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Abstract
Background Missed fractures are the most common di-
agnostic errors in musculoskeletal imaging and can result
in treatment delays and preventable morbidity. Deep
learning, a subfield of artificial intelligence, can be used to
accurately detect fractures by training algorithms to emu-
late the judgments of expert clinicians. Deep learning
systems that detect fractures are often limited to specific
anatomic regions and require regulatory approval to be
used in practice. Once these hurdles are overcome, deep

learning systems have the potential to improve clinician
diagnostic accuracy and patient care.
Questions/purposes This study aimed to evaluate
whether a Food and Drug Administration–cleared deep
learning system that identifies fractures in adult musculo-
skeletal radiographs would improve diagnostic accuracy
for fracture detection across different types of clinicians.
Specifically, this study asked: (1) What are the trends in
musculoskeletal radiograph interpretation by different cli-
nician types in the publicly availableMedicare claims data?
(2) Does the deep learning system improve clinician ac-
curacy in diagnosing fractures on radiographs and, if so, is
there a greater benefit for clinicians with limited training in
musculoskeletal imaging?
Methods We used the publicly available Medicare Part B
Physician/Supplier Procedure Summary data provided by
the Centers forMedicare &Medicaid Services to determine
the trends in musculoskeletal radiograph interpretation by
clinician type. In addition, we conducted a multiple-reader,
multiple-case study to assess whether clinician accuracy in
diagnosing fractures on radiographs was superior when
aided by the deep learning system compared with when
unaided. Twenty-four clinicians (radiologists, orthopaedic
surgeons, physician assistants, primary care physicians,
and emergency medicine physicians) with a median
(range) of 16 years (2 to 37) of experience postresidency
each assessed 175 unique musculoskeletal radiographic
cases under aided and unaided conditions (4200 total case-
physician pairs per condition). These cases were comprised
of radiographs from 12 different anatomic regions (ankle,
clavicle, elbow, femur, forearm, hip, humerus, knee, pel-
vis, shoulder, tibia and fibula, and wrist) and were ran-
domly selected from 12 hospitals and healthcare centers.
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The gold standard for fracture diagnosis was the majority
opinion of three US board-certified orthopaedic surgeons
or radiologists who independently interpreted the case. The
clinicians’ diagnostic accuracy was determined by the area
under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve, sensitivity, and specificity.
Secondary analyses evaluated the fracture miss rate (1-
sensitivity) by clinicians with and without extensive
training in musculoskeletal imaging.
Results Medicare claims data revealed that physician as-
sistants showed the greatest increase in interpretation of
musculoskeletal radiographs within the analyzed time pe-
riod (2012 to 2018), although clinicians with extensive
training in imaging (radiologists and orthopaedic surgeons)
still interpreted the majority of the musculoskeletal radio-
graphs. Clinicians aided by the deep learning system had
higher accuracy diagnosing fractures in radiographs com-
pared with when unaided (unaided AUC: 0.90 [95% CI
0.89 to 0.92]; aided AUC: 0.94 [95% CI 0.93 to 0.95];
difference in least square mean per the Dorfman, Berbaum,
Metz model AUC: 0.04 [95% CI 0.01 to 0.07]; p < 0.01).
Clinician sensitivity increased when aided compared with
when unaided (aided: 90% [95%CI 88% to 92%]; unaided:
82% [95% CI 79% to 84%]), and specificity increased
when aided compared with when unaided (aided: 92%
[95% CI 91% to 93%]; unaided: 89% [95% CI 88% to
90%]). Clinicians with limited training in musculoskeletal
imaging missed a higher percentage of fractures when
unaided compared with radiologists (miss rate for clini-
cians with limited imaging training: 20% [95% CI 17% to
24%]; miss rate for radiologists: 14% [95% CI 9% to
19%]). However, when assisted by the deep learning sys-
tem, clinicians with limited training in musculoskeletal
imaging reduced their fracture miss rate, resulting in a
similar miss rate to radiologists (miss rate for clinicians
with limited imaging training: 9% [95% CI 7% to 12%];
miss rate for radiologists: 10% [95% CI 6% to 15%]).
Conclusion Clinicians were more accurate at diagnosing
fractures when aided by the deep learning system, partic-
ularly those clinicians with limited training in musculo-
skeletal image interpretation. Reducing the number of
missed fractures may allow for improved patient care and
increased patient mobility.
Level of Evidence Level III, diagnostic study.

Introduction

Missed fractures are the most common diagnostic errors
made by clinicians interpreting musculoskeletal radio-
graphs and cause treatment delays, unnecessary medical
costs, malpractice lawsuits, and preventable morbidity [20,
33]. Concurrent increases in musculoskeletal fractures and
radiography use rates over the past 20 years have resulted

in excessive workloads for clinicians interpreting radio-
graphs, which can cause fatigue and increase susceptibility
to interpretational errors [2, 3, 19, 20, 31, 33].
Radiographic interpretation has also increasingly been
performed by nonradiologists with limited training in
musculoskeletal imaging [3, 31, 37], who aremore prone to
diagnostic errors [32, 23]. Nonradiologists often perform
an initial radiograph interpretationwhen treating patients in
settings such as the emergency department or outpatient
clinics, and discrepancies were found between the initial
radiograph interpretations from nonradiologists and the
radiologists’ final read [13, 18]. Developing tools that can
reduce the gap in diagnostic accuracy between clinicians
with and without extensive training in interpreting radio-
graphs could improve patient outcomes and reducemedical
costs associated with missed fractures, particularly in the
Medicare-age population (age 65 and older) [4, 26, 28].
Fractures are the most common musculoskeletal condition
resulting in hospitalization amongMedicare enrollees [34].
Studies have shown that fractures in older patients can
result in increased mortality, reduced mobility, and greater
difficulties with living independently [10, 22, 30].

Deep learning, a subfield of artificial intelligence, can be
used to accurately detect fractures by training algorithms to
emulate the judgments of expert clinicians [6, 24, 29, 35].
Deep learning systems for fracture detection and localiza-
tion are often limited in scope to specific anatomic regions
and clinical settings. Studies on deep learning systems for
fracture detection have reported standalone performance
[7, 8, 24]; however, existing studies evaluating whether
deep learning systems improve the diagnostic accuracy of
clinicians [9, 29] have not accounted for the wide range of
experience and specialization across clinicians who in-
terpret radiographs. Additionally, these deep learning
systems have not been cleared by the United States Food
and Drug Administration (FDA) as safe and effective
medical devices, which is crucial for widespread use and
adoption in daily clinical practice [9, 25, 35, 40].

In this study, we investigated the trends of musculo-
skeletal radiograph interpretation by clinician type from the
publicly available Centers for Medicare & Medicaid
Services (CMS) database to understand the potential im-
pact of a deep learning system to assist different clinician
types. It is critical to assess whether FractureDetect
(Imagen Technologies Inc), a deep learning system for
fracture detection, benefits clinicians with extensive train-
ing in musculoskeletal imaging and those with limited
training in musculoskeletal imaging. Clinicians with lim-
ited training in musculoskeletal imaging are typically the
first to evaluate a patient after trauma and are increasingly
performing radiographic interpretation and imaging-
guided treatments [27, 31, 37]. Therefore, there could
be a significant positive impact on patients if the deep
learning system improves the abilities of clinicians with
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limited training in musculoskeletal imaging to diagnose
fractures.

The study addressed the following questions: (1) What
are the trends in musculoskeletal radiograph in-
terpretation by different clinician types in the publicly
available Medicare claims data? (2) Does the deep
learning system improve clinician accuracy in diagnosing
fractures on radiographs and, if so, is there a greater
benefit for clinicians with limited training in musculo-
skeletal imaging?

Materials and Methods

Volume of Musculoskeletal Radiographs for
Medicare Beneficiaries

We report the volume of musculoskeletal radiographs
taken in Medicare beneficiaries between 2012 and 2018 to
determine which clinician types interpreted musculoskel-
etal radiographs. We used the publicly available Medicare
Part B Physician/Supplier Procedure Summary (PSPS)
data provided by the CMS. The CMS data encompassed all
medical services to beneficiaries in the traditional fee-for-
service population and included the volume of claims bil-
led by clinician type for all Current Procedural
Terminology (CPT) codes. The CPT codes were filtered to
include onlymusculoskeletal radiographs corresponding to
the 12 anatomic regions (ankle, clavicle, elbow, femur,
forearm, hip, humerus, knee, pelvis, shoulder, tibia and
fibula, and wrist) indicated for use by the deep learning
system [15]. We evaluated the volume of radiograph in-
terpretation by clinician type in this study, which included
radiologists, orthopaedic surgeons, physician assistants,
primary care physicians, and emergency medicine physi-
cians. The primary care physicians included physicians
with specialties in family practice and internal medicine.
Radiograph use per 1000 beneficiaries was calculated for
each clinician type by taking the sum of radiograph claim
volume and dividing by the number of beneficiaries per
year [5]. Because PSPS data were tabulated based on
global plus professional component claims (excluding
technical component-only claims), use rates reflect the
volume of radiograph interpretation for each clinician type
[31]. We also examined care settings (such as office or
hospital) using the place of service codes in the 2018 PSPS
data to determine the setting in which different clinician
types interpret musculoskeletal radiographs.

Clinical Study Design and Setting

This retrospective clinical study followed FDA guidance [41]
to evaluate the performance of the deep learning system. We

randomly sampled deidentified cases collected from 12 hos-
pitals and healthcare centers to have a representative set of
patients. The sampling process was designed so that there
was a relatively balanced number of cases across anatomic
regions (Supplementary Table 1; http://links.lww.
com/CORR/A933). All patients were adults at least 22
years old (Supplementary Table 2; http://links.lww.
com/CORR/A934). No radiographs used in the
development of the deep learning system or standalone
testing [24] were present in the clinical testing dataset. There
were 175 patient cases within the deep learning system’s
indications for use [15], and the results from these patients are
reported in this article. Therewere 67 cases frompatients aged
65 and older, and these cases were additionally analyzed to
examine the impact of the deep learning system on the
Medicare-age population (Supplementary Digital Content 1;
http://links.lww.com/CORR/A935). A case consisted of
radiographs from a single patient’s study without any
clinical history provided. Based on a power analysis and an
assumed difference in aided versus unaided areas under the
curve (AUCs) of 0.04 derived from prior work [14], the study
design using 24 clinicians and 175 cases provided more than
90% power.

Twenty-four clinicians interpreted cases in the study.
Clinicians had a median (range) of 16 years (2 to 37) of ex-
perience. Four radiologists and four orthopaedic surgeonswere
included in the study and represent clinician types with ex-
tensive training in musculoskeletal imaging. Four internal
medicine physicians, four family medicine physicians, four
emergencymedicine physicians, and four emergencymedicine
physician assistants (referred to as “physician assistants”) were
included in the study as clinicians with limited training in
musculoskeletal imaging. The intended users of the deep
learning system are clinicians of various specialties, not only
radiologists; therefore, an equal number of clinicians in these
six specialties were selected to properly evaluate the impact of
the deep learning system on performance across a range of
clinician types.

The study consisted of two independent reading ses-
sions separated by a washout period of at least 28 days.
Clinicians interpreted all cases twice. In the first session,
half the cases were aided by the deep learning system and
the other half were unaided. In the second session, all cases
were read in the opposite condition. Cases were assigned
using randomized stratification to reduce case order effects.
Each clinician was asked to determine the presence or
absence of a fracture in each case and provide a confidence
score (0 to 100) of their assessment.

Gold Standard for Fracture Diagnosis

The gold standard for diagnosis (also known as the
“ground truth label”) of a fracture in this study was the
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majority opinion of three US board-certified orthopaedic
surgeons or radiologists who independently interpreted
the case. These orthopaedic surgeons and radiologists
had a median (range) of 13 years (4 to 35) of experience
postresidency. If any image in a case had a fracture-
positive ground truth label, the case was deemed as
having a fracture. Otherwise, the case was deemed as not
having a fracture. Fractures were identified in 24% (42 of
175) of cases. There was complete agreement among the
three physicians providing ground truth labels for 87%
(153 of 175) of cases.

Deep Learning System

The deep learning system served as a concurrent reading
aid for clinicians in detecting and diagnosing fractures
across 12 anatomic regions of the musculoskeletal system
(Supplementary Digital Content 1; http://links.lww.
com/CORR/A935). The deep learning system produces a
binary text output representing the determination of
whether any fractures are visible on a radiograph and a
set of bounding boxes surrounding fracture sites (Fig. 1).
Further details of the deep learning system and its
standalone performance have been described elsewhere

[24]. The clinical study on the deep learning system
described in this article, in part, led to the FDA’s clearance
of the device to assist clinicians in detecting fractures on
musculoskeletal radiographs [15].

Ethical Approval

The study was Health Insurance Portability and
Accounting Act–compliant and was approved by the New
England Independent Review Board.

Statistical Analysis

We calculated the AUC of the receiver operating charac-
teristic (ROC) curve to evaluate clinician accuracy. The
AUC was determined by finding the area under the ROC
curve. The ROC curve can be found by transforming the
readers’ confidence scores into binary responses based off
of stepwise threshold values (for example, if a confidence
score was below a threshold, then the response was con-
sidered to be “fracture absent” versus if a confidence score
was above a threshold, then the response was considered to
be “fracture present”). At each step of the confidence score

Fig. 1 A-B This is an example radiograph from the clinical study with and without the deep
learning system overlay. (A) The radiograph of a fracture in the elbow without the deep
learning system overlay (the unaided condition). (B) The radiograph with the deep learning
system toggleable overlay (the aided condition). The overlay consists of a bounding box
surrounding the site of the fracture in the radiograph (radial neck) and a text box in the
bottom left corner of the radiograph stating “Fracture: DETECTED”.
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threshold value, the sensitivity and specificity were calculated
and were used to plot the ROC curve (sensitivity versus 1-
specificity). If clinicians were to guess at random whether
there were fractures, the AUC would be 0.5, and if clinicians
were perfect at identifying fractures (relative to the gold
standard), the AUC would be 1.0. We used the Dorfman,
Berbaum,Metz model as the primary endpoint of this clinical
study to evaluate whether there was a statistical improvement
between an AUC calculated in one condition (such as, clini-
cians aided by the deep learning system) compared with an-
other condition (such as, unaided clinicians) [11, 21].We also
calculated the sensitivity, specificity, miss rate (1-sensitivity),
positive predictive value, and negative predictive value,
across all clinicians and for each clinician type by treating
each case, read by each clinician, independently. To parallel
the clinician types in theMedicare data, we combined internal
medicine and family medicine physicians into a primary care
physician group. To examine the deep learning system’s
performance on the Medicare-age population, we calculated
themiss rate for clinicianswith andwithout extensive training
in musculoskeletal imaging for all images acquired for pa-
tients at least 65 years old (n = 67). All statistical analyses
were performed with R (version 3.6.1) and Python (ver-
sion 3.6.4).

We performed a series of analyses to evaluate the po-
tential impact of the deep learning system on the United
States Medicare-age population (Supplementary Digital
Content 1; http://links.lww.com/CORR/A935).

Results

Trends in Musculoskeletal Interpretation by
Clinician Type

The Medicare claims data demonstrated that physician
assistants showed the greatest increase (89%) in in-
terpretation of musculoskeletal radiographs from 2012 to
2018 (Table 1).

In 2018, physician assistants provided 4% of radiograph
interpretations (Supplementary Table 3; http://links.lww.
com/CORR/A936), primarily interpreting radiographs in
office and urgent care settings (Supplementary Table 4;
http://links.lww.com/CORR/A937). As expected, clinicians
with extensive training in musculoskeletal imaging
(radiologists and orthopaedic surgeons) interpreted most of
the musculoskeletal radiographs (84% total volume) in 2018,
with a small decrease in the number of interpretations from
2012 to 2018 (Table 1). In 2018, radiologists performed most
of the radiograph interpretations in hospital settings.
Specifically, radiologists performed 97% and 98% of all
radiographic interpretations in emergency rooms and
inpatient hospitals, respectively (Supplementary Table 4;
http://links.lww.com/CORR/A937).

Deep Learning System Improved Diagnostic Accuracy of
Fractures on Radiographs and Benefited Clinicians With
Limited Training in Musculoskeletal Imaging

The deep learning system improved clinicians’ accuracy at
diagnosing musculoskeletal fractures (unaided AUC:
0.903 [95%CI 0.890 to 0.916]; aided AUC: 0.944 [95%CI
0.934 to 0.954]; difference in least square mean per the
Dorfman, Berbaum, Metz model AUC: 0.041 [95% CI
0.013 to 0.069]; p < 0.01). Clinicians demonstrated im-
provements in sensitivity and specificity when assisted by
the deep learning system (Fig. 2). Clinician sensitivity in-
creased when aided compared with when unaided (aided:
90% [95% CI 88% to 92%]; unaided: 82% [95% CI 79% to
84%]), and specificity increased when aided compared
with when unaided (aided: 92% [95% CI 91% to 93%];
unaided: 89% [95% CI 88% to 90%]).

Sensitivity and specificity improved when aided by the
deep learning system for different clinician types (Fig. 3).
Clinicians with limited training in interpreting musculo-
skeletal radiographs (primary care physicians, physician
assistants, and emergency medicine physicians) showed

Table 1. Percentage of musculoskeletal radiograph interpretation and volume per 1000 beneficiaries by year by clinician type in
Medicare claims data for the 12 anatomical regions indicated for use by the deep learning system

Clinician typea 2012 (n = 504) 2015 (n = 516) 2018 (n = 484)
% change in volume

2012 to 2018

Radiologists 52 (263) 53 (273) 54 (262) -1

Orthopaedic surgeons 33 (167) 32 (165) 30 (146) -13

Physician assistants 2 (11) 3 (17) 4 (22) 89

Primary care physicians 1 (4) 1 (4) 1 (3) -39

Emergency medicine physicians 1 (3) 1 (3) 1 (2) -22

Data presented as % (n).
aThe percentage of the total radiograph interpretation volume by each clinician type does not sum to 100% due to the exclusion of
clinician types that interpret radiographs but were not included in the clinical study (such as, podiatrists and hand surgeons).
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the greatest improvements in sensitivity and specificity
when assisted by the deep learning system. Clinicians with
limited training in musculoskeletal imaging missed a
higher percentage of fractures when unaided compared
with radiologists (miss rate for clinicians with limited im-
aging training: 20% [95% CI 17% to 24%]; miss rate for
radiologists: 14% [95% CI 9% to 19%]). However, when
assisted by the deep learning system, clinicians with lim-
ited training in musculoskeletal imaging reduced their
fracture miss rate, resulting in a similar miss rate to radi-
ologists (miss rate for clinicians with limited imaging
training: 9% [95% CI 7% to 12%]; miss rate for radiolo-
gists: 10% [95% CI 6% to 15%]) (Supplementary Table 5;
http://links.lww.com/CORR/A938). The sensitivity, miss
rate, specificity, positive predictive value, and negative
predictive value for all clinicians and per clinician type
were measured (Supplementary Table 5; http://links.lww.
com/CORR/A938), in addition to the average confidence
scores of the clinicians’ assessments (Supplementary
Table 6; http://links.lww.com/CORR/A939).

In Medicare-age cases, a population with relatively high
fracture prevalence, clinicians with limited training and
clinicians with extensive training in musculoskeletal im-
aging both missed fewer fractures when assisted by the
deep learning system (Fig. 4). Clinicians with limited
training in musculoskeletal imaging had a 61% relative
reduction in missed fractures when aided by the deep
learning system. Clinicians with extensive training in
musculoskeletal imaging (radiologists and orthopaedic

surgeons) had a 38% relative reduction in missed fractures
when assisted by the deep learning system. For each cli-
nician type, the fracture miss rate decreased when aided by
the deep learning system (Supplementary Fig. 1; http://
links.lww.com/CORR/A940).

Our results demonstrate that the deep learning system
has the potential to benefit the United States Medicare-age
population by reducing the number of missed fractures in
musculoskeletal radiographs (Supplementary Table 7;
http://links.lww.com/CORR/A941).

Discussion

The interpretation of radiographs is challenging, and di-
agnostic errors often occur in busy clinical settings that rely on
overburdened clinicians who lack subspecialized expertise.
One solution is to assist clinicians’ radiograph interpretation
with a deep learning system. Before deploying in the clinical
setting, it is necessary to evaluate whether a deep learning
system helps different types of clinicians diagnose fractures in
radiographs more accurately. This clinical study demon-
strated that FractureDetect, the first FDA-cleared deep
learning system trained to detect and localize musculoskeletal
fractures in multiple anatomic regions, improved the di-
agnostic accuracy of many types of clinicians.

Fig. 2 The deep learning system increased clinician diagnostic
accuracy at detecting musculoskeletal fractures, as demon-
strated by ROC curves, sensitivity, and specificity for clinicians
unaided and aided by the deep learning system. Error bars
represent the 95% bootstrap CIs (m = 1000).

Fig. 3 The aided and unaided performance for detecting
musculoskeletal fractures is different by clinician type.
Clinicians with limited training in musculoskeletal imaging
(physician assistants, primary care physicians, and emergency
medicine physicians) had the largest increase in sensitivity and
specificity when aided by the deep learning system. Error bars
represent the 95% bootstrap CIs (m = 1000). A color image
accompanies the online version of this article.
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Limitations

There are notable limitations of this study. First, the study
design involved instructing clinicians to only identify fractures
on musculoskeletal radiographs and not to comment on other
possible abnormalities, which could inflate clinician perfor-
mance for fracture detection. Although instructing clinicians to
focus on identifying fractures could increase diagnostic accu-
racy for fracture detection, it would equally impact clinician
accuracy in both unaided and aided experimental conditions
and thus likely had a negligible impact on the main conclu-
sions of the study. Second, although it was expected that the
deep learning system would benefit clinicians with limited
training in musculoskeletal imaging more than orthopaedic
surgeons or radiologists, the study was not powered to test for
statistical differences between the two groups of clinicians.
Despite the small sample size, the data showed a clear en-
hanced benefit for clinicians with limited training in muscu-
loskeletal imaging relative to clinicianswith extensive training.
Third, although the Dorfman, Berbaum, Metz model is the
suggested statistical method to evaluate multiple reader, mul-
tiple case studies [41], there are limitations to this analytical
approach and alternative methods have been proposed [38].

There are also multiple limitations of this study that
could be addressed with a prospective clinical study. For
example, this study did not incorporate clinical history as
the readers were interpreting radiographs, did not evaluate
patient outcomes as a result of a missed fracture, and did
not assess whether fractures required clinical evaluation.
However, studies have shown that minor fractures, in-
cluding those that require no treatment, are important to
identify to prevent possible adverse patient outcomes and
tominimize complications that can arise from fractures [16,
17, 36]. Future studies that evaluate patients in a

prospective setting could determine the impact of the deep
learning system on patient outcomes.

Trends in Musculoskeletal Interpretation by
Clinician Type

The analysis of Medicare radiograph interpretation volumes
between 2012 and 2018 revealed a large increase in the
proportion of physician assistant interpretations relative to
radiologists and other clinicians. These results are consistent
with previous studies showing that nonradiologists are in-
creasingly performing diagnostic imaging and imaging-
guided treatments [27, 31, 37]. The care setting analysis
suggested that physician assistant interpretation pre-
dominantly occurred in office and urgent care settings and that
radiologists continued to perform most hospital interpreta-
tions. Although it is beneficial to increase patient access to
care outside the hospital setting, it is critical that this shift
toward radiograph interpretation by clinicians with limited
training in musculoskeletal imaging does not lead to an in-
crease in costly diagnostic errors. The deep learning system
provides a scalable solution for improving the standard of care
across different clinical settings.

Deep Learning System Improved Diagnostic Accuracy of
Fractures on Radiographs and Benefited Clinicians With
Limited Training in Musculoskeletal Imaging

The deep learning system improved diagnostic accuracy
for clinicians both with and without extensive training in
musculoskeletal imaging. Clinicians with limited training
in musculoskeletal imaging had the largest increase in

Fig. 4 The deep learning system reduced missed fractures across the Medicare-age pop-
ulation for clinicians with limited training in musculoskeletal imaging (physician assistants,
primary care physicians, and emergency medicine physicians) and clinicians with extensive
training in musculoskeletal imaging (radiologists, orthopaedic surgeons). Error bars repre-
sent the 95% bootstrap confidence intervals (m = 1000).
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diagnostic accuracy when aided by the deep learning sys-
tem. Previous studies have evaluated the efficacy of deep
learning systems for fracture detection on radiographs with
only two clinician specialties (radiology and emergency
medicine) [12, 29]; the current study broadened the clini-
cian sample by including five specialties. Specifically, the
deep learning system enabled physician assistants, primary
care physicians, and emergency medicine physicians to
detect fractures with diagnostic accuracy comparable with
that of radiologists and orthopaedic surgeons. Although
most musculoskeletal radiographs are still interpreted by
radiologists and orthopaedic surgeons, our study shows
that the deep learning system improves the performance of
multiple clinician types who are interpreting radiographs,
especially those who may benefit even more from assis-
tance. These clinicians with limited training in musculo-
skeletal imaging are often the first to evaluate a patient after
trauma; therefore, prompt, accurate diagnosis is important
in ensuring effective treatment and mitigating the risk of
patient complications.

We also demonstrated that the deep learning system can
improve diagnostic accuracy and reduce the rate of missed
fractures in Medicare-age patients. We integrated the
analysis of Medicare claims data with published fracture
rates [28] and clinician miss rates from our clinical study to
estimate the number of missed fractures per year
(Supplementary Digital Content 1; http://links.lww.
com/CORR/A935). We estimated that when aided by the
deep learning system, clinicians could miss 43% (52,346 of
121,393) fewer fractures per year across the Medicare-age
population (Supplementary Table 7; http://links.lww.
com/CORR/A941). Given the high direct and indirect
costs of missed fractures [1, 4, 39], these results highlight
the deep learning system’s potential impact on the US
medical system. We were unable to estimate the fracture
miss rate per anatomic region because we had a limited
number of cases per anatomic region. Therefore, the overall
miss rate may be over- or underestimated, which would
affect our reported number of fractures missed in the
Medicare-age population. Future studies that are able to
use a precise fracture rate for each of the 12 anatomic re-
gions may result in a better estimate for how the deep
learning system will improve clinicians’ ability to diagnose
fractures in the Medicare-age population.

Conclusion

The FDA-cleared deep learning system [15] reduced di-
agnostic errors in fracture detection and enabled clinicians
with limited training in musculoskeletal imaging to have
similar performance to radiologists. The deep learning
system has the potential to reduce the number of missed

fractures and improve patient care, especially in the
Medicare-age population.
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