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Background and Objective: The global population has been heavily impacted by the COVID-19

pandemic of coronavirus. Infections are spreading quickly around the world, and new

spikes (Delta, Delta Plus, and Omicron) are still being made. The real-time reverse

transcription-polymerase chain reaction (RT-PCR) is the method most often used to find

viral RNA in a nasopharyngeal swab. However, these diagnostic approaches require human

involvement and consume more time per prediction. Moreover, the existing conventional

test mainly suffers from false negatives, so there is a chance for the virus to spread quickly.

Therefore, a rapid and early diagnosis of COVID-19 patients is needed to overcome these

problems.

Methods: Existing approaches based on deep learning for COVID detection are suffering

from unbalanced datasets, poor performance, and gradient vanishing problems. A cus-

tomized skip connection-based network with a feature union approach has been developed

in this work to overcome some of the issues mentioned above. Gradient information from

chest X-ray (CXR) images to subsequent layers is bypassed through skip connections. In the

script’s title, ‘‘SCovNet” refers to a skip-connection-based feature union network for detect-

ing COVID-19 in a short notation. The performance of the proposed model was tested with

two publicly available CXR image databases, including balanced and unbalanced datasets.

Results: A modified skip connection-based CNN model was suggested for a small unbal-

anced dataset (Kaggle) and achieved remarkable performance. In addition, the proposed
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model was also tested with a large GitHub database of CXR images and obtained an overall

best accuracy of 98.67% with an impressive low false-negative rate of 0.0074.

Conclusions: The results of the experiments show that the proposed method works better

than current methods at finding early signs of COVID-19. As an additional point of interest,

we must mention the innovative hierarchical classification strategy provided for this work,

which considered both balanced and unbalanced datasets to get the best COVID-19 identi-

fication rate.
� 2023 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
1. Introduction

Coronavirus disease (COVID-19), a new Coronavirus, was first

reported as a group of deadly respiratory illnesses in Wuhan,

China, in December 2019. The COVID-19 virus appears to have

reached pandemic proportions and is spreading at an alarm-

ingly rapid pace [1]. A patient infected with COVID-19 may

have various symptoms and signs, including fever, dry cough,

headache, and sore throat, which can lead to pneumonia,

multi-organ failure, respiratory problems, and even death

[2]. The majority of tests performed in India and throughout

the world are reverse transcription-polymerase chain reac-

tion (RT-PCR), which uses nasal and throat swabs to indicate

the existence of the virus [3,4]. Although the RT-PCR test

can detect the virus in asymptomatic people, the test results

may produce false negatives [5]. In private medical laborato-

ries, the RT-PCR test might take up to 8 h for a valid diagnosis

and is quite expensive in some countries [6]. Due to the signif-

icant increase in confirmed and suspected new COVID-19

cases, computer-based diagnosis is required. Currently, artifi-

cial intelligence (AI) may play a significant role in COVID-19

imaging identification. COVID-19 mainly affects the respira-

tory system such that a Chest X-ray (CXR) scan may play an

important role in the early detection and diagnosis of infec-

tion [7]. Radiographic image, Computed tomography (CT) scan

analysis with deep learning techniques may provide an accu-

rate solution with low cost and fewer time [8,9].

A chest radiography image-based screening system pro-

vides various advantages for COVID-19 detection over con-

ventional procedures such as rapid diagnostic tests (RDT)

and RT-PCR. It may be quick, assess numerous cases at once,

and have a higher level of availability with accurate detection

of lung diseases [10,11]. Most significantly, such a system can

be extremely valuable in hospitals with limited testing equip-

ment and resources. Furthermore, because radiography is so

important in today’s healthcare systems, radiology imaging

equipment is available in every hospital, making

radiography-based approaches easier and more accessible.

At present, Deep learning (DL) approaches have been utilised

to significantly improve image processing performance in the

medical imaging area [12,13]. DL has been proven its effective-

ness in brain tumour classification [14], MRI image analysis

[15], skin cancer, lung infection [16] and retinal images [17].

Therefore, initial days of the epidemic DL based methods

were extensively applied to radiographic images to detect

COVID-19. X-ray is a commonly available tool that saves time
in detecting various problems in the patient that are not vis-

ible to the naked eye. Moreover, the results of a chest X-ray

(CXR) can also be used to diagnose an infection within the

body. In addition, the integration of AI approaches to CXR

results will have a significant impact on radiologists by pro-

viding them with technology for more accurate diagnosis

and prognosis.

As of now, professionals from all across the world are

working hard to fight against the disease. Many researchers

and academicians published different articles describing

methods for detecting COVID-19 using CXR images [18–22].

Using image processing on chest X-ray images, Hasoon

et al. suggested a method for classifying and early detecting

COVID-19. The authors used several pre-processing tech-

niques, such as noise reduction, contrast enhancement, and

morphological operation, to improve the quality of the images

they used. Furthermore, suitable features were detected, seg-

mented, and extracted using Region of Interest (ROI) based

techniques. Finally, six different machine learning classifiers

were used to evaluate the COVID-19 detection classification

ability, and they reported an average accuracy of 98.66%. In

paper [11], the authors utilised the concept of normalised

images to extract enriched features that were then fed into

image categorisation systems based on deep learning. Trans-

fer learning-based Convolutional Neural Network (CNN)

methods such as Visual Geometry Group (VGG) - 19, Mobile-

NetV2, Inception, Xception, and Inception residual network

(ResNet) V2 were applied to classify COVID-19 from pneumo-

nia and healthy CXR image datasets. All the classification

algorithms tested different bases, and MobileNetV2 reported

the overall highest accuracy of 96.70%.

Narin et al. [23] introduced three different pre-trained deep

learning algorithms (ResNet50, InceptionV3 and Inception-

ResNetV20) to detect COVID-19 from CXR images. With five-

fold cross-validation, classifications were performed on four

classes (COVID-19, normal, pneumonia (bacterial), and pneu-

monia (viral)). Finally, the authors reported an overall greatest

accuracy of 97% with ResNet50. Authors in [24] presented a

tailored deep learning model (COVID-Net) for diagnosing

COVID-19 from CXR images. This study also used a large pri-

vate, publicly available open-source benchmark database

(COVIDx) with X-ray images. Further, the proposed model

was evaluated with three classes and found to be accurate

in 83.50% cases. Ahmed et al. [25] utilized chest radiograph

images (CRI) for the detection of new coronavirus disease

2019 (COVID-19). The suggested system is based on Squeeze-
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Net for extracting deep features and SVM for classification. CT

scan pictures were used by Abdulkareem et al. [26] to diagnose

COVID-19 infection in its earliest stages. In order to create a

diagnostic system for COVID-19, researchers used a convolu-

tional neural network (CNN), stacked autoencoder, and deep

neural network. Prior to using the three CT image approaches

to distinguish between normal and COVID-19 instances, the

classification process in this system is modified. The adopted

deep learning model was trained on a huge and complex CT

imaging dataset, and the results showed an accuracy of 88.30%.

The application of artificial intelligence techniques on X-ray

imaging was presented by the authors in the paper [29]. Many

deep learning techniques were utilised in this study and

reported an accuracy of 87.02% for three different classes

(COVID, Normal and Pneumonia). Most recent studies used

CXR images to diagnose COVID-19, highlighting the importance

of CXR image processing as an acceptable tool for clinicians and

radiographers. Arman et al.[30]collected frontal CXR images

from multiple sources and created a large database for experi-

mentation. Moreover, a new COVID-CXNet is developed utilis-

ing transfer learning and the CheXNet methodology. This

sophisticated model can detect and localise new coronavirus

pneumonia based on important features with an accuracy of

87.88%. In order to diagnose COVID-19, Nagiet al. [31] examined

the effectiveness of a large chest X-ray image dataset using a

variety of deep learning models and compared their results.

The size of the dataset that was employed is approximately

4.25 times larger than the largest COVID-19 chest X-ray image

dataset that was utilised in the earlier investigations. During

the course of the research, the authors created a customized

CNN model and evaluated its performance in comparison to

that of other current deep learning models. In addition to this,

researchers assessed the overall performance of each of the

deep learning models using the more extensive COVID-19 chest

X-ray image dataset.

The research in [32] has resulted in the development of a

cloud-based Smartphone application that can determine the

early prognosis of COVID-19-infected patients and also forecast

the mortality risk of patients based on their symptoms. In addi-

tion, the authors used a heuristic approach to identify the most

significant symptoms that are required for generating such pre-

dictions. Symptoms such as difficulty breathing, fever, dry cough,

and headache are utilized for COVID-19 prediction. Furthermore,

factors such as age, sex, fever, diabetes, and hypertension are

consideredwhen assessingmortality risk. Table 1 shows an over-

view of the recent studies on the detection of COVID-19.

The inputs, number of classes, techniques, and experi-

mental findings from various earlier works are also discussed

in Table 1. Several of the studies used CXR imaging to find

COVID-19, while the rest used CT scan analysis. The majority

of recent works used deep learning-based methods, including

ResNet, VGG, GoogleNet, etc. (Pre-trained networks), and some

customized CNN-based models. Researchers could have gath-

ered the data for the studies in different places and with dif-

ferent kinds of imaging equipment. Pre-processing, data

splitting (training, validation, and test), and tuning of hyper-

parameters are some of the experimental settings that can

affect the performance of these methods.

Early detection of SARS-CoV-2 is critical to preventing the

virus from spreading to others. Along with this work, authors
developed a deep learning approach for automatically detect-

ing COVID-19 using CXR images of patients who are infected

with COVID-19 and those who are not infected. Moreover,

deep learning has been shown clinically beneficial for seg-

menting COVID-19 lung lesions [33]. The use of chest imaging

modalities as main, secondary, or supplemental diagnoses is

growing and will continue to evolve; moreover, the incorpora-

tion of AI algorithms can also aid in the prediction of clinical

improvement to combat COVID-19.

Saeed et al. [34] presented a mathematical framework for

COVID-19 diagnosis that makes use of a novel agile fuzzy-

like arrangement: the complex fuzzy hypersoft set, which is

a hybrid of the complex fuzzy set and the Hypersoft. A study

connecting COVID-19 symptoms to medications lends cre-

dence to the authors’ proposed approach. In addition,

researchers provide a generalised mapping that can be used

by a professional to extract the patient’s health record and

estimate the time it will take for the infection to clear up.

Currently, a significant number of experiments are being

conducted on COVID-19 detection and diagnosis using deep

learning techniques, with the goal of determining which

model is the most effective. Mohammed et al. [35] provided

an integrated technique for selecting the best deep learning

model for COVID-19 diagnosis, which was based on an inno-

vative crow swarm optimization algorithm.

This article proposes a reliable skip- a connection-based

feature union deep neural network with the combination of

CXR image processing tools for the early detection of

COVID-19 symptoms, building on previous work to overcome

certain limitations related to data environment issues (bal-

anced and unbalanced) and performance. The concept for

creating a customised SCovNet network is derived from resid-

ual networks (ResNet). ResNet was created to design deep net-

works without the ”vanishing gradient” problem and for cost

savings. A ResNet is a feed-forward network containing resid-

ual connections. The operations in these residual blocks vary

depending on the residual network design. Residual connec-

tions and Inception blocks are commonly employed in cur-

rent architectures like Inception-v4, ResNeXt, etc. The

proposed model provides better detection based on computa-

tional cost, speed, and performance. We employed different

layered skip-connection-based CNN networks with appropri-

ate feature union strategy and customized learning for effi-

cient classification results. In point of fact, we have used

our proposed algorithm for the processing of simple CXR

images in order to detect COVID-19. The analysis using the

CXR model requires less data, fewer computer resources,

and less time to compute when compared to the analysis

using the CT scan. The major contributions of the proposed

work are summarised as follows:

� A novel deep skip-connection-based CNN (SCovNet) with

feature union strategy is proposed to efficiently utilise

training parameters on CXR image processing for identify-

ing COVID-19 and customized the architecture of the pro-

posed residual CNN models in various aspects to improve

the performance of the classification algorithm.

� The proposed system utilises pre-processing steps

that include the normalisation, segmentation and

augmentation of several transformation processes for
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extracting more appropriate information from the existing

database.

� Compared to traditional deep learning techniques, the pro-

posed skip-connection-based feature union learning

scheme enhances the network training process in perfor-

mance and convergence time.

� A reliable training strategy was employed in conjunction

with several permutations, including cross-validation

and data augmentation techniques to boost the method’s

universal efficacy and prevent over-fitting.

� The balanced and unbalanced datasets are utilised to

assess the network’s generalization capabilities. A slightly

modified structure of SCovNet is proposed for small unbal-

anced datasets to improve performance.

� Different evaluation matrices and compare the proposed

system with various state-of-the-art schemes to demon-

strate its efficiency in this work. The McNemar Chi-

Square method was conducted to test the experiment’s

statistical significance and reliability. The part of the code

is available in the author’s GitHub repository [36].

The rest of the paper is organized as follows. Section 2 pre-

sents the detailed proposed methodology, including the infor-

mation about datasets, proposed CNN architecture, fine-

tuning and statistical analysis. Experimental works, results

and performance parameters are explained in Section 3. Sec-

tion 4 provides discussions on the results, including compar-

isons with similar works. Finally, Section 5 provides the

overall conclusion of the work.

2. Proposed methodology

The proposed work mainly concentrated on AI-based tools

for radiographic image processing in the detection of the

SARS-CoV-2 virus. Early accurate detection of the SARS-

CoV-2 virus and monitoring are integrated into the proposed

methodology. Most of the work mainly focused on false-

negative cases (symptomatic non-COVID) to restrict the fur-

ther spreading of the disease. The proposed work for early

detection of COVID-19 is carried out in three major stages:

dataset preparation, CXR image processing, and the deep

learning model depicted in Fig. 1 for the detection of the

SARS-CoV-2 virus. Brief descriptions of the database, pre-

processing methods for radiographic images, data splitting,

and cross-validation are provided to elucidate these pro-

cesses further.

2.1. Database preparation

CXR images are the basic tools for detecting any respiratory

issues in humans. X-ray images are generally less sensitive

than other scans for preliminarily targeting COVID-19. Two

different databases are used in this work to validate the pro-

posed model. The first one is a large GitHub CXR database [37]

which was created by Joseph Paul Cohen to identify COVID-19

https://github.com/ieee8023/covid-chestxray-dataset. The

database contains 845 COVID-19 CXR images of individuals,

and the University of Montreal’s Ethics Committee approved

this database. Metadata are supplied for each sample, provid-

https://github.com/ieee8023/covid-chestxray-dataset


356 b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 3 ( 2 0 2 3 ) 3 5 2– 3 6 8
ing the patient’s ID and, in most cases, the location and addi-

tional remarks containing a reference to the doctor who

uploaded the CXR image. Some of the prepared sample CXR

images are shown in Fig. 2. The other COVID-19 CXR images

are collected from the Kaggle repository https://www.kag-

gle.com/alifrahman/covid19-chest-xray-image-dataset. It

contains 69 COVID-19 and 25 non-COVID (normal healthy)

X-ray images. From two databases, 914 COVID-19 and 433 nor-

mal CXR images are prepared for further experimentation.

2.2. Radiographic image pre-processing

In machine learning, the input dataset must be gone through

the pre-processing stage before the experimentation. Image

pre-processing reduces the complexity of data and improves

the accuracy of the results. This approach helps to simplify

data in various phases to provide a clean dataset to the net-

work. In this work, data pre-processing is done in three

stages; Data augmentation is a technique for extracting more

information from an existing dataset. In this work, it gener-

ates perturbed duplicates of the existing images, such as

translation (± 10% in the x & y-axis), rotation (± 5�), reflection
(x & y with 50% probability) and shear (both horizontal & ver-

tical). The augmented data are processed to the image pre-

processing block for complexity reduction and maintain uni-

fied data fed to the network model.

Moreover, the X-ray images (6% top area) were cropped to

remove frequently found textual information in CXR images.

The pre-processed CXR images shown in Fig. 3 are then sent

into a segmentation block, which looks for abnormalities in

CXR. Generally, segmentation is fundamental for analyzing

and detecting COVID-19 from radiographic images. In seg-

mentation, edge information might be helpful to highlight

regions of interest (ROI). After being pre-processed, the CXR

pictures are then input into two convolutional layers respon-

sible for the extracting of low-resolution features. The high-

resolution features are then extracted by inserting these fea-

tures into three convolutional layers. In this work, regions of

interest (ROIs) were extracted from chest X-rays to get infor-

mation regarding edges specifically. In addition to early detec-

tion, we allow this block to detect condition severity through

further radiographic image analysis.

2.3. Skip-connection based deep learning model for the
detection

AI-related technology has demonstrated its great potential in

the healthcare and medical sectors, and it is changing the

way healthcare services are utilised in hospitals. At present,

deep learning plays a vital role in medical imaging systems.

It helps radiologists make more exact diagnoses by providing

a quantitative analysis of concerning lesions and a better

workflow [29].

In general deep learning techniques, we usually stack

more layers to handle a complex problem for improving accu-

racy performance. The idea behind introducing extra layers is

to extract complex features from the input data. Adding more

layers to the network increases the train/test error and com-

plexity and lowers performance. This issue of training deep-
layer networks was solved by introducing residual networks.

The residual CNN network, generally called ’ResNet’, is a

specific neural network introduced by Kaiming He et al. in

2015 [38]. The network includes residual blocks with skip con-

nection that bypasses several layers depending on the model.

Meanwhile, skip connection is a type of identity mapping in

which the previous layer’s input is immediately added to

the output of the next layer. This work presents a novel

skip-connection-based deep CNN network to efficiently uti-

lise training parameters on CXR image processing for identi-

fying COVID-19.

Fig. 4 shows deep CNNwith bypassed skip connection, and

some layers are skipped over-activation. Let x is the input of

the layer L-1 and g(x) be the output; the residual block output

can be summarised as:

y ¼ gðxÞ þ x ð1Þ
This method appears to have a minor flaw when the input

dimensions differ from the output’s, which can occur with

convolutional and pooling layers. The modified output with

dimensions as:

y ¼ gðx; WaÞ þWbx ð2Þ

whereWa denotes the CNN layer’s parameter and denotes the

convolution configuration that may be used to make the

input and output dimensions similar. The residual network

served as the source of inspiration for the basic concept

underlying the development of the customised SCovNet

network.

In order to create a SCovNet architectural layer, each layer

needs its own set of criteria. The model includes a convolu-

tion layer, batch normalisation layer, and activation layer, fol-

lowed by a pooling layer. The convolution layer is commonly

used in feature learning models. Following the convolution

layer, batch normalisation is used, and the activation layer

employs the ReLU activation function. The pooling layers

were used only at the start of feature learning or at the pre-

ceding convolution stage of the classification layer. The

detailed proposed architecture of skip-connection-based fea-

ture union deep CNN with customized layers network is

shown in Fig. 5.

In this work, the authors developed a comprehensive skip-

connection-based CNN model using a feature union strategy

to process features efficiently. The proposed study primarily

focused on integrating features from different skip-

connection-based networks into a single set of appropriate

features (feature union), which was then fed into the SCov-

Net. By adjusting the relevant classification parameters, the

proposed network’s customized section can produce signifi-

cant improvements. This section features layers including

the pooling layer, fully-connected layer, soft-max layer, and

dense output layer. The precise benefit of the technique of

feature union is the acceleration of feature processing and,

consequently, the efficient processing of data.

The dense layer is updated with a newclass-output layer for

classifying only two classes (COVID and Normal) with size

(1�1�2). Furthermore, the soft-max layer is updated with a

new soft-max layer of the same size (1�1�2). In addition, the

fully connected layer was also updated with a newf c layer with

https://www.kaggle.com/alifrahman/covid19-chest-xray-image-dataset
https://www.kaggle.com/alifrahman/covid19-chest-xray-image-dataset


Fig. 1 – Proposed methodology for detection of COVID patient.

Fig. 2 – (a) and (b) are the COVID-infected and Normal CXR Images.

Fig. 3 – CXR images after data augmentation.
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size (1�1�512). In this study, a slightly modified SCovNet archi-

tecture was applied to the Kaggle dataset. The Kaggle dataset is

small and unbalanced, resulting in incredibly limited training

data. Small datasets need a greater number of fully connected

layers than large ones [39]. In the fully connected layer, every

neuron from the previous layer is linked to every neuron in

the following layer, and each value helps to forecast how well

a value matches a specific class. To address the issue, a first

fully connected layer of size 1024 is added to the next fully con-

nected layer of size 512 for processing the Kaggle dataset. How-

ever, the additional fully connected layer is unnecessary for

analysing huge GitHub datasets.
2.4. Fine-tuning and selection of the hyper-parameters for
the proposed network

In this work, ten-fold cross-validation is conducted with the

GitHub database only, as it has a decent number of images

for proper training, validation, and testing of the model. The

entire dataset is split into 70% for training with validation

and the remaining 30% for testing the model. The detailed

portions of the training, cross-validation and testing dataset

are shown in Fig. 6.

The training and validation dataset is divided into ten

equal portions, and nine of them were utilized as training



Fig. 4 – Skip-connection structure.
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data in turn. One was utilized as test data for testing. The

average value accuracy (Acc) of the ten-portion test results is

calculated to estimate the model accuracy. It is used as a per-

formance indicator for the current 10-fold cross-validation

model. Therefore, the best way is to build multiple models

using different training and test sets and compute the mean

performance accuracy and standard deviation. The average

performance indicators of the 10-fold cross-validation are

listed in Table 2. Several folds, including Fold2, Fold3, Fold6,

and Fold10, met 100% performance criteria during testing. A

10-fold cross-validation technique yielded an average accu-

racy of 99.29%, a sensitivity of 99.08%, a specificity of

99.31%, and a precision of 99.57%.

In the current work, a customized skip-connection-based

feature union deep CNN model was designed to classify

COVID-19. Initially, three different layered improved modified

residual network models such as SCovNet-18, SCovNet-50

and SCovNet-101, were utilised and thereby, a customized

learning strategy was implemented for better classification.

Fine-tuning involves updating CNN layer architecture by

retraining it to learn new class labels (COVID/NON-COVID).

The training accuracy and validation approach used to fine-

tune the SCovNet-101 model is depicted in Fig. 7.

The proposed skip-connection-based deep CNN model is

optimised by choosing appropriate hyper-parameter values.

The learning rate, number of epochs, and batch size are the

most important factors for customising the CNN model. The

epoch is an essential training parameter; it specifies the num-

ber of times the learning algorithm has traversed the whole

training dataset. The best-suited hyper-parameters result in

enhanced classification performance. After conducting sev-

eral experiments, the Adaptive Moment Estimation (ADAM)

training method is adopted with a finalized learning rate of

0.0001, the number of epochs 30 and batch size 8 for achieving

the highest performance of the CNN model in detection. The

designed deep learning model (SCovNet) performed with a

considerable average time of 1159 seconds for training.

2.5. Details about Statistical approaches to validate the
proposed methods

In addition to the regular performance metrics such as accu-

racy (Acc), sensitivity (Sen), specificity (Spe), and positive pre-

dictivity (Ppr), different statistical approaches are also used in
this work. At first, the McNemar Chi-Square technique is used

to evaluate the performance of a given approach. The McNe-

mar test is a non-parametric statistical test for paired com-

parisons that may be used to assess the effectiveness of two

classification models. The overall concept was developed by

Quinn McNemar in 1947 [40] and is also termed the chi-

squared test. McNemar Chi-Square statistic test is performed

as follows [41]: In fact, numerous different statistical hypoth-

esis testing frameworks are utilized to compare the perfor-

mance of classification models. In brief, if the 95%

confidence intervals of the two models’ accuracies do not

overlap, we may reject the null hypothesis that their perfor-

mance is identical at a = 0.05. (5 % probability). This allows

us to conclude that one of the models is more accurate than

the other. The McNemar test mainly compares two models

by its generated confusion matrices from machine learning

classifiers. The detailed analysis is presented in the experi-

mental results section.

2.6. Possible Uncertainties of the proposed deep learning
model

The following are the four factors that are the most important

contributors to the level of uncertainty in a DNN‘s

predictions:

� The variability that occurs in real-world settings

� The errors that are built into measurement systems

� The errors that are present in the architecture specifica-

tion of the DNN

� The errors that are present in the training procedure of the

DNN and the errors that are brought on by the presence of

unknown data.

The data uncertainty can be reduced by extracting addi-

tional features from the input data (or) using deep architec-

ture to extract deep features from the input image data. The

proposed architecture is designed in a different way with

the help of skip connections to reduce the effect of uncertain-

ties. The authors are able to minimise the calibration error to

1.33% with 98.67% performance accuracy.

3. Experimental results

In this section, the experimental results of the proposed

methods for diagnosing COVID-19 from CXR images are

reported. The proposed model is tested and processed using

MATLAB 2021b software with deep learning toolboxes. The

supported MATLAB codes are executed with an Intel i5 pro-

cessor (10th gen.), 8 GB RAM, and NVIDIA RTX 2060 graphics

card as hardware. The CXR images were obtained from two

distinct sources such as GitHub and Kaggle, with specialised

doctors annotating the images. The CXR images were first

reduced to 224 � 224 pixels for compliance with the CNN

models. In this work, a random 70 % of the image dataset

was used for training purposes, while the remaining 30%

was used to evaluate the suggested model. The two data-

bases were utilized separately for experimental purposes.



Fig. 5 – Proposed customized skip-connection based feature union deep CNN architecture for COVID-19 detection.

Fig. 6 – Splitting of Git-Hub CXR database for training, validation, and testing.
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Table 3 gives the overview of the data split for the experi-

mentation. After successfully pre-processing the CXR

images, the images are applied to the proposed network.

The optimal hyper-parameters result in improved classifica-

tion efficiency of the proposed network. The appropriate set

of training parameters for the proposed SCovNet was deter-

mined through a series of experiments and are presented in

Table 4.
In the event of an unbalanced small dataset, a modified

version of the ResNet structure, that is, SCovNet, was used

for testing. Performance metrics such as accuracy, specificity

sensitivity, precision, F1-score and Matthews’s correlation

coefficient are calculated using classifier-generated confusion

matrix [42–46]. The accurately detected cases in the confusion

matrix’s diagonal region are used to calculate the effective-

ness of the deep learning classifier [44,45].



Table 2 – Performance indicators for 10-fold cross-
validation.

Parameter Avg.±SD

Accuracy(%) 99.292 ± 0.873
Sensitivity (%) 99.08 ± 1.315
Specificity(%) 99.31 ± 1.232
Precision(%) 99.57 ± 0.820

Fig. 7 – Training and validation curve for COVID-19

classification.

Table 3 – Data splitting for experimentation.

Database Class CXR Images
(Total)

Training &
Validation

Test

GitHub COVID 845 592 253
NORMAL 408 286 122

Kaggle COVID 68 41 10
NORMAL 25 15 10
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The confusion matrices generated on the Kaggle database

for three different layered modified CNN networks, such as

SCovNet (18-layered), SCovNet (50-layers) and SCovNet (101-

layers), are shown in Fig. 8. Each column in the confusion

matrix indicates the output class (actual class), while each

row represents the target class (predicted class) [45]. The

associated performance parameters are reported in Table 5.

The performance of the different layered SCovNet model

for COVID-19 classification shows considerable performance

over increasing the number of layers (fc1 and fc2) for the Kag-

gle (unbalanced) database. The suggested model produced a

remarkable performance with an accuracy of 100% for detect-

ing COVID-19 from CXR images. To test the generalisation

capability of the proposed model, a large GitHub database of

CXR images is also used for experimentation. The generated

confusion matrices for different layered SCovNet are shown

in Fig. 9. The associated classification performance parame-

ters for a large GitHub database are reported in Table 6.

The results show that the layered structure of the

SCovNet-101 network is capable of efficiently detecting

COVID-19 with a low false-negative rate of 0.00746 and an

average accuracy of 98.67%. The associated Receiver Operat-

ing Characteristic (ROC) and precision-recall curves for classi-

fication are shown in Fig. 10. Precision-recall curves are

appropriate for imbalanced datasets, whereas ROC curves

are suitable for balanced datasets. In the proposed work, the

authors used both balanced and unbalanced datasets. Hence

both ROC and precision-recall curves are shown in Fig. 10.
The area under the ROC curve is 0.989, which is approxi-

mately equal to 0.99. The AUC reflects the model skill. Larger

y-axis values on ROC indicate more true positives and fewer

false negatives. Precision is the number of true positives

divided by the total number of true positives, and it measures

a model’s ability to predict positive class.

The authors performed the McNemar Chi-Square test

between classifier models such as 18-layer (Model-1), 50-

layer (Model 2) and 101-layer (Model 3) to test the statistical

significance and reported in Table 7, and Table 8.

For case-I (Model 1 and Model 3) the McNemar Chi-Square

statistic computed as follows:

v2 ¼ ðB� CÞ2
ðBþ CÞ ð3Þ

From the above equation, v2 is calculated as 3.76. The sig-

nificance threshold level set to be a= 0.05 (5 % probability) and

also calculated the p-value of the obtained Chi-Squared distri-

bution is 0.05. The obtained p-value in case-1 is equal to the

standard significance level (p 60.05), such that we reject the

null hypothesis and conclude that Model-3 (Layer-101) per-

forms better than Mode-1 (Layer-18). For case-II (Model 2 and

Model 3) similarly calculated McNemar Chi-Square statistic

as v2 = 2.27 and computed the p-value of the obtained Chi-

Squared distribution is 0.13, which is greater than the stan-

dard significance level (p > 0.05) so that there is no evidence

to reject the null hypothesis. This means the performances

of the two models (Model 2 and Model 3) are equal. Lastly,

based on the McNemar statistical test, Model 3 (Layer-101)

provided in this work performs better than most of the exist-

ing models.

3.1. Validation of the specific portion significance of the
network architecture using ablation study

The authors used the ablation study to analyze the perfor-

mance of the proposed SCovNet. An ablation study can help

determine which parts of a network’s architecture are most

important for better performance classification. Residual

paths or skip connections are important in the image classifi-

cation for this network.

The authors incorporated five residual paths into the deep

learning architecture. The detailed ablation study perfor-

mance of the proposed network is shown in Table 9. The fol-

lowing important points were observed from the ablation

study:

1. It’s clear that the network doesn’t work well without

skipped connections.
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2. After adding the forward skip connection to bypass the

gradient information to the next layers, the performance

is slightly better.

3. Even if we include backward skip-connections without for-

ward skip-connections, performance does not significantly

change.
Table 4 – Various parameters for hyper

Hyperparameter

Model Name
Learning rate
Number of epochs
Batch size
Input size
Input labels

Translation (±
Augmentation used reflectio

and she
Loss function
Optimizer
Training time

Fig. 8 – Confusion matrices of SCovNet Classification: (a) 18-laye

respectively.
4. In order to get the best performance out of the network

architecture, it is determined that five skip connections

are required.

5. These skip connections are provided with the gradient

information to the further layers without losing gradient

information.
-tuning of the proposed SCovNet.

Assigned value

SCovNet
0.0001
30
8

224�224
2

10% in the x y-axis), rotation (± 5�)
n (x y with 50% probability)
ar (both horizontal vertical)

Cross Entropy
Adam

1159 Seconds Avg.

red; (b) 50-layered; (c) 101-layered for the Kaggle database,



Table 5 – Performance parameters (Kaggle database).

Parameter SCovNet

18-Layer 50-Layer 101-Layer

Accuracy (%) 97.30 100.0 100.0
Sensitivity (%) 96.30 100.0 100.0
Specificity (%) 100.0 100.0 100.0
Precision (%) 100.0 100.0 100.0
Negative Predicted Value (%) 90.91 100.0 100.0
False Positive Rate 0 0 0
False Negative Rate 0.0370 0 0
F1 Score (%) 98.11 100.0 100.0
MCC 0.9356 1.0 1.0
AUC 0.99 1.0 1.0

Fig. 9 – Confusion matrices of SCovNet Classification: (a) 18-layered; (b) 50-layered; (c) 101-layered for GitHub database

respectively.
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4. Comparision of proposed method
performance with earlier state-of-the-art
techniques

The proposed model’s performance is compared to that of

previous state-of-the-art methods in a more comprehensible

manner in Table 10. Abbas et al.[47] proposed a novel deep

CNN approach which is a combination of Decompose, Trans-

fer and Compose (DeTrac) for the detection of COVID-19 from
the Chest X-ray images. Experimentation is performed

between three different classes of COVID-19, normal and

SARS CXR images. The authors reported the highest accuracy

of 93.10 % and sensitivity of 87.09% with VGG19 in DeTrac.

Ismael et al. [48] presented different deep learning-based

techniques, including deep feature extraction, fine-tuning of

pre-trained convolutional neural networks (CNN), and end-

to-end training of a designed CNN model, which have been

utilised to identify COVID-19 and normal (healthy) chest X-
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ray images. Several pre-trained models were employed to

extract deep features, and machine learning classification

algorithms were applied to complete classification tasks.

From the experiments, authors reported an overall accuracy

of 95.79% and an F1-score of 95.92% with ResNet50 with

SVM classifier (end-to-end training).

Shankar et al. [49] suggested an intelligent COVID-19

detection model that combines a barnacle mating optimiza-

tion (BMO) method with a cascaded recurrent neural network

(CRNN) model (BMO-CRNN). In this work, the BMO method is

used to perform hyperparameter tuning on CRNN in order to

improve the classification algorithm’s performance. The

experiment yielded impressive findings, with 97.31% accuracy

and 97.01% average sensitivity, as reported by the authors.

Das et al. [51] proposed Deep Convolutional Neural Network-
Table 6 – Performance parameters (GitHub database).

Parameter SCovNet

18-Layer 50-Layer 101-Layer

Accuracy (%) 96.80 97.33 98.67
Sensitivity (%) 100 100 98.81
Specificity (%) 90.16 91.80 98.36
Precision (%) 95.47 96.20 99.21
Negative Predicted Value (%) 100 100 97.56
False Positive Rate 0.0984 0.0820 0.0164
False Negative Rate 0.0119 0.0105 0
F1 Score (%) 97.68 98.06 99.01
MCC 0.9278 0.9397 0.9697
AUC 0.981 0.985 0.990

Fig. 10 – A curves of: (a) Receiver operating characteristic (ROC) f

the proposed SCovNet deep learning model.

Table 7 – McNemar test for Model 1 Vs Model 3.

Model 3
p

Model 1 (Number of correctly predicted cases)
Model 1 (Number of correctly predicted cases)
based method for detecting COVID-19-positive patients from

chest X-ray images. To predict a class value, authors intro-

duced a new method called weighted average ensembling is

used to combine the models. COVID-19 and healthy were

classified with an overall accuracy of 91.62% and 0.917 Area

Under ROC curve (AUC) as per the researcher’s report. Bhat-

tacharya et al. [52] proposed a new way to use chest X-rays

to find COVID-19 and pneumonia. The proposed approach

can be split into three stages. In the first stage, CXR images

are segmented using a conditional adversarial network (C-

GAN). In the second stage, deep neural networks are trained

to extract discriminatory features. Several Machine Learning

approaches were utilised for classification in the third stage,

with the combination of VGG19 and Random Forest achieving

96.60% overall accuracy and 97.40% sensitivity.

Muhammad et al. [53] presented a self-augmentation

approach for data augmentation that uses reconstruction-

independent component analysis (RICA) to do the augmenta-

tion in the feature space rather than in the data space. A uni-

fied architecture including a CNN, a feature augmentation

technique, and a bidirectional LSTM is suggested (BiLSTM).

The authors conducted experiments on two classes, including

COVID-19 and healthy CXR images, and revealed that

ResNet50 with BiLSTM had the greatest overall accuracy of

93.77% and 87.71% precision. The Deep Neural Network

(DNN) was utilized by authors in [54] for the automated detec-

tion of COVID-19 from CXR images. In this technique, for the

purpose of extracting features from X-ray images that were

acquired from the chests of the patients, DenseNet was used.

After the features were extracted, they were used as input for

the Extreme Gradient Boosting (XGBoost) method, which was

used to complete the classification process. Experimentation
or the proposed SCovNet model; (b) Precision-Recall curve of

(Number of correctly
redicted cases)

Model 3 (Number of correctly
predicted cases)

360 3 (B)
10 (C) 2



Table 9 – Ablation Study of the proposed SCovNet on Git-Hub database

Table 8 – McNemar test for Model 2 Vs Model 3.

Model 3 (Number of
correctly predicted cases)

Model 3 (Number of
correctly predicted cases)

Model 2 (Number of correctly predicted cases) 362 3 (B)
Model 2 (Number of correctly predicted cases) 8 (C) 2
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was performed on three classes, including COVID-19, Pneu-

monia and Normal and reported an overall highest accuracy

of 89.33%. The authors [55] conducted a comparative investi-

gation of fine-tuned deep-learning architectures to enhance

the detection and classification of COVID-19 patients from

other pneumonia groups. Experiments were conducted on

three types of data, including COVID-19, normal, and Pneu-

monia, and the focus of this research was to differentiate

pneumonia categories from COVID-19. DenseNet121 obtained

the maximum accuracy of 97% and 98.66% F1-score, accord-

ing to the authors. Gouda et al. [57] proposed a deep learning

approach for classifying CXR images based on an ensemble

that uses several runs of a modified version of the Resnet-

50. The suggested network was tested on 930 images from

three classes, including COVID-19, healthy and Pneumonia.

The authors reported an overall average accuracy of 98.05%

and 0.998 AUC with ResNet50 (run-2).

The availability of annotated COVID-19 X-ray images is a

key difficulty, resulting in a few misclassifications and per-

haps some scattering in gradient-based localisations outside

the feature map. Our suggested skip-connection-based fea-

ture union deep CNN technique effectively worked with

the available COVID-19 CXR images. Furthermore, this

model may be more accurate and robust by including new

data. The suggested system is extremely adjustable, and

the skip-connection-based feature union deep CNN may

be fine-tuned using additional COVID-19 X-rays throughout

the learning phase. Moreover, we proposed a novel hierar-

chical classification technique for detecting COVID-19 with

a good accuracy rate for small unbalanced datasets, imply-

ing that the study might be beneficial for screening patients

with mild COVID-19 symptoms. This script uses an early

stopping strategy to assess model performance on a valida-
tion set and terminate training when performance deterio-

rates. As a result, performance measures have a slight

divergence of 0.5, which is negligible for the new testing

data.

Recently, certain state-of-the-art (SOTA) models provide

improved detection accuracy but they have one or more draw-

backs. SOTA deep learning networks can be identified by their

accuracy, speed, or other characteristics [59]. In most com-

puter vision applications, these measures are traded off. A

fast DNN is not accurate enough. Occasionally, we can design

a model with good performance metrics. It would still lack

latency and throughput for applications like picture catego-

rization and detection.

The utilisation of chest radiographs in the diagnostic pro-

cess provides professionals with important information.

Many studies have focused on the automated classification

of chest X-rays for this condition using artificial intelligence.

The exciting and promising results of deep learning models

in detecting COVID-19 from radiography images suggest that

deep learning plays a significant role in combating this pan-

demic. Overall, the outcomes of the proposed models in this

work are encouraging. However, some of the findings from

these studies include slight inaccuracies that need to be fixed

before they can be used in clinical practice. The study’s limi-

tations may be alleviated by doing a more in-depth analysis

with a more complete and high-quality image dataset. As

more data for training becomes available, the performance

can be enhanced even further. Despite the promising results,

SCovNet still requires clinical investigation and testing; with

increased accuracy and sensitivity for COVID-19 instances,

SCovNet can still be useful for radiologists and health profes-

sionals to obtain a deeper understanding of essential features

related to COVID-19 cases.



Table 10 – Performance of the proposed work with other similar studies.

S.No Study No. of CXR images ((Classes) Model Accuracy (%) F1-Score (% Sensitivity (%) Any other performance
parameter

1 Narin et al. [2021] [23] 204 (COVID-19 and Normal) ResNet50 96.10 83.50 91.81 96.6 (Specificity)
2 Ahmed et al. [2021] [25] 75 (COVID-19, Pneumonia and

Normal)
SqueezeNet with SVM 94.40 94.41 94.45 0.981 (AUC)

3 Abbas et al. [2021] [47] 196 (COVID-19, SARS and
Normal)

VGG19 93.10 - 87.09 85.18 (Specificity)

4 Ismael et al. [2021][48] 380 (COVID-19 and Normal) ResNet50 with SVM 95.79 95.92 94.0 0.998(AUC)
5 Shankar et al. [2021] [49] 247 (COVID-19 and Normal) BMO-CRNN 97.31 97.73 97.01 98.15 (Specificity)
6 Mohammed et al. [2021][50] 1200 (COVID-19, Pneumonia and

Normal)
VGG16 98.72 97.59 98.78 96.43 (Precision)

7 Das et al. [2021] [51] 1006 (COVID-19 and Normal) Ensemble Learning 91.62 91.71 95.09 0.917(AUC)
8 Bhattacharyya et al. [2022] [52] 930 (COVID-19 and Normal) VGG19 with RF 96.60 - 95.0 97.4 (Specificity)
9 Muhammad et al. [2022] [53] 625 (COVID-19 and Normal) ResNet50 + BiLSTM 93.77 93.45 99.80 87.71 (Precision)
10 Nasiri et al. [2022] [54] 1125 (COVID-19, Pneumonia and

Normal)
DarkCovidNet 89.70 91.20 95.20 92.50(Precision)

11 Aggarwal et al. [2022] [55] 959 (COVID-19, Pneumonia and
Normal)

DenseNet121 97.0 98.66 97.33 98.66(Specificity)

12 Ieracitano et al. [2022] [56] 120 (Portable CXR) (COVID-19
and Normal)

CovNNet with Fuzzy
edge detection

80.9 ± 6.2% 85.2 ± 4.5% 82.5 ± 11.9% 78.6 ± 6.9% (Specificity)

13 Gouda et al. [2022] [57] 930 (COVID-19, Pneumonia and
Normal)

ResNet50 (multiple runs) 98.05 98.65 98.39 0.998(AUC)

14 Chouat et al. [2022] [58] 1000 (COVID-19 and Normal) VGG19 94.0 94.50 94.50 91.50(Precision)
15 Proposed Method* 1253 (COVID-19 and Normal) SCovNet (18-layered) 96.80 97.68 100 0.981(AUC) 95.47

(Precision)
16 Proposed Method* 1253 (COVID-19 and Normal) SCovNet (50-layered) 97.33 98.06 100 0.985(AUC) 96.20

(Precision)
17 Proposed Method* 1253 (COVID-19 and Normal) SCovNet (101-layered) 98.67 99.01 98.81 0.991 (AUC) 0.00746(Avg.

FNR)
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5. Conclusions

The consistent increase in COVID-19 cases is straining the

resources of several countries. Therefore, it is crucial to record

each confirmed case during this health crisis. In most cases,

analysing lung issues required a chest X-ray (COVID-19, nor-

mal). In this research, multiple layered deep CNN models

were used to detect COVID-19 at an early stage with a satis-

factory degree of accuracy. The primary goal of this research

is to develop a deep learning-based technique with radio-

graphic image processing techniques to identify COVID-

positive cases with the help of CXR images. A skip-

connection-based feature union deep CNN architecture

extracts the in-depth features from the CXR images. The pro-

posed model utilises an effective learning mechanism with

fine-tuning layer parameters for COVID detection. Different

sizes of databases are utilised in this work to verify the gener-

alisation capability of the proposed network. The proposed

SCovNet detects COVID cases with 100% accuracy on a small

imbalanced Kaggle dataset, and the SCovNet model with a

101-layered structure achieved an accuracy of 98.70% for a

large GitHub database. In addition, the McNemar Chi-square

test was carried out as part of the research to analyse the effi-

cacy of the various methodologies considered. These findings

will assist medical professionals in selecting appropriate

models for the many different image analysis approaches,

which will be critical when time and resources are limited

in a pandemic scenario like the one we are currently

experiencing.

The experimental results show that the proposed tech-

nique works better compared to recent works in the litera-

ture. Since our work and that of others in the literature are

not always evaluated using the same dataset and the same

conditions, it would be unfair to compare the identification

rates obtained by the two directly. However, we may make

the observation that the best identification rate achieved here

(0.9921 precision) is the best nominal rate ever recorded for

the objective of COVID-19 identification in an unbalanced

environment with two classes. The best recognition rate for

COVID-19 was achieved by using a novel hierarchical classifi-

cation approach described in this work, which took into

account multiple types of image-processing approaches.

While it is not the goal of this work to establish a conclusive

diagnosis of COVID-19, the good identification rate achieved

for COVID-19 can be highly valuable in aiding the screening

of patients in the emergency medical support systems, which

have been badly impacted by the pandemic breakthrough.

This research can assist radiologists and healthcare pro-

fessionals in accurately diagnosing COVID cases. In the

course of our future work, one of our goals is to expand the

database so that we can implement more complex deep

Learning strategies with the appropriate level of depth into

the samples. In addition, by using a more comprehensive

database, researchers can do extensive cross-validation tests

on our suggested method, giving us a more complete view of

how our solution fits into the situation.
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