
mechanisms. Environmental Research, 146, 359–370. https://doi.org/10.1016/j. 
envres.2015.12.036 

Recio, A., Linares, C., Banegas, J. R., & Díaz, J. (2017). Impact of road traffic noise on 
cause-specific mortality in Madrid (Spain). Science of the Total Environment, 590, 
171–173. https://doi.org/10.1016/j.scitotenv.2017.02.193 

Roberts, H., & Helbich, M. (2021). Multiple environmental exposures along daily 
mobility paths and depressive symptoms: A smartphone-based tracking study. 
Environment International, 156, Article 106635. https://doi.org/10.1016/j. 
envint.2021.106635 

Russette, H., Graham, J., Holden, Z., Semmens, E. O., Williams, E., & Landguth, E. L. 
(2021). Greenspace exposure and COVID-19 mortality in the United States: 
January–july 2020. Environmental Research, 198, Article 111195. https://doi.org/ 
10.1016/j.envres.2021.111195 

Shao, L., Cao, Y., Jones, T., Santosh, M., Silva, L. F., Ge, S., da Boit, K., Feng, X., 
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